以下是小编收集整理的初中数学的常考知识点(共含5篇),欢迎阅读与借鉴。同时,但愿您也能像本文投稿人“看尽世俗”一样,积极向本站投稿分享好文章。
一、平行四边形的定义、性质及判定
1、两组对边平行的四边形是平行四边形。
2、性质:
(1)平行四边形的对边相等且平行
(2)平行四边形的对角相等,邻角互补
(3)平行四边形的对角线互相平分
3、判定:
(1)两组对边分别平行的四边形是平行四边形
(2)两组对边分别相等的四边形是平行四边形
(3)一组对边平行且相等的四边形是平行四边形
(4)两组对角分别相等的四边形是平行四边形
(5)对角线互相平分的四边形是平行四边形
4、对称性:平行四边形是中心对称图形
二、矩形的定义、性质及判定
1、定义:有一个角是直角的平行四边形叫做矩形
2、性质:矩形的四个角都是直角,矩形的对角线相等
3、判定:
(1)有一个角是直角的平行四边形叫做矩形
(2)有三个角是直角的四边形是矩形
(3)两条对角线相等的平行四边形是矩形
4、对称性:矩形是轴对称图形也是中心对称图形。
三、菱形的定义、性质及判定
1、定义:有一组邻边相等的平行四边形叫做菱形
(1)菱形的四条边都相等
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形
(4)菱形的面积等于两条对角线长的积的一半
2、s菱=争6(n、6分别为对角线长)
3、判定:
(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形
(3)对角线互相垂直的平行四边形是菱形
4、对称性:菱形是轴对称图形也是中心对称图形
初中数学的常考知识点20条
考点1:轴对称、中心对称的有关概念和的关性质
轴对称是指两个图形中某一个沿一条直线翻折后与另一个图形重合;中心对称是其中一个图形绕旋转180度后能与另一个图形重合,联结对称点的连线都经过对称中心,并且被对称中心所平分,要确定两个成中心对称图形的对称中心,只要将其中的两个关键点与它们的对应点相连,连线的交点即为对称中心。
考点2:画已知图形关于某一直线对称的图形、已知图形关于某一点对称的图形
考点3:平面直角坐标系的有关概念,直角坐标平面上的点与坐标之间的——对应关系
直角坐标系把平面分成了六部分;第一、二、三、四象限和轴、轴。各部分的符号特征分别为:第一象限(+、+),第二象限(-、+),第三象限(-、-),第四象限(+、-);轴上的纵坐标为0,轴上的点横坐标为0,直角坐标平面上的点与坐标——对应,即:任意一个点的坐标唯一确定,同时任意一个坐标所对应的点也唯一确定,确定一个点的坐标往往需要确定点到、轴的距离和点所在的象限。注意:坐标(A、B)是一个有序实数对,即当时,(a,b)和(b,a)表示的点完全不同。
考点4:直角坐标平面上的点的平移、对称以及简单图形的对称问题
考点5:相交直线的有关概念和性质
考点6:画已知直线的垂线、尺规作线段的垂直平分线
考点7:同位角、内错角、同旁内角的概念
考点8:平行线的判定与性质
考点9:三角形的有关概念、画三角形的高、中线、角平分线、三角形外角的性质
考点10:三角形的任意两边之和大于第三边的性质、三角形的内角和
考点11:全等形、全等三角形的概念
考点12:全等三角形的判定与性质
考点13:等腰三角形的性质与判定(含等边三角形)
考点14:命题、定理、证明、逆命题、逆定理的有关概念
考点15:直角三角形全等的判定
考点16:直角三角形的性质、勾股定理及其逆定理
考点17:直角坐标平面内两点间的距离公式
考点18:角的平分线和线段的垂直平分线的有关性质
考点19:轨迹的意义及三条基本轨迹(圆、角平分线、中垂线)
考点20:多边形及其有关概念、多边形外角和定理
数学学习技巧10条
1.学好数学要抓住三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。
2.做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。
3.学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。
4.要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。
5.要主动提高综合分析问题的能力,借助文字阅读去分析理解。
6.将各章节中的内容互相联系,不同章节之间互相类比,真正将前后知识融会贯通,连为一体,这样能帮助我们系统深刻地理解知识体系和内容。
7.弄清数学知识间的相互联系,透彻理解概念,知道其推导过程,使知识条理化,系统化。
8.对于数学学科中的某些原理,定理,公式,不仅要记住它的结论,而且要了解这个结论是如何得出的。
9.在学习中要注意理解,开拓思路,变抽象为具体,逐渐培养自己学习数学的兴趣。
10.适当地对概念进行分类,可以使所学的内容化繁为简,重点突出,脉络分明,便于进行分析,比较,综合,概念。
第1课 实数的有关概念
考查重点:
1. 有理数、无理数、实数、非负数概念;
2.相反数、倒数、数的绝对值概念;
3.在已知中,以非负数a2、|a|、a (a≥0)之和为零作为条件,解决有关问题。
实数的有关概念
(1)实数的组成
(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一不可),
实数与数轴上的点是一一对应的。 数轴上任一点对应的数总大于这个点左边的点对应的数,
(3)相反数: 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零).
从数轴上看,互为相反数的两个数所对应的点关于原点对称.
(4)绝对值
从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离
(5)倒数: 实数a(a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数.
第2课 实数的运算
考查重点:
1. 考查近似数、有效数字、科学计算法;
2. 考查实数的运算;
3. 计算器的使用。
实数的运算
(1)加法: 同号两数相加,取原来的符号,并把绝对值相加;
异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
任何数与零相加等于原数。
(2)减法 a-b=a+(-b)
(3)乘法: 两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.
(4)除法
(5)乘方
(6)开方 如果x2=a且x≥0,那么 =x; 如果x3=a,那么
在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.
实数的运算律
(1)加法交换律 a+b=b+a
(2)加法结合律 (a+b)+c=a+(b+c)
(3)乘法交换律 ab=ba.
(4)乘法结合律 (ab)c=a(bc)
(5)分配律 a(b+c)=ab+ac
其中a、b、c表示任意实数.运用运算律有时可使运算简便.
一、目标与要求
1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
二、重点
理解并掌握不等式的性质;
正确运用不等式的性质;
建立方程解决实际问题,会解“ax+b=cx+d”类型的一元一次方程;
寻找实际问题中的不等关系,建立数学模型;
一元一次不等式组的解集和解法。
三、难点
一元一次不等式组解集的理解;
弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;
正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
小编导语:每一门功课都有它自身的规律,有它自身的特点,数学当然也不例外。下面是有关中考数学考试知识点分析:矩形的内容,供你学习参考!
1、矩形的概念
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)具有平行四边形的一切性质(2)矩形的四个角都是直角
(3)矩形的对角线相等(4)矩形是轴对称图形
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
4、矩形的面积S矩形=长×宽=ab
据日本《中文导报》报道,日本法务省入国管理局近期发表的“在留外国人登录者统计”结果显示,虽然总数略有增长,但从在留资格来看,自东日本大地震以后,赴日留学、工作的中国人呈现逐渐减少趋势。
自1959年日本开始统计外国人人口以来,在日中国人在跃居首位,在全体外国人中所占比例曾经高达32%,也就是每三个在日外国人当中就有一人是中国人。但最新统计显示,中国人在外国人比例中降至30.2%。
中国留学生逐渐减少
过去,因为留学日本签证较容易、花费较少、容易就业,日本被认为是“性价比高”的地方。自上世纪90年代末日本放宽自费留学政策后,赴日留学的中国人越来越多,但近年却不愠不火。
20末,全日本在籍中国人留学生为113,980人;6月末,该数字减至104,051人。日本学生支援机构今年初公布了截止去年5月的日本各大学等(不含语言学校等)的在籍外国留学生人数。整体为139,185人,比上年增加了2.7%。其中,来自中国的留学生为77,792人,同比减少5%。韩国为13,940人,同比减少9%。越南为11,174人,增至上一年的1.8倍。
务工者人数降幅明显
技能实习生,实际上已经成为日本为解决人口老龄化、劳动力不足,接收外国劳动者而采取的一种变通方法。近年来,由于日本经济不景气,在日外国技能实习生工作条件恶劣。最近受到日元持续贬值影响,外国研修生原本不高的收入进一步缩水。另外,随着中国收入的逐渐提高,愿意赴日本的中国人也越来越少。
截至206月,中国人技能实习生有9万,6120人 ,与年末的111,395人相比,降幅较明显。
另外,持有技能签证(厨师等拥有熟练技术业务者)同期也从19,023人下降至16,715人 。
生活稳定层人数稳步上升
“技术·国际业务·人文知识”在留资格,是将“技术”和“国际业务·人文知识”合并后的一个签证类型,主要是在公司里担任文案或技术类职务,通常留学生大学毕业在日本就职以后就是持此类签证。
过去学文科是给“国际业务·人文知识”,学理科是给“技术”签证。有了此类签证,在日生活就逐渐迈向“稳定”。2012年末,持有此类签证的中国人有54,461人,到年6月,已增至59,755人。
另外,从2012年末至2015年6月,持有“经营管理”在留资格的中国人从4423人增长至7318人。
事实上,在此期间还有不少人或取得“永住”签证,或加入日本国籍。从2012年末至2015年6月,在日中国人“永住者”从191,958人增至219,557人。从法务省的另外一份统计显示,自2012年至的三年间,加入日本国籍的中国人有9503人。
男女比例失调
从统计还可以看出一个有趣的现象,即男女比例失调。截止2015年6月,持有在留资格的中国女性有380,928人,而男性仅为271,667人。
另外,从年龄层看,在日中国人19至40岁占大多数,40岁上人数呈下降态势。值得留意的是,80岁以上的老人有2181人。
主要分布在三大都市圈
日本的人口·企业活动·大学等教育机关主要集中在三大都市圈。全日本约一半人口集中在从三大都市圈,即从东京、名古屋、大阪三都市的市中心延伸50公里内的范围内。从分布区域来看,在日中国人也主要集中在这些区域。
统计显示,超过1万中国人的都道府县有13个,依次为:东京都157,559人,神奈川县57,242人,埼玉县53,847人,大阪府51,845人,爱知县45,433人,千叶县42,336人,兵库县22,353人,福冈县19,027人,广岛县13,939人,岐阜县12,887人,茨城县12,760人,京都府11,915人,静冈县11,334人。
1.平面向量的数量积
平面向量数量积的定义
已知两个非零向量a和b,它们的夹角为,把数量|a||b|cos 叫做a和b的数量积(或内积),记作ab.即ab=|a||b|cos ,规定0a=0.
2.向量数量积的运算律
(1)ab=ba
(2)(a)b=(ab)=a(b)
(3)(a+b)c=ac+bc
[探究] 根据数量积的运算律,判断下列结论是否成立.
(1)ab=ac,则b=c吗?
(2)(ab)c=a(bc)吗?
提示:(1)不一定,a=0时不成立,
另外a0时,ab=ac.由数量积概念可知b与c不能确定;
(2)(ab)c=a(bc)不一定相等.
(ab)c是c方向上的向量,而a(bc)是a方向上的向量,当a与c不共线时它们必不相等.