下面是小编整理的如何攻克中考数学压轴题(共含7篇),希望对大家有所帮助。同时,但愿您也能像本文投稿人“詐傻扮懵懵懵”一样,积极向本站投稿分享好文章。
中考数学压轴题如何攻克
对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它。其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法。
压轴题难度有约定:历年中考,压轴题一般都由3个小题组成。第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型, 得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。近十年来,最后小题的得分率在0.3以下的情况,只是 偶尔发生,但一旦发生,就会引起各方关注。控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色,以 往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。由此可见,压轴题也并不可怕。压轴题一般都是代数与几何 的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。方 程与图形的综合的几何问题也是常见的综合方式,如去年中考的第25(3)题,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试 卷中也不乏其例。动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明 融合在一起。在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。总之,压轴题有多种综合的方式,不要老是 盯着某种方式,应对压轴题,决不能靠猜题、押题。
分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。如去年第25 题的(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无 关,整个大题由这三个小题“拼装”而成。又如第25题,(1)、(2)两个小题是“递进关系”,(1)的结论由大题的已知条件证得,除已知外, (1)的结论又是解(2)所必要的条件之一。但(3)与(1)、(2)却是“平列关系”,(1)中,动点p在射线an上,而(3)根据已知,动点p在射线 an上。它除了可能在射线an上,还可能在an的反向延长线上,或与点a重合。因此需要“分类讨论”。如果将(1)、(2)的结论作为条件解(3),将会 使你坠入“陷阱”,不能自拔。
应对策略必须抓牢:学生害怕“压轴题”,恐怕与“题海战术”有关。中考前,盲目地多做难题是有害的。从外省市中考卷或从前几年各区模拟考卷中选 题时,特别要留意它是否超出今年中考的考查范围。有关部门已明确,拓展ii的教学内容不属于今年中考的范围,如代数中的“一元二次方程的根与系数的关 系”、“用‘两根式’和‘顶点式’来求二次函数的解析式”、“二次函数的应用”等,几何中“圆的切线的判定和性质”、“四点共圆的性质和判定”等,因此这 些内容不可能作为构造压轴题的“作料”。为了应对中考压轴题,教师可以根据实际,为学生精选一二十道,但不必强求一律,对有的学生可以只要求他做其中的第 (1)题或第(2)题。盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,结果必然是得不偿失。事实证明:有相当一部分学 生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上,因此在最后总复习阶段,还是应当把功夫花在夯实基 础、总结归纳上,老师要帮助学生打通思路,掌握方法,指导他们灵活运用知识。有经验的老师常常把压轴题分解为若干个“小综合题”,并进行剪裁与组合,或把 外省市的某些较难的“填空题”,升格为“简答题”,把“熟题”变式为“陌生题”,让学生练习,花的时间虽不多,但能取得较好的效果。我认为:综合题的解题 能力不能靠一时一日的“拔苗助长”而要靠日积月累的培养和训练。在总复习阶段,对大部分学生而言,放弃一些难题和大题,多做一些中档的变式题和小题,反而 能使他们得益。
不要太受区考影响:从今年各区的统考试卷看,有的压轴题的综合度太大,以致命题者自己在“参考答案”中表达解题过程都要用去a4纸一页还多。为 了应付中考压轴题,有的题拔高了对数学思想方法的考查要求,初中阶段只要求学生初步领会基本的数学思想方法。因此在中考中也只能在考查基础知识、基本技能 和基本方法中有所渗透和体现而已,希望命题者手下留情,不要再打“擦边球”,搞“深挖洞”了。更希望今年中考数学卷能够控制住最后两题的难度,不要再“双 压轴”了。
中考数学选择题的解法技巧
1、排除法。是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。排除法是解选择题的间接方法,也是选择题的常用方法。
2、特殊值法。即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条 件,且易于计算。此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。在解决时可将问题提供的条件特殊化。使之成为 具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而 且可以作出符合条件的特殊图形来进行计算或推理。
3、通过猜想、测量的方法,直接观察或得出结果。这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它。其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法。
压轴题难度有约定:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;
第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,
第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色,以往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。
如果以为这是构造压轴题的唯一方式那就错了。方程与图形的综合的几何问题也是常见的综合方式,如去年中考的第25(3)题,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例。
动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起。
在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。
分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的`,还是“递进”的,这一点非常重要。
如去年第25题的(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。
又如20第25题,(1)、(2)两个小题是“递进关系”,(1)的结论由大题的已知条件证得,除已知外,(1)的结论又是解(2)所必要的条件之一。但(3)与(1)、(2)却是“平列关系”,(1)中,动点p在射线an上,而(3)根据已知,动点p在射线an上。
它除了可能在射线an上,还可能在an的反向延长线上,或与点a重合。因此需要“分类讨论”。如果将(1)、(2)的结论作为条件解(3),将会使你坠入“陷阱”,不能自拔。
2020中考数学备考压轴题如何攻克
压轴题难度有约定:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;
第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,
第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。
控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色;
以往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式;
用到三角形、四边形、相似形和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。
总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。
分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。
应对策略必须抓牢:学生害怕“压轴题”,恐怕与“题海战术”有关。中考前,盲目地多做难题是有害的。
从外省市中考卷或从前几年各区模拟考卷中选题时,特别要留意它是否超出今年中考的考查范围。
有关部门已明确,拓展ii的教学内容不属于今年中考的范围,如代数中的“一元二次方程的根与系数的关系”、“用‘两根式’和‘顶点式’来求二次函数的解析式”、“二次函数的应用”等;
几何中“圆的切线的判定和性质”、“四点共圆的性质和判定”等,因此这些内容不可能作为构造压轴题的“作料”。
为了应对中考压轴题,教师可以根据实际,为学生精选一二十道,但不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。
盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,结果必然是得不偿失。
事实证明:有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上;
因此在最后总复习阶段,还是应当把功夫花在夯实基础、总结归纳上,老师要帮助学生打通思路,掌握方法,指导他们灵活运用知识。
有经验的老师常常把压轴题分解为若干个“小综合题”,并进行剪裁与组合,或把外省市的某些较难的“填空题”;
升格为“简答题”,把“熟题”变式为“陌生题”,让学生练习,花的时间虽不多,但能取得较好的效果。
我认为:综合题的解题能力不能靠一时一日的“拔苗助长”而要靠日积月累的培养和训练。
在总复习阶段,对大部分学生而言,放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。
不要太受区考影响:从今年各区的统考试卷看,有的压轴题的综合度太大,以致命题者自己在“参考答案”中表达解题过程都要用去a4纸一页还多。
为了应付中考压轴题,有的题拔高了对数学思想方法的考查要求,初中阶段只要求学生初步领会基本的数学思想方法。
因此在中考中也只能在考查基础知识、基本技能和基本方法中有所渗透和体现而已,希望命题者手下留情,不要再打“擦边球”;
搞“深挖洞”了。更希望今年中考数学卷能够控制住最后两题的难度,不要再“双压轴”了。
中考数学复习的六点原则
一、主体性原则
学生是教学活动中的主体对象,在复习教学中,应将学生摆在核心的地位,要充分调动学生的学习积极性和主动性,学生的主体地位应该贯穿于复习教学的始终。
二、方向性原则
要提高复习的质量,方向很重要。要认真研究《中考考试说明》,它可以使我们纵观复习教学全局,抓住重点,抓住关键,增强数学复习教学针对性和科学性,减少复习教学的随意性和盲目性,少走弯路,少做无用功。
三、针对性原则
“针对”可以瞄准目标,有的放矢,提高命中率。
1.复习教学一定要针对平时教学中学生易错、易混淆的知识进行讲解和练习,绝不能不分主次,眉毛胡子一把抓,应做到有的放矢。
2.针对近几年中考的热点、重点、难点进行专题训练,针对近几年中考的重要题型进行强化训练,如推断题、信息阅读题、实验题、开放性试题等。
四、变式性原则
“变”可以使人产生新奇,“变”可以提高人的识别能力。不就题论题,要适当扩散,善于借题发挥,将原题改头换面,从不同角度和侧面来引导学生分析,善于从一道题中引伸出其它的知识点,引导学生去联想,达到触类旁通的效果。
五、层次性原则
1.数学复习教学要根据学生已有的知识水平和接受能力分层要求,课堂教学推行分层教学。
2.数学复习教学还要做到阶段的层次性:
第一轮复习以课本的章节顺序进行。第二轮是分专题分块进行系统的复习。在复习时想方设法指导学生把零、散、乱的知识纳入自己的知识结构,注意知识点的横向和纵向的交织和搭桥,做到帮助和指导学生构筑知识框架、编织知识网络。第三轮复习主要是综合训练和模拟测试。通过训练进一步扩展学生的思维空间和提高学生解题能力,帮助学生查漏补缺。加强对学生考试心理和考试方法的指导,提高学生的应试能力。
六、联前带后的原则
在复习教学中要注意相关的知识的渗透和牵线搭桥,尽量使前后知识发生联系。在第一轮和第二轮复习时建议学生每周完成一份综合练习,以提高知识的复现率。
压轴题难度有约定:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色,以往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。由此可见,压轴题也并不可怕。
压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。方程与图形的综合的几何问题也是常见的综合方式,如去年中考的第25(3)题,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例。
动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起。在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。
分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。
如去年第25题的(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。
又如第25题,(1)、(2)两个小题是“递进关系”,(1)的结论由大题的已知条件证得,除已知外,(1)的结论又是解(2)所必要的条件之一。但(3)与(1)、(2)却是“平列关系”,(1)中,动点p在射线an上,而(3)根据已知,动点p在射线an上。它除了可能在射线an上,还可能在an的反向延长线上,或与点a重合。因此需要“分类讨论”。如果将(1)、(2)的结论作为条件解(3),将会使你坠入“陷阱”,不能自拔。
应对策略必须抓牢:学生害怕“压轴题”,恐怕与“题海战术”有关。中考前,盲目地多做难题是有害的。从外省市中考卷或从前几年各区模拟考卷中选题时,特别要留意它是否超出今年中考的考查范围。
有关部门已明确,拓展ii的教学内容不属于今年中考的范围,如代数中的“一元二次方程的根与系数的关系”、“用‘两根式’和‘顶点式’来求二次函数的解析式”、“二次函数的应用”等,几何中“圆的切线的判定和性质”、“四点共圆的性质和判定”等,因此这些内容不可能作为构造压轴题的“作料”。为了应对中考压轴题,教师可以根据实际,为学生精选一二十道,但不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。
盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,结果必然是得不偿失。事实证明:有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上,因此在最后总复习阶段,还是应当把功夫花在夯实基础、总结归纳上,老师要帮助学生打通思路,掌握方法,指导他们灵活运用知识。
有经验的老师常常把压轴题分解为若干个“小综合题”,并进行剪裁与组合,或把外省市的某些较难的“填空题”,升格为“简答题”,把“熟题”变式为“陌生题”,让学生练习,花的时间虽不多,但能取得较好的效果。我认为:综合题的解题能力不能靠一时一日的“拔苗助长”而要靠日积月累的培养和训练。在总复习阶段,对大部分学生而言,放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。
不要太受区考影响:从今年各区的统考试卷看,有的压轴题的综合度太大,以致命题者自己在“参考答案”中表达解题过程都要用去a4纸一页还多。为了应付中考压轴题,有的题拔高了对数学思想方法的考查要求,初中阶段只要求学生初步领会基本的数学思想方法。因此在中考中也只能在考查基础知识、基本技能和基本方法中有所渗透和体现而已,希望命题者手下留情,不要再打“擦边球”,搞“深挖洞”了。更希望今年中考数学卷能够控制住最后两题的难度,不要再“双压轴”了。
中考数学压轴题解题方法
1、学会运用数形结合思想
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、学会运用函数与方程思想
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
各类题型的中考数学压轴题在近几年的中考中慢慢涌现出来,比如设计新颖、富有创意的,还有以平移、旋转、翻折等图形变换为解题思路的。中考数学压轴题,解题需找好四大切入点。
切入点一:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。对于中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,中考数学压轴题的切入点有很多,考试时并不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
攻克高考数学考压轴题的心得
考压轴题也并非一点分数也抢不到!只要了解到高考数学压轴题的特点,并且掌握一定的答题技巧,相信高考生还是可以从中拿到一些分数的!
说到高考数学压轴题,在很多高考生眼中,那是尖子生的天下。其实高考压轴题也并非一点分数也抢不到!只要了解到高考数学压轴题的特点,并且掌握一定的答题技巧,相信高考生还是可以从中拿到一些分数的!
首先同学们要正确认识压轴题
压轴题主要出在函数,解几,数列三部分内容,一般有三小题。记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!
其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!
第二重要心态:千万不要分心
其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。高考时,你是不可能这么想的。你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想“最后一道题目难不难?不知道能不能做出来”“我要不要赶快看看最后一题,做不出就去检查前面题目”“前面不知道做的怎样,会不会粗心错”……这就是影响你解题的“分心”,这些就使你不专心。
专心于现在做的题目,现在做的步骤。现在做哪道题目,脑子里就只有做好这道题目。现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!
第三重要心态:重视审题
你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的',一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。然后在“新条件”与“新结论”之间再寻找关系。一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!
最高境界就是任何一道题目,在你心中没有难易之分,心中只有根据题目条件推出新条件,一直推到最终的结论。解题心态也应当是宠辱不惊,不以题目易而喜,不以题目难而悲,平常心解题。
最后还有一点要提醒的是,虽然我们认为最后一题有相当分值的易得分部分,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做最后一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。
一.其实压轴题难度也是有约定的:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;
第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,
第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
而从近几年的中考压轴题来看,大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。由此可见,压轴题也并不可怕。
1、线段、角的计算与证明
解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
2、一元二次方程与函数
在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
3、多种函数交叉综合问题
初中数学所涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。
4、列方程(组)解应用题
在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。
5、动态几何与函数问题
说来,几何综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。
6、几何图形的归纳、猜想问题
中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。对于这类归纳总结问题来说,思考的方法是最重要的。
二.中考数学压轴五种策略
1.学会运用数形结合思想
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2.学会运用函数与方程思想
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3.学会运用分类讨论的思想
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
分类的原则:
(1)分类中的每一部分是相互独立的;
(2)一次分类按一个标准;
(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏。
4.学会运用等价转换思想
转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。
中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。
5.要学会抢得分点
一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到分数;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
中考的评分标准是按照题目所考查的知识点进行评分,解对知识点、抓住得分点就会得分。因此,对于数学中考压轴题尽可能解答“靠近”得分点,限度地发挥自己的水平,把中考数学压轴题变成高分踏脚石。
解中考数学压轴题,一要树立必胜的信心;二要具备扎实的基础知识和熟练的基本技能;三要掌握常用的解题策略。