以下是小编帮大家整理的考研数学强化备考 概率与数理常考题型(共含5篇),欢迎大家收藏分享。同时,但愿您也能像本文投稿人“花上花胶片”一样,积极向本站投稿分享好文章。
考研数学强化备考 概率与数理常考题型
概率论与数理统计部分是大多数考生在数学统考中的一个弱项,是关系考生在选拔性考试中竞争力强弱的关键一环,对中等水平的考生来说,尤为如此。考生在数学科目的复习安排上,要先从概率论与数理统计开始,一节一节地复习,一个概念一个概念地领会,一个题一个题地做,以达到正确理解和掌握基本概念、基本理论和基本方法的目的。下面总结了一下常考题型:
常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:
(1)确定事件间的关系,进行事件的运算;
(2)利用事件的关系进行概率计算;
(3)利用概率的性质证明概率等式或计算概率;
(4)有关古典概型、几何概型的概率计算;
(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;
(6)有关事件独立性的证明和计算概率;
(7)有关独重复试验及伯努利概率型的计算;
(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;
(9)由给定的试验求随机变量的分布;
(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;
(11)求随机变量函数的分布(12)确定二维随机变量的'分布;
(13)利用二维均匀分布和正态分布计算概率;
(14)求二维随机变量的边缘分布、条件分布;
(15)判断随机变量的独立性和计算概率;
(16)求两个独立随机变量函数的分布;
(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;
(18)求随机变量函数的数学期望;
(19)求两个随机变量的协方差、相关系数并判断相关性;
(20)求随机变量的矩和协方差矩阵;
(21)利用切比雪夫不等式推证概率不等式;
(22)利用中心极限定理进行概率的近似计算;
(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;
(24)推证某些统计量(特别是正态总体统计量)的分布;
(25)计算统计量的概率;
(26)求总体分布中未知参数的矩估计量和极大似然估计量;
(27)判断估计量的无偏性、有效性和一致性;
(28)求单个或两个正态总体参数的置信区间;
(29)对单个或两个正态总体参数假设进行显著性检验;
(30)利用χ2检验法对总体分布假设进行检验。
考研数学概率论与数理统计:概率论常考30题
常有的题型有:填空题、选择题、计算题和证明题
试题的主要类型有:
(1)确定事件间的关系,进行事件的运算;
(2)利用事件的关系进行概率计算;
(3)利用概率的性质证明概率等式或计算概率;
(4)有关古典概型、几何概型的概率计算;
(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;
(6)有关事件独立性的证明和计算概率;
(7)有关独重复试验及伯努利概率型的计算;
(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;
(9)由给定的试验求随机变量的分布;
(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;
(11)求随机变量函数的分布(12)确定二维随机变量的分布;
(13)利用二维均匀分布和正态分布计算概率;
(14)求二维随机变量的边缘分布、条件分布;
(15)判断随机变量的独立性和计算概率;
(16)求两个独立随机变量函数的`分布;
(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;
(18)求随机变量函数的数学期望;
(19)求两个随机变量的协方差、相关系数并判断相关性;
(20)求随机变量的矩和协方差矩阵;
(21)利用切比雪夫不等式推证概率不等式;
(22)利用中心极限定理进行概率的近似计算;
(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;
(24)推证某些统计量(特别是正态总体统计量)的分布;
(25)计算统计量的概率;
(26)求总体分布中未知参数的矩估计量和极大似然估计量;
(27)判断估计量的无偏性、有效性和一致性;
(28)求单个或两个正态总体参数的置信区间;
(29)对单个或两个正态总体参数假设进行显著性检验;
(30)利用χ2检验法对总体分布假设进行检验。
【随机变量及其分布】
一、本章的重点内容:
・随机变量及其分布函数的概念和性质(充要条件);
分布律和概率密度的性质(充要条件);
・八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用;
・会计算与随机变量相联系的任一事件的概率;
・随机变量简单函数的概率分布。
近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布。
二、常见典型题型:
1.求一维随机变量的分布律、分布密度或分布函数;
2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定;
3.反求或判定分布中的参数;
4.求一维随机变量在某一区间的概率;
5.求一维随机变量函的分布。
【二维随机变量及其分布】
一、本章的重点内容:
・二维随机变量及其分布的概念和性质,
・边缘分布,边缘密度,条件分布和条件密度,
・随机变量的独立性及不相关性,
・一些常见分布:二维均匀分布,二维正态分布,
・几个随机变量的简单函数的分布。
本章是概率论重点部分之一!应着重对待。
二、常见典型题型:
1.求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度;
2.已知部分边缘分布,求联合分布律;
3.求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度;
4.两个或多个随机变量的独立性或相关性的判定或证明;
5.与二维随机变量独立性相关的命题;
6.求两个随机变量的`相关系数;
7.求两个随机变量的函数的概率分布或概率密度或在某一区域的概率。
一、本章的重点内容:
・四个关系:包含,相等,互斥,对立;
・五个运算:并,交,差;
・四个运算律:交换律,结合律,分配律,对偶律(德摩根律);
・概率的基本性质:非负性,规范性,有限可加性,逆概率公式;
・五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式;
・条件概率;
・利用独立性进行概率计算;
・n重伯努利概型的计算。
近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。
二、常见典型题型:
1.随机事件的关系运算;
2.求随机事件的概率;
3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。
★ 企业笔试常考题型
★ 寒假备考考研数学