考研数学高数重点与难点复习指南

| 收藏本文 下载本文 作者:大友牙科

下面是小编给大家带来的考研数学高数重点与难点复习指南(共含5篇),以供大家参考,我们一起来看看吧!同时,但愿您也能像本文投稿人“大友牙科”一样,积极向本站投稿分享好文章。

考研数学高数重点与难点复习指南

篇1:考研数学高数重点与难点复习指南

考研数学高数重点与难点复习指南

对于数学来说,很多考生都觉得很难很难。而考研数学对于工科和理科的学生来说,是必考的科目。为了数学取得一个好成绩,有的考生在数学上花费了很多的时间和精力,但是考试的成绩却不尽人意。为了取得事半功倍的复习效果。下面老师来谈谈高数复习中的重难点,希望同学们在复习过程中有的放失,不能盲目学习。

一、函数连续与极限

极限是高数的基本工具,是三大运算之一。求极限是考研试卷中常考的题型,是考试的重点。要求考生对于极限的概念以及求极限的基本方法掌握到位。在这一部分,还有两个重要的概念,即无穷小和间断点,是考试中常考的知识点,此处是我们复习的重点。常考的题型有:无穷小阶的比较,无穷小和极限的结合,间断点类型的判断。

二、一元函数微分学

求导是高数的第二大运算,要求对于各种类型函数的求导过关,也是为后面的多元函数求偏导打下基础。这一部分需要注意两个概念:导数和微分,要求理解导数的定义以及可导的充分必要条件。此外,还有导数的应用,这是内容比较多的一部分,是考试的重点,但不是难点,如函数的单调性、凹凸性、渐近线、拐点和方程根的判别等。这一部分还有一个难点,就是中值定理的.相关证明题,不过这部分题目解题思路不太灵活,掌握常见的技巧和方法足可应对。

三、多元函数微分学

多元函数连续、可偏导及可微的定义,以及三者之间的关系要准确区分。多元函数复合函数和隐函数求偏导和求全微分一定要过关。这些都是考试的重点。

四、多元函数积分学

数二和数三同学仅仅考查二重积分的计算,这是考试的重点,是每年必考的,常见题型有二重积分的基本计算,选择合适的坐标系法和积分次序,有必要时进行交换坐标系和积分次序等等,这些都是基本的运算。对于数一的同学,在以上基础上,还需要学习曲线、曲面积分的计算和三重积分的计算。尤其需要注意的是第二类曲线积分和格林公式的结合,三维曲线积分和斯托克斯公式的结合,第二类曲面积分和高斯公式的结合,这些是出大题的地方。

五、微分方程

掌握考纲中要求掌握的几类方程的解法,如可分离变量方程、齐次方程、一阶线性微分方程、可降阶微分方程(数三不要求)、二阶常系数微分方程。需要注意一下常系数线性方程的解的结构。此外,微分方程和变上限函数、多元函数微分学或实际问题,经常会出一些综合题。

数一的个别考点伯努利方程和欧拉方程,数三的个别考点有差分方程,同学们只需要掌握一般解法即可,不需要研究太多,不是考试的重点。

篇2:考研数学复习重点、难点、疑点

考研数学复习重点、难点、疑点

基础复习是全程的关键

要做到对知识点清晰分层,实际上不是一个简单的过程,考研数学历来以考试内容多、知识面广、综合性强。所以建议考生应当深刻理解考试大纲、深刻了解自己的基础情况。且不能仅想通过一些“解题技巧”成功,要清楚任何知识的积累都是长期努力的结果,都是需要我们踏踏实实来努力的,切勿投机。

有些同学在考场上,不知道怎样下手,不知道该用哪个公式。这些都是因为考生对数学基本概念掌握不够牢固,理解不够透彻。所以,建议考生在数学复习中一定要重视基础知识,要复习所有的公式、定理、定义,多做一些基础题来帮助巩固基本知识,在复习基础知识的时候也要学会找出各知识点的内在联系。例如:线性代数的内容不多,但基本概念和性质较多,他们之间的联系也比较多。考生特别要根据每年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家做线性代数的两个大题在解题思路和方法上会有很大的帮助。

做题同时进行总结归纳

对于数学复习本阶段最明显的作用是强化技巧,发现自己的薄弱环节。数学能力的提高,是建立在一定的.题量上的,所以一定要做习题。但是,同样的做了很多题,有的人成绩迅猛提高,有的人却止步不前,原因就是方法和总结。因此,考生在日常复习过程中要善于梳理知识点,适当的进行习题训练,对于同类型的题目,考生要尽量完整地做,包括所需的公式,各步的计算,千万不能眼高手低,有时候一看题觉得自己会做就放弃演算过程,这是不好的习惯。只有每次在做题时善始善终,才能提高做题的准确程度,甚至发现自己的一些思维漏洞。对于数学复习只有及时配合做题加以巩固,方可透彻理解各章节的知识点及其应用,达到相辅相成的理想效果。此外,考生要对自己做错的题目要特别用心,通过做题来查缺补漏,训练思维。提高解题速度、计算准确率,培养自己的逻辑思维能力和综合应用能力。尤其是计算准确率,数学真题80%都是计算题,所以计算准确率和解题速度是争取数学高分的一个重要前提。

重视真题复习步步为营考研复习过程中,做历年真题是必经阶段,不光要做,还要做到熟练。真题中每一道题的解题思路、所考查知识点都应熟练掌握。做真题不仅可以了解命题特点,也可检测出自己的薄弱点,针对性复习,以达到更好的复习效果。所以要求考生重视

历年真题。做真题可分两步,第一步一套套地做,这样一是可以检验复习水平,发现不足的地方。另外为合理安排考场上答题时间积累经验。第二步,按照章节进行做,在第一步基础上,有些题目有可能会做错,接下来,在各个章节中在专题中做,把该类型的题目,最近十年考试题好好研究,弄清楚常考的是哪些情况,有可能怎么变化,还有可能怎么考。另外,要求考生通过对考研的试题类型、特点、思路进行系统的归纳总结,有意识地重点解决问题对提高考生。

篇3:考研数学高数复习注意事项

考研数学高数复习注意事项

高等数学是考研数学内容最多的一部分,大纲规定高等数学部分在数学1试卷中占60%的分数、数学2占80%、数学3和数学4也要占到50%的分数。 所以高等数学这部分是相当重要的,同学们是要重点复习的,在复习过程中有几个问题是需要注意的。

要明确考试重点,充分把握重点。比如高数第一章“函数极限和连续”的重点就是不定式的极限,我们要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的.积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学1里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和(主要是间接的展开法)。其实,重点主要就是这些了。为了充分把握重点,平时应该多研究历年真题,也能更好地了解命题思路和难易度。

对于各种类型的题目,都要掌握各自的解题方法。比如二重积分的求法,首先要把积分的区域画出来,画清楚各级函数,要确定是X积分还是Y积分,你在这个区域画一条线,如果是X积分你做一条平行X轴的射线穿过这个区域。穿进就是积分的下限,穿出就是积分的上限。一般把这个基本原则掌握了,考试就不会有问题了,题型可以变换但是方法是不变的。

数学要考高分就要明确数学要考些什么。数学主要一个是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的。所以基础一定要打扎实。高数的基础应该着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等等内容,这些内容可以看成那三部分内容的联系和应用,这就是它的基础。数学要考的另一部分是简单的分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。还有一个就是数学的解应用题的能力。解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等等这些好多知识。当然它主要考的就是数学在几何中的应用,在力学中的应用,在物理中的吸引力、电力做功等等这些方面。数学要考的第四个方面就是运算的熟练程度,换句话说就是解题的速度。如果能够围绕着这几个方面进行有针对性地复习,取得高分就不会是难事了。

数学复习是要保证熟练度的,平时应该多训练,应该一抓到底,应该经常练,一天至少保证三个小时。把我们平时讲的一些概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,像骑自行车一样。尽管你原来骑得非常好,但是长时间不骑,再骑总有点不习惯。所以经常练习是很重要的,天天做、天天看,一直到考试的那一天。这样的话,就绝对不会生疏了,解题速度就能够跟上去。

复习数学不能眼高手低,在我们还没有建立起来完备的知识结构之前,一带而过的复习必然会难以把握题目中的重点,忽略精妙之处。题目看懂了不代表这个题目就会做了,其实真正动手就会碰到很多问题,去解决这些问题就是提高自己的过程。只有通过动手练习,我们才能规范答题模式,提高解题和运算的熟练程度,这些都要通过自己不断的摸索去体会。

篇4:考研数学复习高数复习技巧

2014考研数学复习高数复习技巧

奋战考研的帷幕已经拉开,考研的各门科目中,考研数学考试综合性强、知识覆盖面广、难度大,应及早复习为佳。只要方法得当,提高分数相对要快一些。高等数学是考研数学内容最多的一部分,所以高等数学的分量也就显得尤为重要。

当然,把握数学高分的前提必须要熟知数学考查内容和具体考些什么。数学主要是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的。高数的基础应着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。另一部分考查的是简单的分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。最后就是数学的解应用题能力。解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等知识。如果能够围绕着这几个方面进行有针对性地复习,取得高分也就不再是难事了。

与此同时,在具体的复习过程中如何规划复习才能取得事半功倍的效果也是考试普遍关注的问题。数学复习要保证熟练度,平时应该多训练,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,要天天联系,熟悉,技能才会更熟能生巧,更能够灵活运用,如果长时间不练习,就会对解题思路生疏,所以经常练习是很重要的,天天做、天天看,一直坚持到最后。这样,基础和思路才会久久在大脑中成型,遇到题目不会生疏,解题速度也就相应越来越熟练,越来越快。

如果已经开始高数初级阶段的复习,那么在之后的更加细密的'复习过程中同样需要注意些问题。首先要明确考试重点,充分把握重点。比如高数第一章的不定式的极限,我们要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。

其次,对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和等。充分把握住这些重点,同学们在以后的复习强化阶段就应该多研究历年真题,这样做也能更好地了解命题思路和难易度,从而使整个复习规划有条不紊。

扎实的基础知识复习,合理的自我规划和练习,逐步解决高数的重难知识点,同时也对出题者命题思路有了一定的了解,如此,考研学子们定能在自己的数学复习领域看到丰硕的果实,相信最美好的结果来自坚定的自我努力。

篇5:考研高数复习10大重点预测

2016年考研高数复习10大重点预测

历年来考研数学大纲都比较稳定,变化不大,而高数部分又是其重点,大家要多放经历复习。下面为大家总结预测高数考试的10个重点,大家可提前复习复习,等新大纲发布后再行调整。

・总体分析

首先,根据近几年来的真题,现在的数学考试内容有越来越规范的趋势,更加注重对于三基即对于基本概念,基本理论和基本方法的考核,不会出现超纲或者特别重视技巧的现象,要求大家重视基础,在加强题量练习的基础上,重视对知识点的理解和掌握,对于一些偏题、怪题应该有选择地放弃。

其次虽然说考研数学的总体难度在下降,但是根据以往的经验来看,难题一般都在高数上,所以要想得到高分,高数就显得特别重要。

・试卷结构

整套试卷满分150分,考试时间180分钟,数学一和数学三试卷中高等数学占56%,分数值为82分,数学二试卷中高等数学占78%,分数值为116分。试卷结构为单选题8道,填空题6道,解答题9道。数学一和数学三试卷的择题1至4题、填空题9至12题、解答题15至19题考的是高等数学内容,数学二试卷的选择题1至6题、填空题9至13题、解答题15至21题考的是高等数学内容。

选择题和填空题:属于中等偏下难度的题目,重点考察大家对于三基的掌握。

解答题:主要考察中等难度和较高难度的题目,以四种题型为主:计算题、证明题、应用题(几何应用、物理应用、经济应用)、综合题。解答题一般涉及多个知识点,比较综合。

・高数重点知识点

具体的重点知识点如下:

1、极限计算(数列和函数极限,等价无穷小代换、泰勒公式、洛必达法则等);

2、导数及其应用(方程根的问题、极值最值、拐点、凹凸性、渐近线、不等式的证明等);

3、中值定理相关的证明;

4、不定积分、定积分的计算(换元法、分部积分法、有理函数积分的计算,变限积分函数求导公式、牛顿-莱布尼兹公式的'应用等);

5、定积分的几何应用(微元法,平面图形的面积、旋转体的表面、弧长、旋转体的体积等);

6、多元函数的微分法(偏导数的计算、条件极值为重点);

7、二重积分的计算(数二、数三的必考题);

8、微分方程(特定类型的方程求解,应用题等);

9、级数(敛散性判断、级数求和、函数的幂级数展开,傅立叶级数(数一));

10、曲线曲面积分(数一必考,格林公式、高斯公式、斯托克斯公式的运用)。

只要大家平时注重基础知识的理解和掌握,并配合一定数量题目的练习,就一定能够在数学上拿到高分。

考研数学复习高数资料怎样选择

考研数学高数复习三方面要重视

考研数学复习线性代数重点内容与题型

考研数学 抓重点 巧复习

考研数学:抓基础有方向 高数重点解析

考研英语翻译复习指南

名师支招 考研高数复习靠坚持

考研高数知识点梳理及复习指导

高考生考试复习指南

《春江花月夜》课文重点与难点

考研数学高数重点与难点复习指南(通用5篇)

欢迎下载DOC格式的考研数学高数重点与难点复习指南,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档