下面是小编整理的考研数学高数部分常考八大题型考点解析(共含8篇),欢迎您阅读,希望对您有所帮助。同时,但愿您也能像本文投稿人“明月半墙”一样,积极向本站投稿分享好文章。
考研数学高数常考考点梳理
高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。
为了帮助提高大家高效复习,本文为大家梳理了高等数学的常考考点,希望大家不要盲目复习,加强巩固以下知识点。
1.函数、极限与连续
求分段函数的复合函数;
求极限或已知极限确定原式中的常数;
讨论函数的连续性,判断间断点的类型;
无穷小阶的比较;
讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。
2.一元函数微分学
求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
利用洛比达法则求不定式极限;
讨论函数极值,方程的根,证明函数不等式;
利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;
几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
利用导数研究函数性态和描绘函数图形,求曲线渐近线。
3.一元函数积分学
计算题:计算不定积分、定积分及广义积分;
关于变上限积分的题:如求导、求极限等;
有关积分中值定理和积分性质的证明题;
定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;
综合性试题。
4.向量代数和空间解析几何
计算题:求向量的数量积,向量积及混合积;
求直线方程,平面方程;
判定平面与直线间平行、垂直的`关系,求夹角;
建立旋转面的方程;
与多元函数微分学在几何上的应用或与线性代数相关联的题目。
这一部分为数一同学考查,难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
5.多元函数的微分学
判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;
求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;
求二元、三元函数的方向导数和梯度;
求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;
多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。
这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。
6.多元函数的积分学
二重、三重积分在各种坐标下的计算,累次积分交换次序;
第一型曲线积分、曲面积分计算;
第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;
第二型(对坐标)曲面积分的计算,高斯公式及其应用;
梯度、散度、旋度的综合计算;
重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。
8.无穷级数
判定数项级数的收敛、发散、绝对收敛、条件收敛;
求幂级数的收敛半径,收敛域;
求幂级数的和函数或求数项级数的和;
将函数展开为幂级数(包括写出收敛域);
将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);
综合证明题。
9.微分方程
求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;
求解可降阶方程;
求线性常系数齐次和非齐次方程的特解或通解;
根据实际问题或给定的条件建立微分方程并求解;
综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
考研数学高数六大常考题型总结
题型一:求极限
求极限是高等数学的基本要求,所以也是每年必考的内容。无论数学一、数学二还是数学三,每年的考题都会涉及到,区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时考生需要选择多种方法综合完成题目。另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的。
题型二:利用中值定理证明等式或不等式,利用函数单调性证明不等式
证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),一个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用时的一个难点,但考查的概率不大。
题型三:一元函数求导数,多元函数求偏导数
求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。
另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。
题型四:级数问题
常数项级数(特别是正项级数、交错级数)敛散性的`判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。
题型五:积分的计算
积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的使用,对称性的使用等。
题型六:微分方程
解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。
考研数学选择题高数考点解析
的考研数学考生已经顺利结束了,从试题上看,试题依然延续往年的风格,注重对基础知识的考查,从高数科目来看,今年数学一、数学二、数学三的选择题部分考查,主要以基本题型和常规题型考查为主,考研教育网专家整合数学一、数学二、数学三试题,提取相关高数考题,具体考点解析如下:
数学一部分:
题号
考点
分析
1
已知未定式,求参数
本题属于常规题,考查学生的求未定式极限的能力,本题可用无穷小代换、罗必塔法则等多种方法方法解答。
2
曲面的切平面方程
本题属于基本题,考查曲面的切平面方程,直接求出切平面的法向量,即可求解
3
傅里叶级数
本题考查以2l为周期的偶函数的'傅里叶级数的和函数在某点的值,属于基本题型。
4
第一类曲线积分的性质
本题考查第一类曲线积分的性质,可利用格林公式解决。
数学二部分:
题号
考点
分析
1
高阶无穷小
本题考查判断两个函数的无穷小关系,属于常规题型,直接求两函数比值的极限即可判断
2
考查利用导数定义求数列极限
本题属于基本题型,但在设计上打破了以前以显函数给出函数的惯例,给出隐函数形式,需要考试能敏锐地挖掘出这一隐含信息。
3
判断变限积分函数在某点处的性质
本题属于常规题,但由于所给函数是一个以分段函数为被积函数的变限积分,因此有一定难度。
4
已知反常积分的敛散性,求参数的范围
本题考查已知反常积分的敛散性,求参数的范围,属于常规题型,但要注意由于所给函数是一个以分段函数为被积函数的反常积分,因此要注意分段讨论。
5
二元复合函数的偏微分
本题考查二元复合函数的偏微分的计算,属于常规题型。
6
二重积分的性质
本题属于基本题,但设计比较新颖,考查学生利用极坐标二重积分的能力。
数学三部分
题号
考点
分析
1
高阶无穷小的运算
本题属于基本题型,考查高阶无穷小的运算的运算性质。
2
函数的间断点
本题属于基本题型,但较之往年此类考题,难度有所提高,主要在于这两个函数,无形中增加了难度。
3
二重积分的性质
本题属于基本题,但设计比较新颖,考查学生利用极坐标二重积分的能力。
4
数项级数的敛散性的判别
本题属于常规题,考查学生灵活利用数项级数敛散性的各种判别法判断级数的收敛性,在历年的考试中,一只手广大考试比较惧怕的一类试题,需要在今后的复习中引起重视。
20考研数学高数填空题考点解析
数学一:
题号
卷种及题型
考点
分析
9
数一填空
隐函数方程求导及导数的定义
本题属于基本题型,考察隐函数方程求导:将看成自变量,方程两端对求导;导数的定义是历年来考研数学的重点。
10
数一填空
求二阶常系数非齐次线性微分方程的通解
本题属基本题型,中等难度,根据二阶常系数非齐次线性微分方程的解的性质写出二阶常系数非齐次线性微分方程的通解
11
数一填空
参数方程求导
本题考查参数方程二阶导数在一点处的值
12
数一填空
广义积分的计算,积分的分部积分法
本题属于基本题型,考察广义积分的计算及积,积分的分部积分法是考研的重点
数学二:
9
卷种及题型
考点
分析
10
数二填空
幂指函数的求极限
本题属于基本题型,考察幂指函数的`求极限
11
数二填空
变上限定积分求导及反函数的运算
本题属基本题型,中等难度,考察变上限定积分求导及反函数的运算。变上限定积分的求导是考研常考的考点
12
数二填空
极坐标系下的平面图形的计算
本题考查极坐标系下的平面图形的计算,属于考研常考的定积分的应用方面的问题,难度适中
13
数二填空
参数方程的求导,求曲线的法线方程
本题属于基本题型,考察参数方程的求导,进而写出曲线的法线方程
14
数二填空
求二阶常系数非齐次线性微分方程的通解
本题属基本题型,中等难度,根据二阶常系数非齐次线性微分方程的解的性质写出二阶常系数非齐次线性微分方程的通解
数学三:
题号
卷种及题型
考点
分析
9
数三填空
导数的定义及曲线的切线
本题属于基本题型,考察曲线的切线及导数的定义
10
数三填空
隐函数方程求导及导数的定义
本题属于基本题型,考察隐函数方程求导:将看成自变量,方程两端对求导;导数的定义是历年来考研数学的重点。
11
数三填空
广义积分的计算,积分的分部积分法
本题属于基本题型,考察广义积分的计算及积,积分的分部积分法是考研的重点
12
数三填空
求二阶常系数齐次线性微分方程的通解
本题属基本题型,中等难度,根据二阶常系数齐次线性微分方程的解的性质写出二阶常系数齐次线性微分方程的通解
考研数学 高数经典题型
考研数学:重视历年真题了解命题方向
2014考研备考:数学满分其实并不难
2014考研数学 六大复习误区需绕行
2014考研数学 各专业使用试卷的要求
一、函数、极限与连续
求分段函数的复合函数;考研 教育\网
求极限或已知极限确定原式中的常数;
讨论函数的连续性,判断间断点的类型;
无穷小阶的比较;
讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
二、一元函数微分学
求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
利用洛比达法则求不定式极限;
讨论函数极值,方程的根,证明函数不等式;
利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;
几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
利用导数研究函数性态和描绘函数图形,求曲线渐近线。
三、一元函数积分学
计算题:计算不定积分、定积分及广义积分;
关于变上限积分的题:如求导、求极限等;
有关积分中值定理和积分性质的'证明题;
定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;
综合性试题。
四、向量代数和空间解析几何
计算题:求向量的数量积,向量积及混合积;
求直线方程,平面方程;
判定平面与直线间平行、垂直的关系,求夹角;
建立旋转面的方程;
与多元函数微分学在几何上的应用或与线性代数相关联的题目。
五、多元函数的微分学
判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;
求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;
求二元、三元函数的方向导数和梯度;
求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;
多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。
六、多元函数的积分学
二重、三重积分在各种坐标下的计算,累次积分交换次序;
第一型曲线积分、曲面积分计算;
第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;
第二型(对坐标)曲面积分的计算,高斯公式及其应用;
梯度、散度、旋度的综合计算;
重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。
七、无穷级数
判定数项级数的收敛、发散、绝对收敛、条件收敛;
求幂级数的收敛半径,收敛域;
求幂级数的和函数或求数项级数的和;
将函数展开为幂级数(包括写出收敛域);
将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);
综合证明题。
八、微分方程
求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;
求解可降阶方程;
求线性常系数齐次和非齐次方程的特解或通解;
根据实际问题或给定的条件建立微分方程并求解;
综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
2014考研数学高数八大题型,你掌握了吗?
暑假阶段,这时大家基本已经对高数的总体有了了解,也许对很多考点还只是大致的复习,没有深入,这个不要紧,因为还有半年的时间。复习是一步一步,循序渐进的,不要指望一口气把什么都掌握,学习必然是一个不断加强的过程,需要反复的训练,特别是考研数学,考点如此之多,想要短期内掌握的很好,显然是不可能的,它是需要一遍一遍的不断强化复习的。
在这一阶段的主要目标是针对高数中的重点考点做强化复习,对一般难度和常见题型要做到熟练掌握。
一。函数、极限与连续
求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。
二。一元函数微分学
求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足..。。”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
这一部分会比较频繁的出现在大题中,复习的关键是掌握一般的方法步骤,这就需要多做题目来巩固掌握,要做到对一般难度和常见题型有100%的把握。
三。一元函数积分学
计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。
这一部分主要以计算应用题出现,只需多加练习即可。
四。向量代数和空间解析几何
计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。
这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
五。多元函数的微分学
判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。
这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。
六。多元函数的积分学
二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
这部分内容和题型,数一考生要足够的重视。
七。无穷级数
判定数项级数的收敛、发散、绝对收敛、条件收敛;求幂级数的收敛半径,收敛域;求幂级数的和函数或求数项级数的和;将函数展开为幂级数(包括写出收敛域);将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);综合证明题。
这部分相对来说可能有难度,但是掌握好还是有办法的。首先,各个概念要清楚;其次,对一般的题型要有把握解答;最后,找一些比较灵活的题型练练自己的思路。
八。微分方程
求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;求解可降阶方程;求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
这一部分也是考研数学中的难点,对上面提到的常用方法要熟练掌握,多做这方面的综合题来强化。
数学要想考高分,的考生必须认真系统地按照考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。注意抓题型的解决方法和技巧,不断总结。而这一切的获得,都是建立在大量的做习题的基础上的,但是做习题不仅仅是追求量,还要保证质,所谓“质”,就是彻底理解所做过的每一道题,而这一点通常显的更为重要。
握一般的方法步骤,这就需要多做题目来巩固掌握,要做到对一般难度和常见题型有100%的把握。
三。一元函数积分学
计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。
这一部分主要以计算应用题出现,只需多加练习即可。
四。向量代数和空间解析几何
计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的'方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。
这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
五。多元函数的微分学
判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。
这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。
六。多元函数的积分学
二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
这部分内容和题型,数一考生要足够的重视。
七。无穷级数
判定数项级数的收敛、发散、绝对收敛、条件收敛;求幂级数的收敛半径,收敛域;求幂级数的和函数或求数项级数的和;将函数展开为幂级数(包括写出收敛域);将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);综合证明题。
这部分相对来说可能有难度,但是掌握好还是有办法的。首先,各个概念要清楚;其次,对一般的题型要有把握解答;最后,找一些比较灵活的题型练练自己的思路。
八。微分方程
求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;求解可降阶方程;求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是
考研数学辅导 一元函数常考题型
一元函数微分学
(①考题总数:26题 ②总分值:136分 ③占第一部分题量之比重:22%④占第一部分分值之比重:17%)
题型 1 与函数导数或微分概念和性质相关的命题(二(7),)
题型 2 函数可导性及导函数的连续性的判定(五,;二(3),;二(7),)
题型 3 求函数或复合函数的导数(七(1),)
题型 4 求反函数的导数(七(1),)
题型 5 求隐函数的导数 (一(2),2002)
题型 6 函数极值点、拐点的判定或求解(二(7),2003)
题型 7 函数与其导函数的图形关系或其他性质的判定(二(1),2001;二(3),2002)
题型 8 函数在某点可导的`判断(含分段函数在分段点的可导性的判断)(二(2),)
题型 9 求一元函数在一点的切线方程或法线方程(一(3),1997;四,2002;一(1),)
题型 10 函数单调性的判断或讨论(八(1),2003;二(8),2004)
题型11不等式的证明或判定(二(2),1997;九,;六,1999;二(1),;八(2),2003;三(15),2004)
题型12在某一区间至少存在一个点或两个不同的点使某个式子成立的证明(九,2000;七(1),2001;三(18),2005)
题型 13 方程根的判定或唯一性证明(三(18),2004)
题型 14 曲线的渐近线的求解或判定(一(1),2005)
大学网考研频道。2016考研数学:常考十大高频题型总结
考研的各门科目中,考研数学考试综合性强、知识覆盖面广、难度大,应及早复习为佳。与考研英语相比,考研数学只要方法得当,提高分数相对要快一些。高等数学是考研数学内容最多的一部分,所以高等数学的分量也就显得尤为重要。
考研教育网编辑团队在此总结考研高等数学常考的高频十大题型,望大家总结每种题型要用到的知识点、技巧和解题思路,考试中这种题型形成定势思维。
1.求幂指函数的三种未定式“”,运用抬头法转为基本未定式,然后再利用罗必达法则和等价无穷小量求极限。
2.求最值、极值或证明不等式,运用函数的导数,借助单调性研究问题。
3.微积分中值定理的运用,运用找原函数法(积分法)、公式法或者经验法等构造辅助函数证明。
4.二重积分的计算,运用“-型(先Y后X),-型(先X后Y),-型(先后)”。
5.常微分方程问题。可分离变量方程、齐次方程、一阶线性微分方程等的通解、特解及线性方程解的性质和结构、常系数线性方程求解问题。
6.求抽象函数的二阶混合偏导数,运用复合函数的`链式法则和隐函数求导法则。
7.多元函数的极值,运用拉格朗日函数乘数法。
8.判断常数项级数的敛散性及求和。
9.求幂级数的收敛半径和收敛域、和函数及函数的幂级数展开、傅里叶级数。
10.曲线积分和曲面积分的计算。
★ 企业笔试常考题型
★ 中考数学考点解析