下面是小编收集整理的中考数学备考压轴题方法指导(共含7篇),供大家参考借鉴,欢迎大家分享。同时,但愿您也能像本文投稿人“黑寡妇好”一样,积极向本站投稿分享好文章。
2020中考数学备考压轴题方法指导
1、学会运用数形结合思想。
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、学会运用函数与方程思想。
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、学会运用分类讨论的思想。
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
分类的原则:
(1)分类中的每一部分是相互独立的;
(2)一次分类按一个标准;
(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏
4、学会运用等价转换思想。
转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。
中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。
5、要学会抢得分点。
一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到分数;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
中考的评分标准是按照题目所考查的知识点进行评分,解对知识点、抓住得分点就会得分。因此,对于数学中考压轴题尽可能解答“靠近”得分点,最大限度地发挥自己的水平,把中考数学压轴题变成高分踏脚石。
提高中考数学计算的正确率
第一,要对计算引起足够的重视。很多同学总以为计算式题比分析应用题容易得多,对一些法则、定律等知识学得比较扎实,计算是件轻而易举的事情,因而在计算时或过于自信,或注意力不能集中,结果错误百出。其实,计算正确并不是一件很容易的事。例如计算一道像37×54这样简单的式题,要用到乘法、加法的运算法则,经过四次表内乘法和四次一位数加法才能完成。至于计算一道分数、小数四则混合运算式题,需要用到运算顺序、运算定律和四则运算的法则等大量的知识,经过数十次基本计算。在这个复杂的过程中,稍有粗心大意就会使全题计算错误。因此,计算时来不得半点马虎。
第二,要按照计算的一般顺序进行。首先,弄清题意,看看有没有简单方法、得数保留几位小数等特别要求;其次,观察题目特点,看看几步运算,有无简便算法;再次,确定运算顺序。在此基础上利用有关法则、定律进行计算。最后,要仔细检查,看有无错抄、漏抄、算错现象。
第三,要养成认真演算的好习惯。有些同学由于演算不认真而出现错误。数据写不清,辨认失误。打草稿时不能按照一定的顺序排列竖式,出现上下粘连,左右不分,再加上相同数位不对齐,既不便于检查,又极易看错数据。所以一定要养成有序排列竖式,认真书写数字的良好习惯。
第四,不能盲目追求高速度。计算又对又快是最理想的目标,但必须知道计算正确是前提条件,是最基本的要求,没有正确作基础的高速度是没有任何价值的。所以,宁愿计算的速度慢一些,也要保证计算正确,提高计算的正确率。
压轴题难度有约定:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色,以往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。由此可见,压轴题也并不可怕。
压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。方程与图形的综合的几何问题也是常见的综合方式,如去年中考的第25(3)题,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例。
动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起。在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。
分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。
如去年第25题的(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。
又如第25题,(1)、(2)两个小题是“递进关系”,(1)的结论由大题的已知条件证得,除已知外,(1)的结论又是解(2)所必要的条件之一。但(3)与(1)、(2)却是“平列关系”,(1)中,动点p在射线an上,而(3)根据已知,动点p在射线an上。它除了可能在射线an上,还可能在an的反向延长线上,或与点a重合。因此需要“分类讨论”。如果将(1)、(2)的结论作为条件解(3),将会使你坠入“陷阱”,不能自拔。
应对策略必须抓牢:学生害怕“压轴题”,恐怕与“题海战术”有关。中考前,盲目地多做难题是有害的。从外省市中考卷或从前几年各区模拟考卷中选题时,特别要留意它是否超出今年中考的考查范围。
有关部门已明确,拓展ii的教学内容不属于今年中考的范围,如代数中的“一元二次方程的根与系数的关系”、“用‘两根式’和‘顶点式’来求二次函数的解析式”、“二次函数的应用”等,几何中“圆的切线的判定和性质”、“四点共圆的性质和判定”等,因此这些内容不可能作为构造压轴题的“作料”。为了应对中考压轴题,教师可以根据实际,为学生精选一二十道,但不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。
盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,结果必然是得不偿失。事实证明:有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上,因此在最后总复习阶段,还是应当把功夫花在夯实基础、总结归纳上,老师要帮助学生打通思路,掌握方法,指导他们灵活运用知识。
有经验的老师常常把压轴题分解为若干个“小综合题”,并进行剪裁与组合,或把外省市的某些较难的“填空题”,升格为“简答题”,把“熟题”变式为“陌生题”,让学生练习,花的时间虽不多,但能取得较好的效果。我认为:综合题的解题能力不能靠一时一日的“拔苗助长”而要靠日积月累的培养和训练。在总复习阶段,对大部分学生而言,放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。
不要太受区考影响:从今年各区的统考试卷看,有的压轴题的综合度太大,以致命题者自己在“参考答案”中表达解题过程都要用去a4纸一页还多。为了应付中考压轴题,有的题拔高了对数学思想方法的考查要求,初中阶段只要求学生初步领会基本的数学思想方法。因此在中考中也只能在考查基础知识、基本技能和基本方法中有所渗透和体现而已,希望命题者手下留情,不要再打“擦边球”,搞“深挖洞”了。更希望今年中考数学卷能够控制住最后两题的难度,不要再“双压轴”了。
2020中考数学备考之压轴题十个方法
1、攻克压轴题要具备哪些素质?
答:(1)扎实的基础知识,(2)常见的数学模型,(3)灵活的解题技巧,(4)多样的解题思想.
2、如何塑造以上素质?
答:依托中考考纲,结合近压轴真题,精心筛选研究,强化五大类压轴题专题训练,提高素质塑造.
(1)基础:抛物线的顶点、对称轴、最值、圆的三大定理;
(2)模型:对称模型、相似模型、面积模型等;
(3)技巧:复杂问题简单化、运动问题静止化、一般问题特殊化;
(4)思想:函数思想、分类讨论思想、化归思想、数形结合思想.
中考日渐临近,在数学复习阶段,如何有效应对具有选拔功能的中考数学压轴题呢?下面为大家介绍中考数学压轴题十大应试技巧,供参加中考的初三同学参考。
压轴题要重分析
中考要取得高分,攻克最后两道综合题是关键。很多年来,中考都是以函数和几何图形的综合作为压轴题的主要形式,用到三角形、四边形、和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。方程式与图形的综合也是常见的综合方式。这类问题在外省市近年的中考试卷中也不乏其例。动态几何问题又是一种新题型,在图形的变换过程中,探究图形中某些不变的因素,把操作、观察、探求、计算和证明融合在一起。在这类问题中,往往把锐角三角比作为几何计算的一种工具。它的重要作用有可能在压轴题中初露头角。总之,应对压轴题,决不能靠猜题、押题。
1、以坐标系为桥梁,运用数形结合思想
纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、以直线或抛物线知识为载体,运用函数与方程思想
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、利用条件或结论的多变性,运用分类讨论的思想
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
4、综合多个知识点,运用等价转换思想
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。
5、构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
6、做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
7、紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
8、在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
9、分题得分:
中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
10、分段得分:
一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。
压轴题要量力而行
不少冲高分的考生,很可能会在最后一道压轴题上卡着,在快速完成了前面的题目的时候,考生没有去检查,而是将时间放在钻研压轴题上,这种做法“得不偿失”,建议考生在检查完前面的考题的时候才放手研究。
备考中考的学习方法
一、合理安排时间,不盲目。 “凡事预则立,不预则废。”每周较好能够简单拟定一个学习计划,较好能细致些,具体到每周一到五的晚上,作业完成之后还需要做哪些事情,周末的早、午、晚每个时间段做什么、学什么、复习什么。
二、重视所有学科,不偏科。 我们大家都是普通的孩子,除非自己对某个学科非常偏好,否则还是千万不要放弃任何一科。当然,做到“科科全优”是一件非常困难的事情,做到这一点非常不容易,那么对于自己比较喜欢、学起来比较顺手的学科,一定要将基础知识吃透,保证不丢分;对于自己感觉头痛的学科,要做好计划,重点投入,争取能在自己可控的范围内有比较大的提升。
也就是,千万不要轻易的放弃任何一门功课,因为放弃的这门功课就是自己的“短木板”。
三、听老师的话,做个“乖孩子”。 老师讲课的时候,一定要专心听讲,紧跟老师的思路,认真做好笔记。老师在课堂上讲解很多内容是他们多年教学实践的经验所得,在课本上根本找不到,但恰恰是这些内容,对培养我们的分析、判断和推理能力具有很大的帮助。
2020中考数学备考压轴题如何攻克
压轴题难度有约定:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;
第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,
第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。
控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色;
以往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式;
用到三角形、四边形、相似形和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。
总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。
分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。
应对策略必须抓牢:学生害怕“压轴题”,恐怕与“题海战术”有关。中考前,盲目地多做难题是有害的。
从外省市中考卷或从前几年各区模拟考卷中选题时,特别要留意它是否超出今年中考的考查范围。
有关部门已明确,拓展ii的教学内容不属于今年中考的范围,如代数中的“一元二次方程的根与系数的关系”、“用‘两根式’和‘顶点式’来求二次函数的解析式”、“二次函数的应用”等;
几何中“圆的切线的判定和性质”、“四点共圆的性质和判定”等,因此这些内容不可能作为构造压轴题的“作料”。
为了应对中考压轴题,教师可以根据实际,为学生精选一二十道,但不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。
盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,结果必然是得不偿失。
事实证明:有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上;
因此在最后总复习阶段,还是应当把功夫花在夯实基础、总结归纳上,老师要帮助学生打通思路,掌握方法,指导他们灵活运用知识。
有经验的老师常常把压轴题分解为若干个“小综合题”,并进行剪裁与组合,或把外省市的某些较难的“填空题”;
升格为“简答题”,把“熟题”变式为“陌生题”,让学生练习,花的时间虽不多,但能取得较好的效果。
我认为:综合题的解题能力不能靠一时一日的“拔苗助长”而要靠日积月累的培养和训练。
在总复习阶段,对大部分学生而言,放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。
不要太受区考影响:从今年各区的统考试卷看,有的压轴题的综合度太大,以致命题者自己在“参考答案”中表达解题过程都要用去a4纸一页还多。
为了应付中考压轴题,有的题拔高了对数学思想方法的考查要求,初中阶段只要求学生初步领会基本的数学思想方法。
因此在中考中也只能在考查基础知识、基本技能和基本方法中有所渗透和体现而已,希望命题者手下留情,不要再打“擦边球”;
搞“深挖洞”了。更希望今年中考数学卷能够控制住最后两题的难度,不要再“双压轴”了。
中考数学复习的六点原则
一、主体性原则
学生是教学活动中的主体对象,在复习教学中,应将学生摆在核心的地位,要充分调动学生的学习积极性和主动性,学生的主体地位应该贯穿于复习教学的始终。
二、方向性原则
要提高复习的质量,方向很重要。要认真研究《中考考试说明》,它可以使我们纵观复习教学全局,抓住重点,抓住关键,增强数学复习教学针对性和科学性,减少复习教学的随意性和盲目性,少走弯路,少做无用功。
三、针对性原则
“针对”可以瞄准目标,有的放矢,提高命中率。
1.复习教学一定要针对平时教学中学生易错、易混淆的知识进行讲解和练习,绝不能不分主次,眉毛胡子一把抓,应做到有的放矢。
2.针对近几年中考的热点、重点、难点进行专题训练,针对近几年中考的重要题型进行强化训练,如推断题、信息阅读题、实验题、开放性试题等。
四、变式性原则
“变”可以使人产生新奇,“变”可以提高人的识别能力。不就题论题,要适当扩散,善于借题发挥,将原题改头换面,从不同角度和侧面来引导学生分析,善于从一道题中引伸出其它的知识点,引导学生去联想,达到触类旁通的效果。
五、层次性原则
1.数学复习教学要根据学生已有的知识水平和接受能力分层要求,课堂教学推行分层教学。
2.数学复习教学还要做到阶段的层次性:
第一轮复习以课本的章节顺序进行。第二轮是分专题分块进行系统的复习。在复习时想方设法指导学生把零、散、乱的知识纳入自己的知识结构,注意知识点的横向和纵向的交织和搭桥,做到帮助和指导学生构筑知识框架、编织知识网络。第三轮复习主要是综合训练和模拟测试。通过训练进一步扩展学生的思维空间和提高学生解题能力,帮助学生查漏补缺。加强对学生考试心理和考试方法的指导,提高学生的应试能力。
六、联前带后的原则
在复习教学中要注意相关的知识的渗透和牵线搭桥,尽量使前后知识发生联系。在第一轮和第二轮复习时建议学生每周完成一份综合练习,以提高知识的复现率。
2020中考数学压轴题解题方法
一、学会运用数形结合思想
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关。
其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
二、学会运用函数与方程思想
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。
因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。
例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
三、学会运用分类讨论的思想
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。
有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
分类的原则:
(1)分类中的每一部分是相互独立的;
(2)一次分类按一个标准;
(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏。
四、学会运用等价转换思想
转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
转化的非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换。
而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。
中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。
因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数。
为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。
五、要学会抢得分点
一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到分数;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。
因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
中考的评分标准是按照题目所考查的知识点进行评分,解对知识点、抓住得分点就会得分。
因此,对于数学中考压轴题尽可能解答“靠近”得分点,最大限度地发挥自己的水平,把中考数学压轴题变成高分踏脚石。
初中数学期中考试复习
1. 听课前:做好预习
中学的知识量越来越大,要求孩子更多地进行理解、联系与思考,而非单纯死记硬背。如何为思考留出更多的空间呢?答案就是预习。
通过预习,可以发现新课中的难点,等老师讲到时格外注意;也可以掌握每节课的基本内容,快速跟上老师的思路,并积极回答老师的提问,从而保持积极的听课状态。
有些孩子说:“预习重要是重要,可作业都做不完,时间那么紧,哪有时间预习?”确实,现在的孩子学习够紧张了。但成绩好的学生与成绩中等的学生一个显著的区别就是前者做作业快,效率高。在相同的学习时间里,他们可以留出10-30分钟的时间预习。如果预习了,听课效果就好,作业做得就快,预习的时间自然就节省出来了。所以预习是形成良性循环的一种重要手段。
如果时间确实很紧,怎么办呢?
1.对于听课效果好的科目,少预习或不预习;对于听课效果差的科目,多预习。
2.单科课程的预习时间控制在8-15分钟,主要是把握整体知识内容,记录或记住对于个人的难点和课程重点,方便听课时在此处集中注意力。
3.实在没有时间预习,可以在一门课开始前的课间花2分钟快速浏览,从而快速进入听课状态。
2. 听课中:注重理解
有了好的预习做基础,只能保证我们的注意力集中在更有效的地方,便于我们更好地当堂消化知识。
有些学生上课拼命记笔记、抄板书,出发点是好的,但却没有理解老师讲的内容,课后需要花更多的时间去理解课堂上的内容,自然得不偿失。
该怎样记笔记呢?记笔记的“三原则”:
1.宁可笔记记不全,也要先听老师讲课的内容。
2.课本上讲述很详细的内容,不再做详细的笔记。
3.不抄老师的板书,而是重点记老师的分析思路与解题方法。
只要坚持这三个原则,孩子不仅能提高听课效果,还能获得宝贵的复习资料——课堂笔记。
3. 听课后:及时复习
有了前面的预习和认真听课,能保证孩子记忆和理解的深度。但遗忘是一种自然规律,对抗遗忘的利器就是科学地复习。因此在听完课后,还应及时复习以巩固当天所学的知识,并形成有计划性的复习习惯,从而将所学知识深深地印入脑海。记得制定艾宾浩斯遗忘曲线表格进行提醒哦!
如果家长将以上的预习、听课和复习的方法传授给孩子,孩子听课的效率就会更高,成绩自然会更优秀。
中考数学的压轴题解题方法
分类讨论题
分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:
1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
四个秘诀
切入点一:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
答题技巧
(一)定位准确防止“捡芝麻丢西瓜”
在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
(二)解数学压轴题做一问是一问
第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,字迹要工整,布局要合理;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。
压轴题技巧
纵观全国各地的中考数学试卷,数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题
是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:
①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;
②反比例函数,它所对应的图像是双曲线;
③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
(二)几何型综合题
先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:
在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
中考数学如何取得高分
中考数学不难,“记”是关键
中考数学并不难,主要是学生不愿意记。大脑是空的,做了无数的题目,可以说都没有起到作用。要求学生,对于自己不熟悉的知识,或者比较惧怕的题目,一定要下工夫强记。等学生记了10道题目,就会有这种题目不过如此的感觉。每个学生,脑中一定要有至少十份完整的数学测试卷子,也就是要强记。然后对这十份试卷结合自己的情况,进行对比分析,找出自己不熟练的部分。针对这些不熟练的部分,结合过去在学校做的专题,进行强化。
考试总是不对,经常“返回”
很多学生考试经常把自己会的题目做错,学生考试犯错类型很多,题读错、数看错、算错、抄错、表述错等。一定要让学生明白,只要“做”就会犯错。因此做任何动作,都要提醒自己我有犯错的可能。同时也要注意,每当自己做完一个动作,就要检查一下,也就是要经常“返回”,并在大脑中进行确认。
几何函数题目,不断“重复”
中考数学,学生经常“卡壳”的题目,按照题目类型分:选择题--函数题、几何计算题;填空题--函数题、图形题、几何计算题、找规律题;解答题--几何题、函数题、应用题、几何函数结合题,以及与这些知识有关的创新题。
通过上面的分析,大家就会发现,中考数学卡壳的知识集中在函数和几何。其实单就函数题,学生困难的也是函数图形中的几何信息。还有就是学生不会把几何图形信息转换成代数信息。这也是学生几何计算题(面积计算、边长计算和角度计算)比较困难,最后压轴题更是学生难啃的骨头。
对于中考数学想获得高分的学生,就必须攻下填空题的最后一道,同时要保证做过的题目绝对不能出错。这样才有时间和精力,全力攻自己卡壳的部分。
总之,摸透规律,合理规划,循序渐进,就一定会取得好的成绩!
近几年的中考,一些题型灵活、设计新颖、富有创意的压轴试题涌现出来,其中一类以平移、旋转、翻折等图形变换为解题思路的题目更是成为中考压轴大戏的主角。不过这些传说中的主角,并没有大家想象的那么神秘,只是我们需要找出这些压轴题目的切入点。
切入点一:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点二:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。