考研数学:核心考查两大考点

| 收藏本文 下载本文 作者:doggycat

下面小编为大家整理了考研数学:核心考查两大考点(共含6篇),欢迎阅读与借鉴!同时,但愿您也能像本文投稿人“doggycat”一样,积极向本站投稿分享好文章。

考研数学:核心考查两大考点

篇1:考研数学:核心考查两大考点

考研数学:核心考查两大考点

的考研已经落下帷幕,对考研数学真题的解析工作也在逐渐的展开,广大的考研学子们都在翘首以待。已经参加过考试的学生期待自己的成绩,而计划在参加考试的学子们更关心今年考题的难度、考点的分布等一些有关考研试卷的情况。下面就今年考研数学中线性代数部分的考题做一下分析,20考研数学线性代数部分的题目还是延续了以往的思路,两道大题的考点基本上与预期基本一致,主要集中在线性代数核心的两个考点上:线性方程组与二次型。

从整体上来看,线性代数在数一、数二、数三中的考试内容完全一致,以往的考题中数一在小题中会有区别,今年的试题线性代数部分没有任何的区别。事实上,这与大纲也是符合的,2013年数一、数二、数三的考研大纲中线性代数部分的要求基本是一样的,唯一不同的是数一多了一个向量空间的内容。今年的线性代数题目给我们的整体感觉是计算量不大,难度也不是很大。数学老师们在给大家授课的时候讲过线性代数的特点就是各个章节之间彼此联系,这就导致出题人极容易出一题多点的考题,事实上今年的题目出题人也是这样出的。既然线性代数是一门各章节联系紧密的学科,所以考生们在复习的时候一定要注意将各个知识点联系起来理解,这样对线性代数的复习才能如鱼得水。

下面来说说两个大题,数一、数三的是20、21题,数二是22、23题。首先看第一道大题,这是一道有线性方程组解的判定及求解的问题,难度不大,数学老师们在授课的时候经常强调此种类型题目的重要性。本题考查的主要是利用矩阵的乘法展开成非齐次线性方程组的问题,这样再根据非齐次线性方程组解的判定条件及求解方程就可以将此类问题解决,但是此题也不容易得分,因为有的考生未必能想到将矩阵的运算转化成线性方程组的问题考虑。线性代数中的第二道大题属于二次型的问题,这种问题也是我们老师在课堂上经常强调的题型。第一问很简单,考查的是二次型的矩阵表示,大家直接将所给的二次型按照完全平方公式展开化简即可得到正确答案。第二问需要求出二次型的特征值即可,该矩阵属于抽象矩阵,要想求得其特征值首先要熟悉特征值与特征向量的定义,其次是要仔细阅读题目中所给的已知条件。

事实上,无论是从今年还是从历年的考题来看,线性代数的难度都不大,是我们考试得分率比较高的一个部分,所以建议考生一定要把线性代数部分的题目的分数抓住。另外,虽然今年线性代数题目的计算量不是很大,但是它的学科特点还是决定了线代的计算在整个考研题目中占到了很大一部分,这些计算都是比较简单的,但是由于其计算量大,相对比较复杂,所以考生极易因为粗心大意算错,而线性代数的题目错一步则整个题目就会因这一个小的错误而丢掉大部分的`分数,所以建议考生在平时复习的时候一定要多算算,增强自身的计算熟练度,防止因粗心而失分。

此外,线性方程组部分的考题,需要考生自己转化,体现了知识的综合性与线性代数各章节之间的联系性。首先将矩阵中的元素用未知数表示,然后通过矩阵的乘法与线性方程组之间的相互转化将问题转化为常规题目:含参方程组解的判定及求解。此类题目比较基础,计算量也不是很大大,按照全年复习规划扎扎实实打好了基本功的考生是可以比较轻松的拿到这道题的分数的。

考查二次型的题目,思路也比较简单,第一问属于求二次型的矩阵,属于基础题目,只要将题中所给的式子按照完全平方公式展开成二次型的形式,然后很轻松的就会将二次型的矩阵写出,写出矩阵也就完成了第一问的证明。第二问实质上考查的是抽象矩阵的特征值的求法,此类问题的解决要靠考生深刻理解矩阵特征值与特征向量的定义,另外还要仔细观察题目中所给的已知条件,充分利用起来。除此之外本题还考到了二次型的标准形,这里考生只需知道标准形中的系数实质上是二次型矩阵的特征值,故特征值的问题解决了二次型标准形的证明就不在话下了。事实上这些内容也是考生在复习线性代数时所必须具备的基本功。与前一题目相比,本题的问题相对比较直接,对抽象矩阵求特征值不太熟练的考生可能会在第二问上浪费一定的时间。

但是总体来说,2013年考研数学线性代数部分的命题思路是比较基础的,能踏踏实实打好基础的考生定可取得理想的成绩!

篇2:考研数学线代 核心考查两大考点

考研数学线代 核心考查两大考点

2013年的考研已经落下帷幕,对考研数学真题的解析工作也在逐渐的展开,广大的考研学子们都在翘首以待。已经参加过考试的学生期待自己的成绩,而计划在20参加考试的学子们更关心今年考题的难度、考点的分布等一些有关考研试卷的情况。

从整体上来看,线性代数在数一、数二、数三中的考试内容完全一致,以往的考题中数一在小题中会有区别,今年的试题线性代数部分没有任何的区别。事实上,这与大纲也是符合的,2013年数一、数二、数三的考研大纲中线性代数部分的要求基本是一样的,唯一不同的是数一多了一个向量空间的内容。今年的线性代数题目给我们的整体感觉是计算量不大,难度也不是很大。老师在授课的时候讲过线性代数的特点就是各个章节之间彼此联系,这就导致出题人极容易出一题多点的考题,事实上今年的题目出题人也是这样出的。既然线性代数是一门各章节联系紧密的学科,所以考生们在复习的时候一定要注意将各个知识点联系起来理解,这样对线性代数的复习才能如鱼得水。

事实上,无论是从今年还是从历年的考题来看,线性代数的难度都不大,是我们考试得分率比较高的一个部分,所以建议考生一定要把线性代数部分的题目的分数抓住。另外,虽然今年线性代数题目的计算量不是很大,但是它的学科特点还是决定了线代的计算在整个考研题目中占到了很大一部分,这些计算都是比较简单的,但是由于其计算量大,相对比较复杂,所以考生极易因为粗心大意算错,而线性代数的题目错一步则整个题目就会因这一个小的错误而丢掉大部分的分数,所以建议考生在平时复习的时候一定要多算算,增强自身的计算熟练度,防止因粗心而失分。

此外,线性方程组部分的考题,需要考生自己转化,体现了知识的综合性与线性代数各章节之间的联系性。首先将矩阵中的元素用未知数表示,然后通过矩阵的乘法与线性方程组之间的相互转化将问题转化为常规题目:含参方程组解的判定及求解。此类题目比较基础,计算量也不是很大大,按照全年复习规划扎扎实实打好了基本功的.考生是可以比较轻松的拿到这道题的分数的。

考查二次型的题目,思路也比较简单,第一问属于求二次型的矩阵,属于基础题目,只要将题中所给的式子按照完全平方公式展开成二次型的形式,然后很轻松的就会将二次型的矩阵写出,写出矩阵也就完成了第一问的证明。第二问实质上考查的是抽象矩阵的特征值的求法,此类问题的解决要靠考生深刻理解矩阵特征值与特征向量的定义,另外还要仔细观察题目中所给的已知条件,充分利用起来。除此之外本题还考到了二次型的标准形,这里考生只需知道标准形中的系数实质上是二次型矩阵的特征值,故特征值的问题解决了二次型标准形的证明就不在话下了。事实上这些内容也是考生在复习线性代数时所必须具备的基本功。与前一题目相比,本题的问题相对比较直接,对抽象矩阵求特征值不太熟练的考生可能会在第二问上浪费一定的时间。

但是总体来说,2013年考研数学线性代数部分的命题思路是比较基础的,能踏踏实实打好基础的考生定可取得理想的成绩!

篇3:考研数学线性代数四个核心考点

考研数学线性代数四个核心考点

在考研数学考试中,线性代数占总分值的22%,约34分,以2个选择题、1个填空题、2个解答题的形式出现。虽然线性代数的考点众多,但要把这5个题目的分值完全收入囊中,需要进行重点题型重点突破。

矩阵的秩

矩阵是解决线性方程组的解的有力工具,矩阵也是化简二次型的方便工具。矩阵理论是线性代数的重点内容,熟悉掌握了矩阵的相关性质与内容,利用其来解决实际应用问题就变得简单易行。正因为矩阵理论在整个线性代数中的重要作用,使它变为考试考查的重点。矩阵由那么多元素组成,每一个元素都在扮演不同的角色,其中的核心或主角是它的秩!

通过几十年考研考试命题,命题老师对题目的形式在不断地完善,这也要求考生深入理解概念,灵活处理理论之间的'关系,能变通地解答题目。例如对矩阵秩的理解,对矩阵的秩与向量组的秩之间的关系的理解,对矩阵等价与向量组等价之间区别的理解,对矩阵的秩与方程组的解之间关系的掌握,对含参数的矩阵的处理以及反问题的解决能力等,都需要在对概念理解的基础上,联系地看问题,及时总结结论。

矩阵的特征值与特征向量

矩阵的特征值与特征向量在将矩阵对角化过程中起着决定作用,也是将二次型标准化、规范化的便捷方式,故特征值与特征向量也是考查重点。对于特征值与特征向量,须理清其相互关系,也须能根据一些矩阵的特殊性求得其特征值与特征向量(例如根据矩阵各行元素之和为3能够判断3是其一个特征值,元素均为1的列向量是其对应的特征向量),会处理含参数的情况。

线性方程组求解

对线性方程组的求解总是通过矩阵来处理,含参数的方程组是考查的重点,对方程组解的结构及有解的条件须熟悉。例如第20题(数学二为22题),已经三元非齐次线性方程组存在2个不同的解,求其中的参数并求方程组的通解。此题的关键是确定参数!而所有信息完全隐含在“AX=b存在2个不同的解”这句话中。由此可以得到齐次方程组有非0解,系数矩阵降秩,行列式为0,可求得矩阵中的参数;非齐次方程组有解故系数矩阵与增广矩阵同秩可确定唯一参数及b中的参数。至于确定参数后再求解非齐次方程组就变得非常简单了!

二次型标准化与正定判断

二次型的标准化与矩阵对角化紧密相连,即与矩阵的特征值与特征向量紧密联系。这里需要掌握一些处理含参数矩阵的方法以便运算中节省时间!正定二次型有很优秀的性质,但毕竟这是一类特殊矩阵,判断一个矩阵是否属于这个特殊类,可以使用正定矩阵的几个充要条件,例如二次型矩阵的特征值是否全大于0,顺序主子式是否均大于0等,但前者更常用一些。

研究生考试,考研频道。

篇4:考研数学线代核心考点解析

2013考研数学线代核心考点解析

在考研数学考试中,线性代数占总分值的22%,约34分,以2个选择题、1个填空题、2个解答题的形式出现。虽然线性代数的考点众多,但要把这5个题目的分值完全收入囊中,需要进行重点题型重点突破。

专家们深入研究了硕士教育对于考生数学素养的要求,总结出考研数学线性代数考试考查概率极高的四个核心考点,供备考者复习参考。

矩阵的秩

矩阵是解决线性方程组的解的有力工具,矩阵也是化简二次型的方便工具。矩阵理论是线性代数的重点内容,熟悉掌握了矩阵的相关性质与内容,利用其来解决实际应用问题就变得简单易行。正因为矩阵理论在整个线性代数中的重要作用,使它变为考试考查的重点。矩阵由那么多元素组成,每一个元素都在扮演不同的角色,其中的核心或主角是它的秩!

通过几十年考研考试命题,命题老师对题目的形式在不断地完善,这也要求考生深入理解概念,灵活处理理论之间的关系,能变通地解答题目。例如对矩阵秩的理解,对矩阵的秩与向量组的秩之间的关系的`理解,对矩阵等价与向量组等价之间区别的理解,对矩阵的秩与方程组的解之间关系的掌握,对含参数的矩阵的处理以及反问题的解决能力等,都需要在对概念理解的基础上,联系地看问题,及时总结结论。

矩阵的特征值与特征向量

矩阵的特征值与特征向量在将矩阵对角化过程中起着决定作用,也是将二次型标准化、规范化的便捷方式,故特征值与特征向量也是考查重点。对于特征值与特征向量,须理清其相互关系,也须能根据一些矩阵的特殊性求得其特征值与特征向量(例如根据矩阵各行元素之和为3能够判断3是其一个特征值,元素均为1的列向量是其对应的特征向量),会处理含参数的情况。

线性方程组求解

对线性方程组的求解总是通过矩阵来处理,含参数的方程组是考查的重点,对方程组解的结构及有解的条件须熟悉。例如20第20题(数学二为22题),已经三元非齐次线性方程组存在2个不同的解,求其中的参数并求方程组的通解。此题的关键是确定参数!而所有信息完全隐含在“AX=b存在2个不同的解”这句话中。由此可以得到齐次方程组有非0解,系数矩阵降秩,行列式为0,可求得矩阵中的参数;非齐次方程组有解故系数矩阵与增广矩阵同秩可确定唯一参数及b中的参数。至于确定参数后再求解非齐次方程组就变得非常简单了!

二次型标准化与正定判断

二次型的标准化与矩阵对角化紧密相连,即与矩阵的特征值与特征向量紧密联系。这里需要掌握一些处理含参数矩阵的方法以便运算中节省时间!正定二次型有很优秀的性质,但毕竟这是一类特殊矩阵,判断一个矩阵是否属于这个特殊类,可以使用正定矩阵的几个充要条件,例如二次型矩阵的特征值是否全大于0,顺序主子式是否均大于0等,但前者更常用一些。

这四个考点可以说是考试的重点考查对象,考生可以根据自己的实际情况围绕重点题型复习,争取达到线代满分!

篇5:考研数学概率考查重点

考研数学概率考查重点

一、随机事件和概率考查的主要内容

1.事件之间的关系与运算,以及利用它们进行概率计算;

2.概率的定义及性质,利用概率的性质计算一些事件的概率;

3.古典概型与几何概型;

4.利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

5.事件独立性的概念,利用独立性计算事件的概率;

6.独立重复试验,伯努利概型及有关事件概率的计算。

要求:考生理解基本概念,会分析事件的结构,正确运用公式,掌握一些技巧,熟练地计算概率。

二、随机变量及概率分布考查的主要内容

1.利用分布函数、概率分布或概率密度的定义和性质进行计算;

2.掌握一些重要的随机变量的分布及性质,主要的有:(0-1)分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、指数分布和正态分布,会进行有关事件概率的计算;

3.会求随机变量的函数的分布。

4.求两个随机变量的简单函数的分布,特别是两个独立随机变量的.和的分布。

要求:考生熟练掌握有关分布函数、边缘分布和条件分布的计算,掌握有关判断独立性的方法并进行有关的计算,会求两个随机变量函数的分布。

三、随机变量的数字特征考查的主要内容

1.数学期望、方差的定义、性质和计算;

2.常用随机变量的数学期望和方差;

3.计算一些随机变量函数的数学期望和方差;

4.协方差、相关系数和矩的定义、性质和计算;

要求:考生熟练掌握数学期望、方差的定义、性质和计算,掌握由给出的试验确定随机变量的分布,再计算有关的数字的特征的方法,会计算协方差、相关系数和矩,掌握判断两个随机变量不相关的方法。

考研 ■

篇6:考研数学线代四个核心考点分析

2013考研数学线代四个核心考点分析

在考研数学考试中,线性代数占总分值的22%,约34分,以2个选择题、1个填空题、2个解答题的形式出现。虽然线性代数的考点众多,但要把这5个题目的分值完全收入囊中,需要进行重点题型重点突破。

考研数学专业老师分析了近年考试真题与大纲,深入研究了硕士教育对于考生数学素养的要求,总结出2013考研数学线性代数考试考查概率极高的四个核心考点,供备考者复习参考。

矩阵的秩

矩阵是解决线性方程组的解的有力工具,矩阵也是化简二次型的方便工具。矩阵理论是线性代数的重点内容,熟悉掌握了矩阵的相关性质与内容,利用其来解决实际应用问题就变得简单易行。正因为矩阵理论在整个线性代数中的重要作用,使它变为考试考查的重点。矩阵由那么多元素组成,每一个元素都在扮演不同的角色,其中的核心或主角是它的秩!

通过几十年考研考试命题,命题老师对题目的形式在不断地完善,这也要求考生深入理解概念,灵活处理理论之间的关系,能变通地解答题目。例如对矩阵秩的理解,对矩阵的秩与向量组的秩之间的关系的理解,对矩阵等价与向量组等价之间区别的理解,对矩阵的秩与方程组的'解之间关系的掌握,对含参数的矩阵的处理以及反问题的解决能力等,都需要在对概念理解的基础上,联系地看问题,及时总结结论。

矩阵的特征值与特征向量

矩阵的特征值与特征向量在将矩阵对角化过程中起着决定作用,也是将二次型标准化、规范化的便捷方式,故特征值与特征向量也是考查重点。对于特征值与特征向量,须理清其相互关系,也须能根据一些矩阵的特殊性求得其特征值与特征向量(例如根据矩阵各行元素之和为3能够判断3是其一个特征值,元素均为1的列向量是其对应的特征向量),会处理含参数的情况。

线性方程组求解

对线性方程组的求解总是通过矩阵来处理,含参数的方程组是考查的重点,对方程组解的结构及有解的条件须熟悉。例如2010年第20题(数学二为22题),已经三元非齐次线性方程组存在2个不同的解,求其中的参数并求方程组的通解。此题的关键是确定参数!而所有信息完全隐含在“AX=b存在2个不同的解”这句话中。由此可以得到齐次方程组有非0解,系数矩阵降秩,行列式为0,可求得矩阵中的参数;非齐次方程组有解故系数矩阵与增广矩阵同秩可确定唯一参数及b中的参数。至于确定参数后再求解非齐次方程组就变得非常简单了!

二次型标准化与正定判断

二次型的标准化与矩阵对角化紧密相连,即与矩阵的特征值与特征向量紧密联系。这里需要掌握一些处理含参数矩阵的方法以便运算中节省时间!正定二次型有很优秀的性质,但毕竟这是一类特殊矩阵,判断一个矩阵是否属于这个特殊类,可以使用正定矩阵的几个充要条件,例如二次型矩阵的特征值是否全大于0,顺序主子式是否均大于0等,但前者更常用一些。

这四个考点可以说是考试的重点考查对象,考生可以根据自己的实际情况围绕重点题型复习。

考研数学线代 核心考查两大考点

中考政治核心考点

考研数学的三大重要考点

考研数学 概率考点精析

考研数学线性代数的六大考点

考研数学 向量线性方程组核心题型

考研暑假复习两大方式打好数学基础

考研数学线代六大高频考点

考研英语核心词汇

考研数学 常见考点简单但仍需重视

考研数学:核心考查两大考点(精选6篇)

欢迎下载DOC格式的考研数学:核心考查两大考点,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档