考研数学线代 核心考查两大考点

| 收藏本文 下载本文 作者:良溪改

以下是小编为大家收集的考研数学线代 核心考查两大考点(共含7篇),希望对大家有所帮助。同时,但愿您也能像本文投稿人“良溪改”一样,积极向本站投稿分享好文章。

考研数学线代 核心考查两大考点

篇1:考研数学线代 核心考查两大考点

考研数学线代 核心考查两大考点

的考研已经落下帷幕,对考研数学真题的解析工作也在逐渐的展开,广大的考研学子们都在翘首以待。已经参加过考试的学生期待自己的成绩,而计划在参加考试的学子们更关心今年考题的难度、考点的分布等一些有关考研试卷的情况。

从整体上来看,线性代数在数一、数二、数三中的考试内容完全一致,以往的考题中数一在小题中会有区别,今年的试题线性代数部分没有任何的区别。事实上,这与大纲也是符合的,20数一、数二、数三的考研大纲中线性代数部分的要求基本是一样的,唯一不同的是数一多了一个向量空间的内容。今年的线性代数题目给我们的整体感觉是计算量不大,难度也不是很大。老师在授课的时候讲过线性代数的特点就是各个章节之间彼此联系,这就导致出题人极容易出一题多点的考题,事实上今年的题目出题人也是这样出的。既然线性代数是一门各章节联系紧密的学科,所以考生们在复习的时候一定要注意将各个知识点联系起来理解,这样对线性代数的复习才能如鱼得水。

事实上,无论是从今年还是从历年的考题来看,线性代数的难度都不大,是我们考试得分率比较高的一个部分,所以建议考生一定要把线性代数部分的题目的分数抓住。另外,虽然今年线性代数题目的计算量不是很大,但是它的学科特点还是决定了线代的计算在整个考研题目中占到了很大一部分,这些计算都是比较简单的,但是由于其计算量大,相对比较复杂,所以考生极易因为粗心大意算错,而线性代数的题目错一步则整个题目就会因这一个小的错误而丢掉大部分的分数,所以建议考生在平时复习的时候一定要多算算,增强自身的计算熟练度,防止因粗心而失分。

此外,线性方程组部分的考题,需要考生自己转化,体现了知识的综合性与线性代数各章节之间的联系性。首先将矩阵中的元素用未知数表示,然后通过矩阵的乘法与线性方程组之间的相互转化将问题转化为常规题目:含参方程组解的判定及求解。此类题目比较基础,计算量也不是很大大,按照全年复习规划扎扎实实打好了基本功的.考生是可以比较轻松的拿到这道题的分数的。

考查二次型的题目,思路也比较简单,第一问属于求二次型的矩阵,属于基础题目,只要将题中所给的式子按照完全平方公式展开成二次型的形式,然后很轻松的就会将二次型的矩阵写出,写出矩阵也就完成了第一问的证明。第二问实质上考查的是抽象矩阵的特征值的求法,此类问题的解决要靠考生深刻理解矩阵特征值与特征向量的定义,另外还要仔细观察题目中所给的已知条件,充分利用起来。除此之外本题还考到了二次型的标准形,这里考生只需知道标准形中的系数实质上是二次型矩阵的特征值,故特征值的问题解决了二次型标准形的证明就不在话下了。事实上这些内容也是考生在复习线性代数时所必须具备的基本功。与前一题目相比,本题的问题相对比较直接,对抽象矩阵求特征值不太熟练的考生可能会在第二问上浪费一定的时间。

但是总体来说,年考研数学线性代数部分的命题思路是比较基础的,能踏踏实实打好基础的考生定可取得理想的成绩!

篇2:考研数学:核心考查两大考点

2013考研数学:核心考查两大考点

2013年的考研已经落下帷幕,对考研数学真题的解析工作也在逐渐的展开,广大的考研学子们都在翘首以待。已经参加过考试的学生期待自己的成绩,而计划在20参加考试的学子们更关心今年考题的难度、考点的分布等一些有关考研试卷的情况。下面就今年考研数学中线性代数部分的考题做一下分析,2013年考研数学线性代数部分的题目还是延续了以往的思路,两道大题的考点基本上与预期基本一致,主要集中在线性代数核心的两个考点上:线性方程组与二次型。

从整体上来看,线性代数在数一、数二、数三中的考试内容完全一致,以往的考题中数一在小题中会有区别,今年的试题线性代数部分没有任何的区别。事实上,这与大纲也是符合的,2013年数一、数二、数三的考研大纲中线性代数部分的要求基本是一样的,唯一不同的是数一多了一个向量空间的内容。今年的线性代数题目给我们的整体感觉是计算量不大,难度也不是很大。数学老师们在给大家授课的时候讲过线性代数的特点就是各个章节之间彼此联系,这就导致出题人极容易出一题多点的考题,事实上今年的题目出题人也是这样出的。既然线性代数是一门各章节联系紧密的学科,所以考生们在复习的时候一定要注意将各个知识点联系起来理解,这样对线性代数的复习才能如鱼得水。

下面来说说两个大题,数一、数三的是20、21题,数二是22、23题。首先看第一道大题,这是一道有线性方程组解的判定及求解的问题,难度不大,数学老师们在授课的时候经常强调此种类型题目的重要性。本题考查的主要是利用矩阵的乘法展开成非齐次线性方程组的问题,这样再根据非齐次线性方程组解的判定条件及求解方程就可以将此类问题解决,但是此题也不容易得分,因为有的考生未必能想到将矩阵的运算转化成线性方程组的问题考虑。线性代数中的第二道大题属于二次型的问题,这种问题也是我们老师在课堂上经常强调的题型。第一问很简单,考查的是二次型的矩阵表示,大家直接将所给的二次型按照完全平方公式展开化简即可得到正确答案。第二问需要求出二次型的特征值即可,该矩阵属于抽象矩阵,要想求得其特征值首先要熟悉特征值与特征向量的定义,其次是要仔细阅读题目中所给的已知条件。

事实上,无论是从今年还是从历年的考题来看,线性代数的难度都不大,是我们考试得分率比较高的一个部分,所以建议考生一定要把线性代数部分的题目的分数抓住。另外,虽然今年线性代数题目的计算量不是很大,但是它的学科特点还是决定了线代的计算在整个考研题目中占到了很大一部分,这些计算都是比较简单的,但是由于其计算量大,相对比较复杂,所以考生极易因为粗心大意算错,而线性代数的题目错一步则整个题目就会因这一个小的错误而丢掉大部分的`分数,所以建议考生在平时复习的时候一定要多算算,增强自身的计算熟练度,防止因粗心而失分。

此外,线性方程组部分的考题,需要考生自己转化,体现了知识的综合性与线性代数各章节之间的联系性。首先将矩阵中的元素用未知数表示,然后通过矩阵的乘法与线性方程组之间的相互转化将问题转化为常规题目:含参方程组解的判定及求解。此类题目比较基础,计算量也不是很大大,按照全年复习规划扎扎实实打好了基本功的考生是可以比较轻松的拿到这道题的分数的。

考查二次型的题目,思路也比较简单,第一问属于求二次型的矩阵,属于基础题目,只要将题中所给的式子按照完全平方公式展开成二次型的形式,然后很轻松的就会将二次型的矩阵写出,写出矩阵也就完成了第一问的证明。第二问实质上考查的是抽象矩阵的特征值的求法,此类问题的解决要靠考生深刻理解矩阵特征值与特征向量的定义,另外还要仔细观察题目中所给的已知条件,充分利用起来。除此之外本题还考到了二次型的标准形,这里考生只需知道标准形中的系数实质上是二次型矩阵的特征值,故特征值的问题解决了二次型标准形的证明就不在话下了。事实上这些内容也是考生在复习线性代数时所必须具备的基本功。与前一题目相比,本题的问题相对比较直接,对抽象矩阵求特征值不太熟练的考生可能会在第二问上浪费一定的时间。

但是总体来说,2013年考研数学线性代数部分的命题思路是比较基础的,能踏踏实实打好基础的考生定可取得理想的成绩!

篇3:考研数学线代核心考点解析

考研数学线代核心考点解析

在考研数学考试中,线性代数占总分值的22%,约34分,以2个选择题、1个填空题、2个解答题的形式出现。虽然线性代数的考点众多,但要把这5个题目的分值完全收入囊中,需要进行重点题型重点突破。

专家们深入研究了硕士教育对于考生数学素养的要求,总结出考研数学线性代数考试考查概率极高的四个核心考点,供备考者复习参考。

矩阵的秩

矩阵是解决线性方程组的解的有力工具,矩阵也是化简二次型的方便工具。矩阵理论是线性代数的重点内容,熟悉掌握了矩阵的相关性质与内容,利用其来解决实际应用问题就变得简单易行。正因为矩阵理论在整个线性代数中的重要作用,使它变为考试考查的重点。矩阵由那么多元素组成,每一个元素都在扮演不同的角色,其中的核心或主角是它的秩!

通过几十年考研考试命题,命题老师对题目的形式在不断地完善,这也要求考生深入理解概念,灵活处理理论之间的关系,能变通地解答题目。例如对矩阵秩的理解,对矩阵的秩与向量组的秩之间的关系的`理解,对矩阵等价与向量组等价之间区别的理解,对矩阵的秩与方程组的解之间关系的掌握,对含参数的矩阵的处理以及反问题的解决能力等,都需要在对概念理解的基础上,联系地看问题,及时总结结论。

矩阵的特征值与特征向量

矩阵的特征值与特征向量在将矩阵对角化过程中起着决定作用,也是将二次型标准化、规范化的便捷方式,故特征值与特征向量也是考查重点。对于特征值与特征向量,须理清其相互关系,也须能根据一些矩阵的特殊性求得其特征值与特征向量(例如根据矩阵各行元素之和为3能够判断3是其一个特征值,元素均为1的列向量是其对应的特征向量),会处理含参数的情况。

线性方程组求解

对线性方程组的求解总是通过矩阵来处理,含参数的方程组是考查的重点,对方程组解的结构及有解的条件须熟悉。例如第20题(数学二为22题),已经三元非齐次线性方程组存在2个不同的解,求其中的参数并求方程组的通解。此题的关键是确定参数!而所有信息完全隐含在“AX=b存在2个不同的解”这句话中。由此可以得到齐次方程组有非0解,系数矩阵降秩,行列式为0,可求得矩阵中的参数;非齐次方程组有解故系数矩阵与增广矩阵同秩可确定唯一参数及b中的参数。至于确定参数后再求解非齐次方程组就变得非常简单了!

二次型标准化与正定判断

二次型的标准化与矩阵对角化紧密相连,即与矩阵的特征值与特征向量紧密联系。这里需要掌握一些处理含参数矩阵的方法以便运算中节省时间!正定二次型有很优秀的性质,但毕竟这是一类特殊矩阵,判断一个矩阵是否属于这个特殊类,可以使用正定矩阵的几个充要条件,例如二次型矩阵的特征值是否全大于0,顺序主子式是否均大于0等,但前者更常用一些。

这四个考点可以说是考试的重点考查对象,考生可以根据自己的实际情况围绕重点题型复习,争取达到线代满分!

篇4:考研数学线代四个核心考点分析

2013考研数学线代四个核心考点分析

在考研数学考试中,线性代数占总分值的22%,约34分,以2个选择题、1个填空题、2个解答题的形式出现。虽然线性代数的考点众多,但要把这5个题目的分值完全收入囊中,需要进行重点题型重点突破。

考研数学专业老师分析了近年考试真题与大纲,深入研究了硕士教育对于考生数学素养的要求,总结出2013考研数学线性代数考试考查概率极高的四个核心考点,供备考者复习参考。

矩阵的秩

矩阵是解决线性方程组的解的有力工具,矩阵也是化简二次型的方便工具。矩阵理论是线性代数的重点内容,熟悉掌握了矩阵的相关性质与内容,利用其来解决实际应用问题就变得简单易行。正因为矩阵理论在整个线性代数中的重要作用,使它变为考试考查的重点。矩阵由那么多元素组成,每一个元素都在扮演不同的角色,其中的核心或主角是它的秩!

通过几十年考研考试命题,命题老师对题目的形式在不断地完善,这也要求考生深入理解概念,灵活处理理论之间的关系,能变通地解答题目。例如对矩阵秩的理解,对矩阵的秩与向量组的秩之间的关系的理解,对矩阵等价与向量组等价之间区别的理解,对矩阵的秩与方程组的'解之间关系的掌握,对含参数的矩阵的处理以及反问题的解决能力等,都需要在对概念理解的基础上,联系地看问题,及时总结结论。

矩阵的特征值与特征向量

矩阵的特征值与特征向量在将矩阵对角化过程中起着决定作用,也是将二次型标准化、规范化的便捷方式,故特征值与特征向量也是考查重点。对于特征值与特征向量,须理清其相互关系,也须能根据一些矩阵的特殊性求得其特征值与特征向量(例如根据矩阵各行元素之和为3能够判断3是其一个特征值,元素均为1的列向量是其对应的特征向量),会处理含参数的情况。

线性方程组求解

对线性方程组的求解总是通过矩阵来处理,含参数的方程组是考查的重点,对方程组解的结构及有解的条件须熟悉。例如20第20题(数学二为22题),已经三元非齐次线性方程组存在2个不同的解,求其中的参数并求方程组的通解。此题的关键是确定参数!而所有信息完全隐含在“AX=b存在2个不同的解”这句话中。由此可以得到齐次方程组有非0解,系数矩阵降秩,行列式为0,可求得矩阵中的参数;非齐次方程组有解故系数矩阵与增广矩阵同秩可确定唯一参数及b中的参数。至于确定参数后再求解非齐次方程组就变得非常简单了!

二次型标准化与正定判断

二次型的标准化与矩阵对角化紧密相连,即与矩阵的特征值与特征向量紧密联系。这里需要掌握一些处理含参数矩阵的方法以便运算中节省时间!正定二次型有很优秀的性质,但毕竟这是一类特殊矩阵,判断一个矩阵是否属于这个特殊类,可以使用正定矩阵的几个充要条件,例如二次型矩阵的特征值是否全大于0,顺序主子式是否均大于0等,但前者更常用一些。

这四个考点可以说是考试的重点考查对象,考生可以根据自己的实际情况围绕重点题型复习。

篇5:考研数学线性代数四个核心考点

考研数学线性代数四个核心考点

在考研数学考试中,线性代数占总分值的22%,约34分,以2个选择题、1个填空题、2个解答题的形式出现。虽然线性代数的考点众多,但要把这5个题目的分值完全收入囊中,需要进行重点题型重点突破。

矩阵的秩

矩阵是解决线性方程组的解的有力工具,矩阵也是化简二次型的方便工具。矩阵理论是线性代数的重点内容,熟悉掌握了矩阵的相关性质与内容,利用其来解决实际应用问题就变得简单易行。正因为矩阵理论在整个线性代数中的重要作用,使它变为考试考查的重点。矩阵由那么多元素组成,每一个元素都在扮演不同的角色,其中的核心或主角是它的秩!

通过几十年考研考试命题,命题老师对题目的形式在不断地完善,这也要求考生深入理解概念,灵活处理理论之间的'关系,能变通地解答题目。例如对矩阵秩的理解,对矩阵的秩与向量组的秩之间的关系的理解,对矩阵等价与向量组等价之间区别的理解,对矩阵的秩与方程组的解之间关系的掌握,对含参数的矩阵的处理以及反问题的解决能力等,都需要在对概念理解的基础上,联系地看问题,及时总结结论。

矩阵的特征值与特征向量

矩阵的特征值与特征向量在将矩阵对角化过程中起着决定作用,也是将二次型标准化、规范化的便捷方式,故特征值与特征向量也是考查重点。对于特征值与特征向量,须理清其相互关系,也须能根据一些矩阵的特殊性求得其特征值与特征向量(例如根据矩阵各行元素之和为3能够判断3是其一个特征值,元素均为1的列向量是其对应的特征向量),会处理含参数的情况。

线性方程组求解

对线性方程组的求解总是通过矩阵来处理,含参数的方程组是考查的重点,对方程组解的结构及有解的条件须熟悉。例如第20题(数学二为22题),已经三元非齐次线性方程组存在2个不同的解,求其中的参数并求方程组的通解。此题的关键是确定参数!而所有信息完全隐含在“AX=b存在2个不同的解”这句话中。由此可以得到齐次方程组有非0解,系数矩阵降秩,行列式为0,可求得矩阵中的参数;非齐次方程组有解故系数矩阵与增广矩阵同秩可确定唯一参数及b中的参数。至于确定参数后再求解非齐次方程组就变得非常简单了!

二次型标准化与正定判断

二次型的标准化与矩阵对角化紧密相连,即与矩阵的特征值与特征向量紧密联系。这里需要掌握一些处理含参数矩阵的方法以便运算中节省时间!正定二次型有很优秀的性质,但毕竟这是一类特殊矩阵,判断一个矩阵是否属于这个特殊类,可以使用正定矩阵的几个充要条件,例如二次型矩阵的特征值是否全大于0,顺序主子式是否均大于0等,但前者更常用一些。

研究生考试,考研频道。

篇6:考研数学线代六大高频考点

考研数学线代六大高频考点

考研数学 站在命题者的角度着手复习

考研数学 秋季备考真题是王道

2014考研数学复习精选精炼返璞归真

2014考研数学 十月份勤练习是正道

一、行列式部分,强化概念性质,行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。

二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调。此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。考研\教育网

三、向量部分,理解相关无关概念,灵活进行判定向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的`命题。

四、线性方程组部分,判断解的个数,明确通解的求解思路线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。为了使考生牢固掌握线性方程组的求解问题,博研堂专家对含参数的方程通解的求解思路进行了整理,希望对考研同学有所帮助。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。

五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。

六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方法等等。

篇7:考研数学近五年线代真题考点分析

考研数学近五年线代真题考点分析

第一章行列式,知识点有行列式的定义、性质及展开定理,但是考查的重点是行列式的计算。另外,行列式的计算问题主要分为数值型和抽象型两类行列式,主要以小题或者大题中的第一问的形式出现,10、12、13、14年均考查到了行列式的计算问题,其中10、12、13年考查的是抽象型行列式的计算,12年第一个大题的第一问以及14年的选择题考查的均是四阶行列式的计算问题,并且所求行列式中均出现了大量的零元素。

第二章矩阵,本章的概念和运算较多,因此知识点也比较多,但重点在矩阵的乘法、秩、逆、伴随、初等变换以及分块矩阵,而且考点主要以填空和选择为主,当然也会结合其他章节的知识点考查大题。09年考查的是分块矩阵的伴随、10年和12年考查的是矩阵的秩、11年考查的是矩阵的初等变换,均为选择题,12、13、14三年均考查了矩阵的乘法,并且13、14两年均是与线性方程组结合在一起考查的大题。

第三章向量,可以分为三个部分:向量的线性表出、线性相关性、秩及极大线性无关组。本章的知识点也比较多,而且考查的方式也比较灵活,可以考选择、填空也可以出大题。其中09年和10年考查的是向量空间(数一独有知识点),10、12、14均考查的是向量组的线性相关性的判断,13年考查的则是向量组的等价(属于向量组的线性表出),这些主要是小题的形式出现的,而09年和11年则考查的.是大题,09年属于向量组的线性无关性的证明,11年则是向量的线性表出。

第四章线性方程组,同样有三大模块:解的判定、解的性质、解的结构。考查的形式也比较灵活,选择、填空、大题均可,但是主要以大题为主。09-14年间只有以选择题的形式考查了基础解系和解的结构,10、12、13、14年均以大题的形式出现的。

第五章矩阵的特征值与特征向量,也有三个重点:特征值与特征向量的定义、性质及求法;矩阵的相似对角化;实对称矩阵的性质及正交相似对角化的问题。考查的形式也比较灵活,选择、填空、大题均可,但是主要以大题为主。09、10、13年均考查了矩阵的相似,另外09年还考查了特征值的定义,这些均考查的是选择和填空。10年以大题的形式考查了实对称矩阵的正交相似对角化问题,11年考查的是矩阵的特征值与特征向量的问题,14年最后一道线代大题考查的则是矩阵的相似,它涉及到实对称矩阵的性质以及矩阵可以相似对角化的充要条件。

第六章二次型有两个重点。第一个是化二次型为标准形,同学们必须掌握两种方法,第一个是配方法,第二个是正交变换法,前一种方法主要考查小题,比如14年的填空题就是利用配方法来做的,而正交变换法考查的则是大题,09、10、12均出现了。第二个重点是正定二次型的判定。本章的考查形式也比较灵活,选择、填空、大题均可,但是主要以大题为主。09-14年每年都考查了二次型的知识,不是大题就是小题,但是主要还是以大题为主。

最后提醒大家,数学能力的提升非一朝一夕之功,需要有一个全年的系统的规划,一般来说我们建议考生将全年分为基础、强化、冲刺模考三个阶段。从现在到暑假前,考生应该都处在考研数学复习的基础阶段。这个阶段的复习任务是弄清基本概念,理解基本理论,掌握基本方法。在全年的复习中,基础阶段所占时间最长,也最为关键。可以毫不夸张地说,做好了基础阶段的复习,考研数学就成功了一大半。

考研数学:核心考查两大考点

考研数学线代六大高频考点

考研数学线代复习三个关键点

中考政治核心考点

考研数学的三大重要考点

考研数学 概率考点精析

考研数学线性代数的六大考点

考研数学 向量线性方程组核心题型

diag是什么意思线代

考研暑假复习两大方式打好数学基础

考研数学线代 核心考查两大考点(精选7篇)

欢迎下载DOC格式的考研数学线代 核心考查两大考点,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档