以下是小编为大家收集的水利工程地基处理中深层搅拌桩的运用研究论文(共含5篇),欢迎参阅,希望可以帮助到有需要的朋友。同时,但愿您也能像本文投稿人“彦春继”一样,积极向本站投稿分享好文章。
水利工程地基处理中深层搅拌桩的运用研究论文
摘要:水利工程主要对水进行调控, 所以该工程结构主体作为水体储存场所必须有一定的耐水性, 工程地基也要保持稳定, 不会受到水体影响。在水利工程地基施工中, 经常会应用深层搅拌庄技术, 来加固地基, 稳定地基。相关人员在利用该项技术时, 应该对该技术的适用范围、优势以及施工注意事项等进行了解, 以做好深层搅拌桩在地基处理施工中的质量控制工作。
关键词:深层搅拌桩; 水利工程; 地基; 处理措施;
深层搅拌桩对非正常地基作用效果显着, 因为该施工技术是利用水泥, 来使质地比较软的地基得到坚固硬化, 这样的地基强度才符合水利工程施工要求。在施工中, 相关人员还要注意选择性能好的深层搅拌机械。本文主要针对深层搅拌桩在水利工程地基处理中的应用进行分析。
一、深层搅拌桩技术概述
(一) 适用对象
深层搅拌桩技术也称为深层水泥搅拌桩技术, 水泥作为一种固化剂, 在使用对象强度增加、硬度增大方面有作用, 所以适用的地基是软土地基或非正常地基, 比如淤泥质地、细砂地, 这种技术不仅可以加固地基, 还可以防止地基发生水体渗漏现象。[1]
(二) 深层搅拌桩优势
深层搅拌桩制作过程中, 需要用到水泥土, 将其加入到自然土中, 水泥的流动性会使其很快渗透到自然涂内部, 待其固化后, 水泥土和自然土会形成一个整体, 水泥土比重和侧线抗压强度都比自然土要强, 所以和水泥土成为一体的自然土地基在抗压强度和防渗能力上会有提升。地基整体的承载能力也会变大, 地基防渗透长度和范围也会变大, 在这样的复合地基上建设水利工程, 水利工程在使用中也不会轻易发生不均匀沉降问题。
(三) 桩体质量检测
深层搅拌桩的作用优势建立在桩体质量合格的基础上, 所以在使用前, 需要对其进行质量检测。检测标准规定与相关的建筑地基施工验收规定相一致, 在真正检测过程中, 主要将复合地基作为检测对象, 检测项目是承载力, 要在检测范围内找到三处以上的检测对象, 来使检测结果更加有代表性。[2]主要采取的检测方法是静载试验, 在一定量荷载作用下, 如果桩体还能保持完好无损, 强度没有下降, 证明桩体承载力是合格的。桩体在软土地基内部分布应该是均匀的, 这需要轻型初探试验, 如果软土地基不会发生不均匀塌陷, 证明桩体是均匀的。对深层搅拌桩进行实验时, 还要将时间控制在成桩之后, 要满足应用时间要求。
二、水利工程地基处理中深层搅拌桩技术质量控制
水利工程地基稳定性是否能得到保证, 主要看深层搅拌桩质量控制措施落实程度, 相关人员要着重注意施工中的某些细节。这些细节在施工中主要有以下几方面。
其一, 搅拌桩施工必须借助搅拌机械, 对浆体材料进行搅拌下沉以及喷浆不断提升下沉工作, 喷浆在搅拌下沉之后开始提升, 经历五次提升下沉后, 以提升结束。这就是施工中常说的搅喷。
其二, 在施工前, 就要对相关的施工参数标准进行规定, 比如灰浆泵输浆量、起吊设备提升速度等。浆体材料中各成分的配合比也要提前设计, 并经过试验验证。[3]工艺试桩也属于施工准备工作, 在此步骤, 相关人员可以对施工工艺中容易出现问题的地方和设计不合理的参数进行修改和完善。浆体输送速度应与搅拌速度相适应, 避免浆体搅拌不充分。要对速度进行控制, 一方面可以通过改变输送泵的相关参数实现, 另一方面可以应用流量泵。搅拌提升速度和输浆速度也要保持一致。对工艺试桩的`数量进行确定, 使其具有代表效果。工艺试桩成果满足施工要求, 监理人员才可以批准水利工程地基处理施工。
其三, 浆液的喷射射程要符合搅拌桩高程要求, 在施工中桩端浆液喷射充分, 一般采取浆液喷浆座底半分钟的方式, 此时浆液正处于出浆口。
其四, 所有的搅拌桩桩端所在的平面与地平面保持平行, 地基平整度才会得到保证, 所以还应对搅拌桩与地平面之间的角度进行调控, 首先起吊设备放置上, 要保持一定的平整度, 使其与导向架呈垂直关系。对设备设施以及地面之间的关系进行检验, 在垂直度偏差不是河大的情况下, 搅拌桩施工可以继续。搅拌桩施工中, 在对桩点进行定位后, 相关机械施工时, 还要确定桩位不是错误的。定位卡是常用的工具, 其会使桩位偏差在规定的范围内。搅拌桩在地基处理中, 有的需要搭接成墙, 对于这种情况施工, 主要使其一气呵成, 每根桩施工时间都不能太长, 如此桩与桩之间才能搭接成墙。
其五, 浆体必须由储备浆体的设备提供给搅拌机, 前者运行时间要早于后者, 两者要保持同样的运行状态, 如此才能保证前台操作机械不断喷浆搅拌成桩。[4]操作机械在喷浆速度和次数方面, 也要控制好, 保证地基搅拌桩均匀, 不会出现断桩问题。如果浆体供应不及时, 机械呈现出喷浆量变少现象, 操作人员要注意对搅拌机状态进行调整, 减小停浆点。如果机械设备不能一气呵成, 连续施工, 还要注意观察停机时间, 因为时间过长, 浆体会固结硬化。
其六, 搅拌桩在机械喷浆搅拌的过程中, 高度是一直增加的, 一直与地基正常标高齐平, 这时需要注意桩顶是否均匀密实, 所以在两者标高一致之前, 喷浆口即将出地面时, 就要对搅拌机的相关参数进行调整, 比如对速度进行降低, 喷浆提升和搅拌应适当停止。
其七, 相关人员应全程跟随施工, 在做好监督工作同时做好施工记录, 该记录中主要记录时间和深度, 时间是指设备提升下沉, 浆体出现消失时间, 深度是指桩体标高变化情况。在记录后, 还要注意对两者的误差进行对比, 使其不会超过规定范围。一旦有异常记录时, 相关人员要将当时的情况还原到记录中。
其八, 搅拌桩制作成功一段时间后, 地基处理工作才可以进行, 搅拌桩并不直接接触外界环境, 其上还覆盖一定厚度的土层, 这是在保证桩体的质量。在正式地基施工中, 还需要对地面土体进行开挖, 对埋设搅拌桩的地方, 要以人工方式代替机械开挖。
其九, 在搅拌桩施工完毕保养期间, 搅拌桩的强度一直在增加, 桩体也会变得越来越硬, 在这个变化过程中, 容不得任何压力破坏, 所以相关人员还要对现场的机械设备放置进行合理安排, 使其避开搅拌桩施工区域。[5]
其十, 搅拌桩起到固化作用的是固化剂, 除此之外, 浆体材料中还会用到其他的外掺剂, 浆体材料是否具有固化效果, 还要看这些试剂的添加量, 在添加了外加剂后, 相关人员要对其进行试验。
三、深层搅拌桩技术应用中的问题分析及措施
(一) 输浆管堵塞问题
输浆管堵塞, 浆体就无法顺畅到达前台操作机械, 也就无法正常喷浆。这种问题出现的原因是:浆液中含水量过少, 灰浆材料过稠, 喷管位置不利于设备出浆。在停浆或断浆状态下, 输浆管内部没有得到清理, 经过一定时间后, 这些残余的浆体回固化, 管内部就会出现堵塞。解决措施:对搅拌桩浆体各种组成成分的配置比进行设计, 比如水灰比在0.5状态下的浆体才不会发生堵管现象, 在发生堵管之后, 在浆体未固化之前, 要及时清洗, 停桩部位也要重新打桩。在继续施工后, 如果堵管现象依旧发生, 则需要考虑其他原因, 比如钻头喷管位置, 在堵管现象中, 一般都是搅拌刀片和喷管位置有误, 主要是两者间距过小, 所以相关人员要做好距离的调整。
(二) 钻头下搅受阻问题
深层搅拌桩都是直接打入到地下, 除去表面的地基土, 土下面是否有障碍物, 这些都是施工人员不知道的, 在这种情况下, 打桩失败。现场的监理人员就要重新确立打桩地点, 间隔打桩。该桩点的搅拌桩施工也不能停止。
(三) 搅拌桩桩位不准问题
搅拌桩桩位都需要用定位卡提前设定好, 并做好标记, 如此地基中的搅拌桩分布才会均匀, 固化地基效果才好。在实际中, 经常会出现搅拌桩桩位不准确问题, 这样不仅会使搅拌桩分布不均, 还有可能会使相关位置重复打桩施工。[6]所以还要做好放样工作和桩位复核工作, 在桩位确定后, 对轴线位置进行检测, 如果符合标准规定, 则证明桩位正确。
四、结语
深层搅拌桩施工技术和施工设备以及施工材料都要符合规定要求, 搅拌桩施工质量才能得到保证, 搅拌桩分布才会均匀, 软土地基的整体强度才会提升。将其用作水利工程建设, 水利工程中过多的水体才不会对地基造成负担, 地基也不会发生不均匀沉降问题, 在修建水闸基础防渗墙和挡土墙中, 也不用考虑渗漏问题。
参考文献
[1]袁文龙.深层搅拌桩技术在水利工程地基处理中的应用[J].低碳世界, (22) :109-110.
[2]曹雪梅.深层搅拌桩技术在水利工程施工中的应用及实施要点[J].河南水利与南水北调, 2016 (04) :64-65.
[3]夏敏.深层搅拌桩技术在水利工程地基处理中的应用[J].低碳世界, 2016 (03) :64-65.
[4]孟祥宇, 孟宇.深层搅拌桩在水利工程地基处理中的应用分析[J].科技创新与应用, (13) :172.
[5]佟鑫.深层搅拌桩在水利工程地基处理中的应用分析[J].科技创新与应用, (36) :204.
[6]王桂敏.深层搅拌桩技术在水利工程地基处理中的应用[J].科技创新与应用, 2014 (06) :164.
深层搅拌桩地基处理水利工程论文
1水利工程地基处理中深层搅拌桩技术问题
1.1水利工程地基处理中深层搅拌桩技术应用体会之搅拌桩桩位不准
桩体施工前,要先进行桩位的放样施工,对其准备工作进行重视。在水利工程施工中,地基的处理中应用深层搅拌桩技术是一项非常隐蔽的工作,要做好事前的控制工作,尤其是对桩位的校核工作。在对桩位进行校核时,监理工程师要对桩位进行复核,并且,对桩位的相对轴线位置也要进行相应的检测,这样能够避免出现在一些施工部位重复进行施工的情况。但是,在很多的水利工程施工中,地基处理深层搅拌桩技术的施工人员只有对对轴线相对位置的检查比较重视,这样才能更好的保证水利工程的地基处理不受到影响。
1.2水利工程地基处理中深层搅拌桩技术应用体会之钻头下搅受阻
在打桩机的钻头下搅过程中,一旦出现钻头碰到大块的石头、树根等异物,这样就会导致钻头在使用过程中出现长期的搅拌现象,不能够继续下沉。因此,在施工过程中,要有专业的监理人员对工程的施工进行检查,对工程的质量进行保证,同时,在出现问题以后,监理人员可以要求施工人员对下搅工作进行暂停,也可以使用间隔桩位施工,然后在进行这个桩位的施工。
1.3水利工程地基处理中深层搅拌桩技术应用体会之输浆管堵塞
在水利工程地基处理中,应用深层搅拌桩技术往往会出现输浆管堵塞的问题,出现这个问题的主要原因是打桩机钻头喷灌位置的设置不符合要求,或者是浆液的黏度过大,在出现这种情况下,深层搅拌桩技术的水灰比应该控制在0.5左右。针对施工过程中可能出现的堵管问题,施工单位可以对浆液的水灰比进行适当的调整,也可以对输浆管进行清理,然后按照正常的施工程序进行操作。对出现堵管的桩位也可以进行补桩,这样也能对出现的问题进行解决。
2深层水泥搅拌桩施工质量控制
2.1施工前的质量控制
2.1.1施工前准备
在施工前的准备阶段,可以修建设备的存放场地,保证用电设施的齐全和供电的稳定性。在没有外接电源的施工现场,可以配备一定数量的柴油发电机。在施工现场,对区域内的障碍物要进行清除,对可能影响施工的石块或者是地下管线也要进行清除,对施工现场的高压电线也要进行处理,保证可能出现障碍物进行事先的清除,在无法清除时,应该设置明显的标志,这样能够保证生产的安全。对施工现场进行场地平整,对出现的低洼存水处应该进行抽水,然后进行回填压实,在回填方面不能使用生活垃圾来作为填充物。
2.1.2施工放样在施工放样方面,要使用精密测量设备进行准确的放样,对施工起始桩位和边线的位置进行确定,然后利用钢尺对桩距进行测量,将桩位标出。
2.1.3原材料的质量控制在对原材料进行控制时,要对水泥的品种以及质量进行严格的要求,在大批量使用前,对水泥要进行抽样试验,对强度问题进行检测,在检测合格以后才能在施工现场进行使用。施工中应用的水也要符合相关的要求,对自然水源的水质要进行分析,在检验合格以后才能进行使用。
2.2实施过程质量控制
2.2.1试桩
在工程开始施工前,要按照规范要求,对深层水泥桩的搅拌桩成桩进行试验,试桩的结果要满足相关的技术参数要求,对钻进速度、搅拌次数以及提升速度都要进行试验,然后对施工步骤以及施工程序都要进行确定,对地质变化可能出现影响进行分析,制定合理的施工技术措施。
2.2.2制浆质量控制
在制浆方面,要对水灰比进行控制,对备好的浆液还要进行持续的搅拌,使水泥浆保持稳定,不会出现离析和停置时间较长的情况。浆液在倒入集料时应该进行过滤,这样能够避免出现浆液内结块的情况,避免出现堵塞的问题。
2.2.3输送浆液质量的控制
在进行浆液输送以前,要保证输浆管的潮湿,这样对输浆的`效果能够进行保证。在输浆过程中,对泵的压力大小也要进行控制,泵的压力满足要求,保持稳定性,能够实现持续供浆。在输浆过程中要是出现堵塞的情况,可以对输浆管道进行拆卸和清洗。
2.2.4桩长的控制
钻杆标线法:施工前应测量钻杆长度,可用带颜色的油漆在钻杆上进行明显的桩长标志,以便掌握钻入和复搅深度,确保桩长满足设计要求。度盘读数法:利用控制钻入深度的刻度盘,通过指针读数可直接反映搅拌桩的长度。
2.2.5水泥用量的控制
按单桩桩长和设计要求,计算出单桩水泥用量,严格按事先确定的水灰比进行制浆。输浆泵控制。输浆泵必须保持足够的压力和稳定的输浆能力,输浆量必须与施工桩机的下钻速度、搅拌频率及提升速度相匹配。另外,应确保单桩施工后,所配制的水泥浆能基本用完,无剩余。只有控制好单桩的水泥用量,桩身的强度才能保证。
3结束语
在水利工程建设过程中,深层搅拌桩的施工质量对建设成败有直接的影响,在施工中如果质量出现问题,会导致隐患出现,而且,在检查和补救方面都会出现一定的问题。因此,对深层搅拌桩的施工技术一定要进行严格的控制,对施工管理进行严格要求,保证施工的质量。
在工程地基处理中深层搅拌法的运用论文
关键词:深层搅拌法;地基沉降;加固
摘要:本文介绍了深层搅拌法加固地基的原理,并结合实际工程介绍了该方法的施工工艺和加固效果,工程实际表明深层搅拌法具有造价低、施工简单和效益好的优点,在条件适宜时应优先采用。
1前言
深层搅拌法是加固饱和软粘土地基的一种方法,它是利用水泥、石灰等材料作为固化剂的主剂,通过特制的深层搅拌机械,在地基深处就地将软土和固化剂强制搅拌,利用固化剂和软土之间所产生的一系列物理化学反应使软土硬结成具有整体性、水稳性和一定强度的优质地基。深层搅拌法处理地基可增加地基承载力、减小沉降差、提高边坡稳定性及挡水等。深层搅拌法处理后的地基承载力提高1~1.5倍。
深层搅拌法是相对于浅层搅拌而言,浅层搅拌法主要用于路基,冻涨土和边坡稳定的处理。深层搅拌分水泥系深层搅拌和石灰系深层搅拌。下面介绍的是水泥系深层搅拌法及其工程应用实例。
国外自二次大战以来开始研制用于深层搅拌桩的深层搅拌机械,到70年代,已广泛应用深层搅拌法处理地基,我国从70年代末开始进行深层搅拌的室内试验和搅拌机械的研制工作,1979年在塘沽新港进行机械考核和搅拌工艺试验,并获得成功。80年代初推广使用深层搅拌法,至今在上海、南京、连云港、唐山、昆明及内陆部分地区得到了广泛应用。我们在某写字楼(筏基)工程的地基处理中采用了深层搅拌法,取得了良好的技术经济效果。
2水泥加固土的原理
软土与水泥采用机械搅拌加固的原理是基于水泥土的物理化学反应过程,它与混凝土的硬化机理有所不同。在水泥加固土中,由于水泥的掺量很小(占被加固土重的7%-15%),水泥的水解和水化反应完全是在具有一定活性介质--土的围绕下进行,硬化速度缓慢且作用较复杂,所以水泥加固土的强度增长过程也比较缓慢。
2.1水泥的水解和水化作用
硅酸盐水泥的主要成分是由氧化钙、二氧化硅、三氧化二铝、三氧化二铁及三氧化硫组成,而这些氧化物又分别组成了不同的水泥矿物;硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硫酸钙等。用水泥加固软土时,水泥颗粒表面的矿物很快与软土中的水发生水解和水化反应,生成氢氧化钙、含水硫酸钙、含水铝酸钙和含水铁酸钙等化合物。其中,硅酸三钙在水泥中含量最高(50%左右),是决定强度的主要因素;硅酸二钙含量较高(25%),主要产生后期强度;铝酸三钙占水泥重量10%,水化速度快,能促进早凝;铁铝酸四钙占水泥重量10%,能提高早期强度;硫酸钙占水泥重量3%,能和铝酸三钙一起与水发生反应,生成一种水泥样菌,对高含水量的软土强度增加有特殊意义。
2.2粘土颗粒与水泥水物的作用
离子交换和团化作用。通过离子交换,较小的土颗粒结合可形成较大的土团粒;土团粒的进一步结合形成水泥土的.团粒结构,并封闭各土团之间的空隙,形成坚固的联结,也就使水泥土的强度得到大大提高。
凝硬反应。随着水泥水化反应的深入,逐渐生成不溶于水的稳定的结晶化合物。这些化合物在水中、空气中逐渐硬化,增加了水泥土的强度,而且其结构也比较密实,水分不容易侵入,从而使水泥土具有足够的水稳性。
2.3碳酸化作用
水泥水化物中的氢氧化钙,吸收水中和空气中的二氧化碳发生碳酸化反应生成不溶于水的碳酸钙。这种反应能提高水泥土的强度,但速度较慢,幅度较小。
3工程实例
3.1工程概况
某写字楼建筑面积近一万平方米,层数九层,结构型式为框架结构,柱网尺寸为6.3m×7.2m(纵向)、6.3m×3.6m(纵向)、2.4m×7.2m(纵向)、2.4m×3.6m(纵向),所处场地为浏阳河冲积平原、地表土层为1.9m~2.0m厚的人工填土,以下为第四纪沉积层,地层从上到下分别为:
第①层粉土,湿至很湿,疏松到稍密,承载力标准值fk=115KPa,压缩模量平均值Es=11(MPa)、层厚3.9~4.0m;
第②层粘土夹粉土,饱和,软塑至可塑状,承载力标准值fk=110KPa,压缩模量平均值Es=7.0(MPa)、层厚2.3~3.7m;
第③层粉土,很湿,中密,承载力标准值fk=120(MPa),压缩模量平均值Es=15.42(MPa),层厚1.0~1.3m;
第④层粘土饱和,可塑至硬塑状,承载力标准值fk=120KPa,压缩模量平均值Es=6.5(MPa),层厚3.5~3.8m;第5层粘土,饱和,硬塑状,承载力标准值fk=140KPa,平均压缩模量Es=7.5(MPa),本层揭示最大厚度4.2m。场地地下水属孔隙潜水类型,地下隐定水位14.5m,但由于粘性土的隔水作用。上部土体已达饱和状态。经检测,地下水无侵蚀性。
3.2加固方案的比较
灌注桩。因场地土呈软塑~流塑状态,成孔很困难,需要有较高施工技术水平保证施工质量,且造价高、工期长。
(2)碎石桩。工期短,施工简单,造价低;因受场地条件的限制而不能采用。
(3)预制桩。能较好地满足所需要的承载力,但工期长,施工噪音大影响周围居民的正常生活;其造价经测算约54万元。
(4)深层搅拌桩。施工速度快,工期短,施工方便,能较好地保证施工质量,造价约23万元,仅是预制桩的42.6%。
经方案比较,决定选用深层搅拌桩处理地基。地基处理后的承载力标准值F=250KP。
3.2深层搅拌桩的施工
3.2.1室内试验
软土地基深层搅拌加固法是基于水泥对软土的加固作用,而目前这项技术无论设计计算方法,还是施工工艺都不太成熟,因此,应特别重视水泥土的室内外试验。试验步骤:1)为保证试验准确性,将现场挖掘的天然软土立即封装在双层厚塑料袋内,基本保持天然含水量;2)根据施工要求的试验程序、配方,分别称量土、水泥、外掺剂和水,放在容器内搅拌均匀,按要求进行振动,制成试块后,盖上塑料布,防止水份蒸发过快,并按要求进行养护。本工程经过室内试验得出如下结论,水泥土的容重比原状土仅增加2.7%,因此,其加固部分对于下部未加固部分不会产生过大的附加荷重,水泥土的无侧限抗压强度为2.12MP,大于设计要求的F=2.0MP的要求,满足设计要求。
3.2.2施工要求
目前,对深层搅拌法加固质量的检验缺少简便可靠的办法,因此,我们要求施工单位严格按照建筑地基处理技术规范有关要求进行施工,并提出以下要求:(1)每根桩均应确保均匀和足额的喷灰量,送灰时要密切注意电子称计量变化,如发现喷灰量不足,应及时采取复喷或补喷等措施,每根桩应保证送灰连续、均匀、不得间断;(2)考虑到与基础接触部分的搅拌桩顶部受力较大,因此,要求对桩顶1.5m范围内复搅、复喷。因设计时考虑桩端承载力,因此,应确保桩端质量,除应复搅、复喷外,钻头至桩底时,应原位旋转1~2分钟,以便叶片对土的压实及水泥的充分拌和,并以慢档提升0.5~1.0m。
4结语
写字楼投入使用一年多,经观测基础沉降基本稳定,总沉降量为5.9cm,完全满足使用要求,从施工情况看,在含水量较高的软土地区,深层搅拌法处理地基比较适合,且施工简单,经济合理,效益好。
参考文献
[1]陆培毅.土力学[M].北京:中国建材出版社.
[2]何金辉,张立新,陈孝培,软土地基测试指标的实际应用[M].北京:地质出版社,.
[3]中华人民共和国行业标准.建筑桩基技术规范(JGJ94-94).北京:中国建筑工业出版社,1995.
树根桩在复合地基(深层搅拌桩)工程中的补救应用论文
摘 要:针对某工程中的复合地基(深层搅拌桩)进行了静载试验,对局部承载力不满足设计要求进行了分析,提出了用树根桩弥补复合地基(深层搅拌桩)承载力不足的处理方案,对两种桩的受力和变形条件进行了分析,使两者共同作用,处理结果表明,这种处理方法即便于施工又能完全满足设计要求,其经验可供类似地基处理工程借鉴。
关键词:树根桩;复合地基(深层搅拌桩);承载力;变形
1 工程及地质概况
某学院拟建一栋医务楼,高三层,占地面积约1000m2,砖混结构。
工程地貌属于河流Ⅲ级阶地区,主要覆盖土层为杂填土、素填土、淤泥、粘土、含卵石粘土。各土层名称及主要物理力学性质见表1。
2 复合地基检测要求及检测结果
2.1 检测要求
该场地的地基采用深层搅拌桩加固处理,深层搅拌桩桩径为500mm,共449根桩,面积置换率为0.27。处理后要求复合地基承载力特征值≥180KPa。施工完成后对深层搅拌桩抽了5根点进行静载试验。
2.2 检测原理及方法
测试仪器主机采用武汉岩土工程技术开发公司研制的RS-JYC全自动桩基静载测试分析系统,编号为01-326C。荷载采用联接于电动油泵的GS20K压力变送器,通过主机控制测量;沉降量采用RSWS-50型位移传感器测定。静载试验采用堆载法,用工型钢主、副梁形成6m×10m的堆载平台,荷载共分10级,分9次施加,首次加载值为分级值的2倍,最大加载值为设计荷载值的2倍。设计荷载值为单桩处理的复合地基面积乘以设计承载力。试验结果见表2。
2.3 检测结果及分析
本工程按1%比例抽取了5个桩点进行了静载试验,其桩号分别为416#、389#、149#、324#、216#桩,根据试验成果对照规范确定的各试验桩号复合地基承载力特征值见表2。试验结果表明416#、389#、149#、324#桩复合地基承载力特征值≥180KPa,216#桩复合地基承载力特征值137KPa不能满足设计要求。
3 处理方案
3.1 问题分析
由表2试验结果表可知,所抽检桩的承载力除216#外均满足设计要求。经了解,该桩是施工队采用一自行改装的小型桩机施工的,属于试验性施工。该桩机共施工了24根桩,经开挖抽查,由于搅拌不均匀,水泥与土体未能形成良好的水泥土,因而复合地基承载力特征值偏低,不能满足设计要求。鉴于本工程所处环境、地质条件、安全经济等因素综合考虑,对该桩机施工的24根桩,在其位置上再施工φ130的树根桩进行补强。
3.2 补救方案的可行性分析
在与216#桩同一桩机施工的24根桩周围采用树根桩进行补强,根据场地地质条件分析,桩长3.00~4.00m。使树根桩与搅拌桩共同组合成复合地基,在基础与复合地基之间铺设柔性垫层。由于在该场地树根桩与搅拌桩都桩端土和桩周土环境,虽然树根桩设计强度由桩端土和桩周土强度控制,搅拌桩由桩身水泥土强度控制,但通过柔性垫层调整可达到二者受力和变形协调一致。 3.3 加固处理要求
根据复合地基(深层搅拌桩)检测结果,通过对承载力
偏低的深层搅拌桩进行补充荷载计算。首先设计树根桩单桩承载力标准值≥60KN,再确定所需树根桩的'数量。桩身材料选用Po.32.5普通硅酸盐水泥及中砂,砂浆强度为M20,配φ12钢筋。据此计算该工程需树根桩72根,单桩长3.00~4.00m,在施工过程中,桩长应根据实际地层情况进行适当调整。
3.4 树根桩静载检测结果
树根桩施工完成后,抽取3根树根桩进行多桩(相当于单根搅拌桩状态)复合地基静载试验,静载试验结果为:最大试验荷载360kPa、累计最大沉降7.51mm、残余变形3.86mm、承载力特征值231kPa。与其它搅拌桩复合地基静载试验结果对比,变形较小,说明补救方案处理结果达到了预期目的。
4 结束语
深层搅拌法是用于加固填土、粘性土地基的一种常用地基处理方法,但由于地质条件差异、填土自身的各向异性和施工工艺的不同,施工完工后可能出现有规律的偏差、检测质量达不到设计要求。此时,应结合场地实际情况,详细核实地质条件,结合设计要求,对地基处理工程做出全面、客观、合理的评价并提出切实可行的补救处理措施。对于补桩,除应满足设计承载力的要求外,还需要对经济性、工期、施工场地条件等,进行综合评价来确定补救方案。
参考文献
[1]@《地基处理手册》[M].北京: 中国建筑工业出版社.
[2]@《建筑地基处理技术规范》[S].(JGJ79-2002).
[3]@《建筑地基基础工程施工质量验收规范》[S].(GB50202-2002).
[4]@王平,黄育德,陈欣。深层搅拌桩试桩设计及静载试验参数分析[J].工业安全与环保,,29(7).
现阶段国内较大的水利工程均沿河而建。其目的不仅能够深化水利工程的应用,同时还能够有效地减少工程投资。不过,因为很多工程都依河而建,而土坝土质大多为软土地质。目前软土地基的缺点较多,其承载力相对偏低,同时含水量较之常规地基存也有较大的差异性。本文将以浅析水利工程施工中土坝软土地基处理方法作为切入点,并进行深入地探究,相关内容如下所述。
1.软土地基的基本特性
水利工程土坝软土地基即地基以软土结构为主的一种地基类型,而粘性土,泥炭与沙质土均归类为软土。此类土质具有较高的含水量,同时土质松软,其地基的承载负荷较小。我们将水利工程土坝软土地基的特点归纳为下述几点:(1)具有较差的透水性,主要是因为此类土体大多为淤泥结构,一些过量的水分不能第一时间排出。所以,在工程环节,若相关工作者没有予以全面处理,那么就会在很大程度上影响到水利工程的可靠性。(2)具有较快的沉降性,沉降性主要是因软土地基内的含水量偏高,较之常规土质,沉降比率较为迅速。(3)缺乏均匀度,软土的种类具有多样性,差异化的软土土质的强度及密度都存在较大差异。在水利工程环节,软土因其载荷力偏低的特点,施工过程可能会发生坍塌及裂缝的情况,由此可证,其缺乏足够的均匀度。(4)具有较强的可压缩性。因软土地基特点较为显著,其不仅缺乏稳定性,同时还具备了一定的可压缩性。伴随水利工程的持续发展,相关工作者需要对软土地基的压缩性予以控制,这样可以完善软土地基对水利工程造成的影响。(5)存在一定的易变特性,我们所提及的易变性即,软土地基在因外力作用下,会由以往的固态结构变为其他状态。因为软土地基具有较高的易变性,所以会为水利工程建设带来一定的`影响。
2.软土地基处理措施
2.1替换土措施
替换土措施是按照水利工程土坝软土土质环境去深化地基品质的一种手段,此措施具有简单易行的特点。在工程环节,相关工作者利用水泥及灰土等人工材料去替代软土。不过替换土也存在其弊端。替换土的优势为操作便捷,我们只需择取相对稳定的土质就能够深化软土土质的整体载荷力,但是替换土的劣势在于会因地质环境而受到约束,在路途较远时予以运输,不但会增加工程耗时,同时还会提高工程的投资成本,因此在实施替换土工程前,我们一定要全面分析工程附近的地质环境,若附近的地质环境允许,那么即择取替换土措施。
2.2排水固结措施
排水固结措施是解决水利工程土坝软土地基常见措施,因为排水固结措施可以通过排水设备将水利工程土坝软土地基内过量的水分排出,因此深化土坝软土地基的稳定性,这在很大程度上也提高了地基的整体载荷。不过工程环节,一些工作者会错误地认为,即使将地基内部的水分排出也无法提高土坝软土地基的稳定性,同时还会造成土坝软土地基疏松等问题,而实践资料显示,此观点缺乏实证依据。在土坝软土地基排水环节,相关工作者要遵循有关规定,按照现场情况设计相适应的方案,只有这样才能体现出排水固结法的有效性。
2.3旋喷措施
旋喷措施是利用旋喷机所产生的旋喷桩去提高地基的荷载,旋喷还可以作为连锁桩工程及定向喷射成连续墙的地基防渗施工。旋喷桩的使用主要依附于加装了特殊喷嘴的注浆管,将加装了特殊喷嘴的注浆管安装到土层中,其深度要在工程前设计完成,喷嘴在开启时随自传而升高,在高压喷射水泥固化浆液以及土体混合并凝固硬化后成桩。此措施所成桩具有较高的强度,且压降低了其压缩性。此措施使用于冲填土以及软黏土的加固,旋喷法对有机质饱和度较大的地基土质效果不理想,因此,是否择取旋喷措施,我们在工程前要予以整体分析。
2.4化学固结措施
化学固结即通过气压与电化学手段,经木质素类等化学材料对软土地基予以相应的浇筑,利用化学反应,对淤泥质黏性土等土质予以全面处理,提高软土地基的土质强度。化学固结措施还可以利用人工合成材料加筋加固,人工材料加筋加固法是在软土地基处理换几个,把高强度或韧性的人工合成材料浇筑在软土内,经高压摩擦促使人工合成材料和软土全面混合,深化软土质的稳定性及荷载。结语综上所述,针对水利工程土坝软土地基的处理主要包括下述几种措施:
(1)替换土处理法。
(2)排水固结法
(3)旋喷法。
替换土措施是按照水利工程土坝软土土质环境去深化地基品质的一种手段,此措施具有简单易行的特点。在工程环节,相关工作者利用水泥及灰土等人工材料去替代软土。不过替换土也存在其弊端。替换土的优势为操作便捷,我们只需择取相对稳定的土质就能够深化软土土质的整体载荷力,但是替换土的劣势在于会因地质环境而受到约束,在路途较远时予以运输,不但会增加工程耗时,同时还会提高工程的投资成本,因此在实施替换土工程前,我们一定要全面分析工程附近的地质环境,若附近的地质环境允许,那么即择取替换土措施。排水固结措施是解决水利工程土坝软土地基常见措施,因为排水固结措施可以通过排水设备将水利工程土坝软土地基内过量的水分排出,因此深化土坝软土地基的稳定性,这在很大程度上也提高了地基的整体载荷。不过工程环节,一些工作者会错误地认为,即使将地基内部的水分排出也无法提高土坝软土地基的稳定性,同时还会造成土坝软土地基疏松等问题,而实践资料显示,此观点缺乏实证依据。在土坝软土地基排水环节,相关工作者要遵循有关规定,按照现场情况设计相适应的方案,只有这样才能体现出排水固结法的有效性。旋喷措施是利用旋喷机所产生的旋喷桩去提高地基的荷载,旋喷还可以作为连锁桩工程及定向喷射成连续墙的地基防渗施工。旋喷桩的使用主要依附于加装了特殊喷嘴的注浆管,将加装了特殊喷嘴的注浆管安装到土层中,其深度要在工程前设计完成,喷嘴在开启时随自传而升高,在高压喷射水泥固化浆液以及土体混合并凝固硬化后成桩。此措施所成桩具有较高的强度,且降低了其压缩性。此措施使用于冲填土以及软黏土的加固,旋喷法对有机质饱和度较大的地基土质效果不理想,因此,是否择取旋喷措施,我们在工程前要予以整体分析。
参考文献:
[1]涂国凌,吴新翔.洪门水电站土坝渗流监测自动化系统的设计[A].
[2]吴新翔.洪门水电站土坝渗流监测自动化系统的应用[A].