下面是小编帮大家整理的初三数学基础知识考点(共含3篇),希望对大家的学习与工作有所帮助。同时,但愿您也能像本文投稿人“Jēmīgl”一样,积极向本站投稿分享好文章。
初三数学基础知识的复习规划
一、要有正确的认识
很多学生觉得我初一初二的数学成绩一直不错,到了初三该怎么学还怎么学呗,实际上这是非常错误的想法,初中数学知识的分布是由易到难,但这个由易到难的过程并不是逐步变难的过程,而是到了初三会突然拔高,好比初一的难度在一楼,初二的难度在二楼,到了初三难度一下就上升到了五楼,更让大部分初三学生难以忍受的是知识难度增加的同时课程进度也在加快,本来知识点就很难了,但老师讲课的速度却变快了,从而学习成绩一落千丈,学习兴趣更无从谈起,因此要想学好初三数学,首先得具备思想上的认识。
二、要有明确的目标
有了目标才会有学习的方向,从而产生学习的动力,对于初三数学的学习有了认识之后,就要根据自己的情况确定自己的目标,使自己为了达到目标而努力,目标不能太难,那样会使自己产生巨大的压力,而且很难达到;也不能定得太简单,那样很容易就实现了,不利于自己的成长,最合理的方式是把目标分成几部分,由一个个短期的小目标和一个长远的大目标组成,这样每达到一个目标,就会信心百倍准备下一个目标,一点一点地积累,就会实现大的成功。
三、要有详细的计划
有了明确的目标,就要有相应的计划去实现,对于初三学生来说,要想学好数学,不能盲目的去做题,那样的效果只会事倍功半,也不能想到什么就学什么,那样就会越学越乱,要想制定合理的计划,就应该根据课程安排,给自己制定一个学习规划,每天应该干什么,每周应该干什么,都要有计划,保证学习在自己的掌握之中,而不是被各种知识牵着鼻子走。在计划制定前要重点考虑两个问题:一是要突出重点,知识虽然很多,但总有重要和次要之分,制定计划就是要抓住重点,提纲挈领,达到学习效果;二是要保留部分机动时间,不能把计划安排的太满,这样不但身体吃不消,也不利于知识的消化。
四、要有正确的方法
数学是一门基础学科,缺少趣味性的实验和动手操作,但当你沉思苦想半天解出一道难题之后的快感是任何学科都无法相比的,想要学好数学,要掌握正确的方法,对于大部分学生来说,容易走入两个误区,一个是忽略基础知识:一个是狂练题。其实数学的基础知识是非常重要的,很多学生不学的理由是考试不考,而且基础知识很简单,看一眼就会了,但这样的学生只看到了表面现象,其实,对于数学基础知识的掌握不应该仅仅停留在对于概念和公式的记忆,而是把概念和公式进行反复揣摩,考虑概念和公式的涵义,由此种涵义可以引申出哪些变型,进而才真正掌握这些基础知识,学习基础知识的最重要目的是掌握学习知识的方法;狂练题固然可贵,但如果不注意总结,那就是机械式的反复了,我们在做题当中应该对每一道题及时进行总结,考虑题的考点、出题方向和知识之间的综合。掌握了基础知识只能拿到90分左右的成绩,现在中考试卷越来越注重创新,而很多创新题都是考察学习基础知识的能力,给同学们一个从未见过的概念或公式,然后解决问题。如果在平时的学习中忽略了对基础知识的学习,是难以掌握学习新知识的方法的,那么解决这类问题更是无从谈起。而中考还有一类题,是综合大题,其实很多学生都知道,所谓综合大题,其实就是很多小知识点的结合,把题进行解剖,就会变成一个一个简单的小题。但关键是很多学生不会解剖,就会觉得无从下手,造成这种状况的原因还是在平时的练习中忽略了基础知识,没有及时总结,自己得不出知识点之间的联系。
初中数学学习方法介绍
一、掌握预习学习方法,培养数学自学能力
预习就是在课前学习课本新知识的学习方法,要学好初中数学,首先要学会预习数学新知识,因为预习是听好课,掌握好课堂知识的先决条件,是数学学习中必不可少的环节.预习可以用“一划、二批、三试、四分”的预习方法.“一划”就是圈划知识要点,基本概念.“二批”就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方;“三试”就是尝试性地做一些简单的练习,检验自己预习的效果.“四分”就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习.
二、掌握课堂学习方法,提高课堂学习效果
课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;
耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结.另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;
口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;
眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;
心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极.关键是理解并能融汇贯通,灵活使用.对于老师讲的新概念,应抓住关键字眼,变换角度去理解.
三、掌握练习方法,提高解答数学题的能力
数学的解答能力,主要通过实际的练习来提高.数学练习应注意以下几点:
1.端正态度,充分认识到数学练习的重要性.实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现.
2.要有自信心与意志力.数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯.
3.要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答.解答后,还应进行检查.
4.细观察、活运用、寻规律、成技巧.
四、掌握复习方法,提高数学综合能力.
复习是记忆之母,对所学的知识要不断地复习,复习巩固应注意掌握以下方法.
1.合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习.
2.采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系,从整体上提高,综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固,形成完整的知识体系.
3.突破薄弱环节的复习方法.要多在薄弱环节上下功夫,加强巩固好课本知识,只有突破薄弱环节,才利于从整体上提高数学综合能力.
高中数学学习方法介绍
一、每天做几道数学题
数学是应用性很强的学科,做题是数学学习过程中必不可少的环节。甚至有同学说,学习数学就是学习解题。做数学题应注意以下几点:
(一)精做题
做题不是做得越多越好,而是做得越精越好。怎样才算“精”呢?学会“解剖麻雀”。充分理解题意,注意分析题型,深化对题中每个条件的认识,看看与哪些数学基础知识相联系,做完题,还要针对自己做错的题,分析自己当时想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,以便挖掘出一些好的数学思维方法;一题多解,一题多变,多元归一。
(二)做难题
取得黑龙江省高考文史类第三名好成绩的李宏霞同学,认为坚持做难题,做大题才是制胜的法宝。她说,数学中的基础题因然很重要,但高分的关键则是综合性强、难度大的最后两三道大题,即所谓“拉分题”。因此,她在复习时坚持有规律地做这类题目。由于题目难度高,所以每次做的题量不要太大,一次做四五道即可,同时,要注意选择的题目要有代表性、要全面,同一题型的题选二三道即可,要注意方法的积累和运用。
(三)天天做题
熟练解题一定要有量的积累。天天做题就是保证做题的数量的最好方法。同学们可以制定一个计划,每天要求自己做五道题目,或十道题目,根据自己的情况确定,如此坚持下去,做题越做越快,并且培养起相当的自信心。
二、紧紧抓住例题不放
许多考试题目都是取材于课本的例题,对例题进行简单改造而成。比如把这个题的结论作为已知条件,把原来的已知条件作为新题目的结论;或者什么都不变,但是不直接给出已知条件,而是用委婉的方法告诉你已知条件,这样就变成了一个新题目。即使是综合题,也是由若干个基础题整合加工而成。因此,提高做题能力,最简单、最有效的方法,就是熟记课本中的例题。
一、背例题
不仅要看得懂例题,还要能“背例题”,而且多“背例题”。如何“背例题”呢?我们知道,一道题的精髓不在于题面,而在于解答过程。因此,背题不仅是熟悉题目,更是熟记解答过程。不仅要问怎么做,而且要问怎么想,不仅要知道这样做,而且要知道为什么这样做。具体来说,可以通过重复做例题进行针对性的训练。
二、做例题
复习时重做一遍例题,会收到意想不好的好效果。弄清全书有几章,每章有几节,每节有几道例题,对全书的例题做到心中有数,然后在作业本上抄下每一道例题。(每一道例题就是一种题型,可以自己算算有多少种题型。)不要先看书中的解法,合上课本,按记忆中书上的解题步骤、解题方法认真解题,不要马虎和省略。全部解答完后再翻开书本参照例题一一对照,看自己的解题方法、步骤是否和书中一致,如果有不同的地方,要分析这样做的原因和利弊,寻找存在的知识盲点,进行订正和记忆。
(1)圆
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。
(2)圆的相关特点
1)径
连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。
直径所在的直线是圆的对称轴。在同一个圆中,圆的直径d=2r。
2)弦
连接圆上任意两点的线段叫做弦。在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
3)弧
圆上任意两点间的部分叫做圆弧,简称弧,以“⌒”表示。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。
在同圆或等圆中,能够互相重合的两条弧叫做等弧。
4)角
顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。
初三数学解一元二次方程考点
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
(1)直接开平方法:
用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m。
直接开平方法就是平方的逆运算。通常用根号表示其运算结果。
(2)配方法
通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)。
2)系数化1:将二次项系数化为1。
3)移项:将常数项移到等号右侧。
4)配方:等号左右两边同时加上一次项系数一半的平方。
5)变形:将等号左边的代数式写成完全平方形式。
6)开方:左右同时开平方。
7)求解:整理即可得到原方程的根。
(3)公式法
公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
初三数学常考有理数知识点
1、大于0的数叫做正数。
2、在正数前面加上负号“-”的数叫做负数。
3、整数和分数统称为有理数。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴。
5、在直线上任取一个点表示数0,这个点叫做原点。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则。
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
初三数学不等式与不等式组考点
不等式:
①用符号”=“号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
初三相似三角形数学考点
1.如果两个数的比值与另两个数的比值相等,就说这四个数成比例。
2.如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。谁都不能为0。为0无意义。
3.一般的,如果三个数a,b,c满足比例式a:b=b:c,则b就叫做a,c的比例中项。(如果是线段的话,只能取正的,如果是数,正负都可以)。
4.黄金分割
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1)/2,取其前三位数字的近似值是0.618。
5.证明三角形相似的方法:
(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;
(2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;
(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;
(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
(5)对应角相等,对应边成比例的两个三角形叫做相似。
★ 中考数学考点解析