以下是小编帮大家整理的小学数学总复习讲解及训练题(共含8篇),欢迎大家收藏分享。同时,但愿您也能像本文投稿人“ANONYM”一样,积极向本站投稿分享好文章。
复习要点:
(一)数与代数
1、百分数的应用
百分数的应用是在六年级(上册)认识百分数的基础上编排的,是本册教材的重点内容之一。要联系实际解决一些求一个数比另一个数多(或少)百分之几的问题,解决较简单的有关纳税、利息、折扣的问题,解决已知一个数的百分之几是多少,求这个数的问题。通过这些内容的教学,能让学生进一步理解百分数的意义,学会在日常生活中应用百分数。
2、比例的有关知识
比例的知识有比例的意义、比例的基本性质和解比例。这些知识有助于理解图形的放大与缩小,能用来解决有关比例尺的问题。
3、成正比例和成反比例的量
教学正比例和反比例,着重理解正比例的意义和反比例的意义,让学生在现实的情境中作出相应的判断。根据《标准》的精神,教材适当加强了正比例关系图像的教学,不再安排解答正比例或反比例的应用题。
(二)空间与图形
1、圆柱和圆锥
圆柱与圆锥是本册教材的又一个重点内容,包括圆柱和圆锥的形状特征,圆柱的表面积及计算方法,圆柱和圆锥的体积及计算方法等知识。
2、图形的放大或缩小
图形的放大和缩小是小学数学新增加的教学内容,让学生初步了解图形可以按一定的比例发生大小变换。这个内容安排在第三单元里,结合比例的知识进行教学。
3、确定位置等内容
确定位置也是新增的教学内容,在初步认识方向的基础上,用“北偏东几度”“南偏西几度”的形式量化描述物体所在的具体方向,还要联系比例尺的知识,用“距离多少”的形式描述物体所在的位置。
知识点梳理
(一)数与代数
1、百分数的应用
(1)求一个数比另一个数多(少)百分之几的实际问题
①要点:一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数
②例题:六年级男生有180人,女生有160人,男生比女生多百分之几?女生比男生少百分只几?
男生比女生多的人数 ÷ 女生人数 = 百分之几 (180 - 160)÷ 160 = 12.5%
女生比男生少的人数 ÷ 男生人数 = 百分之几 (180 - 160)÷ 180 ≈ 11.1%
(2)纳税问题
①要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,
应纳税额 = 收入 × 税率
②例题:张强编写的书在出版后得到稿费1400元,稿费收入扣除800元后按14%的税率缴纳个人所得税,张强应该缴纳个人所得税多少元?
(1400 - 800)×14% = 84(元)
(3)利息问题
①要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。税前应得利息 = 本金 × 利率 × 时间
②例题:叔叔今年存入银行10万元,定期二年,年利率4.50% ,二年后到期,扣除利息税5% ,得到的利息能买一台6000元的电脑吗?
100000 × 4.5% × 2 × (1 - 5%) = 8550(元)
8550元 >6000元 得到的利息能买一台6000元的电脑
(4)有关折扣问题
①要点:几折就是十分之几,也就是百分之几十。商品现价 = 商品原价 × 折数。
②例题:一种衣服原价每件50元,现在打九折出售,每件售价多少元?
九折就是90%,50×90%=50×0.9=45(元)
例题:一种衣服现在打九折出售,现在售价是45元,每件的原价是多少元?
九折”就是90%,×90% = 45 =50
(5)列方程解稍复杂的百分数实际问题
①要点:解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同;解答“已知比一个数多(少)百分之几的数是多少,求这个数”的实际问题,可以根据数量间的相等关系列方程求解;或者根据除法的意义,直接解答。
②例题:果园里的梨树和苹果树共有360棵,其中的苹果树的棵树是梨树的棵树的20%。苹果树和梨树各有多少棵?
解:设梨树有x棵,苹果树有20%x棵
x + 20%x = 360 x = 300
20%x = 300 × 20% = 60
答:梨树有300棵,苹果树有60棵。
例题:某工厂六月份用煤60吨,六月份比五月份少用煤25%,五月份用煤多少吨?
解:设五月份用煤x吨
x - 25%x = 60 x = 80
答:五月份用煤80吨。
2、比例的有关知识
(1)比例的意义
①要点:表示两个比相等的式子叫做比例。
②例题:应用比例的意义判断6.4 : 4和9.6 : 6能否组成比例?
因为:6.4 : 4 = 6.4 ÷ 4 = 1.6 9.6 : 6 = 9.6 ÷ 6 = 1.6
所以:6.4 : 4 = 9.6 : 6
[小学数学总复习专题讲解及训练题]
数学总复习训练题及答案讲解
1、找出下列各题中的单位1。
①男生人数占女生人数60%。
②男生人数比女生人数多20%。
③女生人数比男生人数少25%。
④加工一批零件,已完成了80%。
⑤今年的猪肉单价比去年上涨了80%。
2、根据所给信息,说出数量间的相等关系
①一条路,已修了全长的60%
②一种彩电,现价比原价降低10%
③松树的棵数比柏树多13
3、看图列式。
用去30% ? 只
灰兔 比灰兔多25%
用去 ? 吨 还剩28吨 白兔
30只
4、列式计算:
1)一个数的75%比30的25%多1.5,求这个数。
2)一个数的25%比它的75%少30,求这个数。
二、解决问题:
1、对比练习
1)某工厂六月份用煤60吨,六月份比五月份少用煤25%,五月份用煤多少吨?
2)某工厂六月份用煤60吨,五月份比六月份多用煤25%,五月份用煤多少吨?
2、一张课桌比一把椅子贵10元,如果椅子的单价是课桌单价的60%,课桌和椅子的单价各是多少元?
3、果园里的梨树和苹果树共有360棵,其中的苹果树的棵树是梨树的棵树的20%。苹果树和梨树各有多少棵?
4、一套桌椅的价格是78元,其中椅子的价格是桌子的30%。桌子和椅子的价格各是多少元?
5、一条绳子,第一次剪去全长的25%,第二次剪去全长的35%,两次共剪去6米,这条绳子共长多少米?
6、一条绳子,第一次剪去全长的25%,第二次剪去全长的35%,第二次比第一次多剪了1米,这条绳子长多少米?
7、根据问题列式。
平山茶场去年原计划种茶20公顷,实际种茶25公顷,________?
①实际种茶的公顷数是原计划的百分之几?
②计划种茶的公顷数是实际的百分之几?
③实际种茶的公顷数比原计划多百分之几?
④计划种茶的公顷数比实际少百分之几?
8、根据算式填条件
果园里有苹果树200棵, ,梨树有多少棵?
①200÷20%
②200×20%
③200÷(1+20%)
④200÷(1-20%)
⑤200×(1-20%)
⑥200×(1+20%)
参考答案:
一、基本训练:
1、找出下列各题中的单位1。
①男生人数占女生人数60%。 把女生人数看作单位1
②男生人数比女生人数多20%。 把女生人数看作单位1
③女生人数比男生人数少25%。 把男生人数看作单位1
④加工一批零件,已完成了80%。 把一批零件看作单位1
⑤今年的猪肉单价比去年上涨了80%。把去年的猪肉单价看作单位1
2、根据所给信息,说出数量间的相等关系
①一条路,已修了全长的60% 全长 × 60% = 已修
②一种彩电,现价比原价降低10% 原价 × 10% = 降价
原价 ×(1-10%)= 现价
③松树的棵数比柏树多13 柏树 × 13 = 松树比柏树多的棵数
柏树 ×(1+13 )= 松树
3、看图列式。
用去30% ? 只
灰兔 比灰兔多25%
用去 ? 吨 还剩28吨 白兔
28 ÷(1 - 30%)×30% = 12(吨) 30只
x + 25%x = 30
x = 24
4、列式计算:
1)一个数的75%比30的25%多1.5,求这个数。75%x – 30 × 25% = 1.5
x = 12
2)一个数的25%比它的75%少30,求这个数。75%x – 25%x = 30
x = 60
二、解决问题:
1、对比练习
1)某工厂六月份用煤60吨,六月份比五月份少用煤25%,五月份用煤多少吨?
解:设五月份用煤x吨。 x – 25%x = 60
x = 80
2)某工厂六月份用煤60吨,五月份比六月份多用煤25%,五月份用煤多少吨?
60 + 60 × 25% = 75(吨)
2、一张课桌比一把椅子贵10元,如果椅子的单价是课桌单价的60%,课桌和椅子的单价各是多少元?
解:设课桌的单价是x元,椅子的单价是60%x元。
x – 60%x = 10
x = 25
25 × 60% = 15(元)或 25 – 10 = 15(元)
答:课桌的单价是25元,椅子的单价是15元。
3、果园里的梨树和苹果树共有360棵,其中的苹果树的棵树是梨树的棵树的20%。苹果树和梨树各有多少棵?
解:设梨树的棵树是x棵,苹果树的棵树是20%x棵。
x + 20%x = 360
x = 300
300 × 20% = 60(棵)或 360 – 300 = 60(棵)
答:梨树的棵树是300棵,苹果树的棵树是60棵。
4、一套桌椅的价格是78元,其中椅子的价格是桌子的30%。桌子和椅子的价格各是多少元?
解:设课桌的单价是x元,椅子的单价是30%x元。
x + 30%x = 78
x = 60
60 × 30% = 18(元)或 78 – 60 = 18(元)
答:课桌的单价是60元,椅子的单价是18元。
5、一条绳子,第一次剪去全长的25%,第二次剪去全长的35%,两次共剪去6米,这条绳子共长多少米?
解:设这条绳子共长x米。
25%x + 35%x = 6
x = 10
答:这条绳子共长10米。
6、一条绳子,第一次剪去全长的25%,第二次剪去全长的35%,第二次比第一次多剪了1米,这条绳子长多少米?
解:设这条绳子共长x米。
35%x - 25%x = 1
x = 10
答:这条绳子共长10米。
7、根据问题列式。
平山茶场去年原计划种茶20公顷,实际种茶25公顷,________?
①实际种茶的公顷数是原计划的百分之几? 25 ÷ 20 = 125%
②计划种茶的公顷数是实际的百分之几? 20 ÷ 25 = 80%
③实际种茶的公顷数比原计划多百分之几? (25 – 20) ÷ 20 = 25%
④计划种茶的'公顷数比实际少百分之几? (25 – 20) ÷ 25 = 20%
8、根据算式填条件
果园里有苹果树200棵, ,梨树有多少棵?
①200÷20% 苹果树是梨树的20%
②200×20% 梨树是苹果树的20%
③200÷(1+20%) 苹果树比梨树多20%
④200÷(1-20%) 苹果树比梨树少20%
⑤200×(1-20%) 梨树比苹果树少20%
⑥200×(1+20%) 梨树比苹果树多20%
数学总复习专题讲解及训练(四)
主要内容
圆柱和圆锥的认识、圆柱的表面积
学习目标
1、使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、侧面和高。
2、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
3、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。
4、使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
考点分析
1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。形成圆柱的面还有一个曲面,叫做圆柱的侧面。
圆柱两个底面之间的距离叫做圆柱的高。
2、圆锥的底面是个圆,圆锥的侧面是一个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。
3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
4、圆柱的侧面积 = 底面周长 × 高
5、圆柱的表面积 = 侧面积 + 底面积 × 2
典型例题
例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?
分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图形(圆)外,都有一个曲面。圆柱和圆锥的特征见下表。
圆 柱 圆 锥
底 面 两个底面完全相同,都是圆形。 一个底面,是圆形。
侧 面 曲面,沿高剪开,展开后是长方形。 曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。
高 两个底面之间的距离,有无数条。 顶点到底面圆心的距离,只有一条。
例2、求下面立体图形的底面周长和底面积。
半径3厘米 直径10米
分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3.14 × 3 × 2 = 18.84(厘米)
底面积 3.14 × 3 2 = 28.26(平方厘米)
圆锥:底面周长 3.14 × 10 = 31.4(米)
例3、判断:圆柱和圆锥都有无数条高。
错误解法:正确
分析与解:圆柱有无数条高,圆锥只有一条高。
例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。求它的侧面积。
分析与解:
高
底面周长
沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形。这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
解答: 3.14 × 5 × 12 = 188.4(平方厘米)
例5、(圆柱的表面积)
做一个圆柱形油桶,底面直径是0.6米,高是1米,至少需要多少平方米铁皮?(得数保留整数)
分析与解:求铁皮的面积,就是求圆柱形油桶的表面积,即两个底面积和一个侧面积的和。
解答:底面积:3.14 ×(0.6÷2)2 = 0.2826(平方米)
侧面积:3.14 × 0.6 × 1 = 1.884(平方米)
表面积:0.2826 × 2 + 1.884 = 2.4492(平方米)≈ 3(平方米)
例6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30厘米,高是50厘米。做这样一个水桶,至少需用铁皮6123平方厘米。
分析与解:题目中是做一个无盖的圆柱铁皮水桶,只有一个底面。在计算铁皮面积时只要用圆柱的侧面积加上一个底面的面积。
解答:底面积:3.14 ×(30÷2)2 = 706.5(平方厘米)
侧面积:3.14 × 30 × 50 = 4710(平方厘米)
表面积:706.5 + 4710 = 5416.5(平方厘米)
答:做这样一个水桶,至少需用铁皮5416.5平方厘米。
例7、(考点透视)一个圆柱的侧面积展开是一个边长15.7厘米的正方形。这个圆柱的表面积是多少平方厘米?
分析与解:圆柱的侧面积展开是一个正方形,即圆柱的高和底面周长都是15.7厘米。根据圆柱的底面周长可以算出底面积。
解答:底面半径:15.7 ÷ 3.14 ÷ 2 = 2.5(厘米)
底面积:3.14 × 2.5 2 = 19.625(平方厘米)
侧面积:15.7 × 15.7 = 246.49(平方厘米)
表面积:19.625 × 2 + 246.49 = 285.74(平方厘米)
答:这个圆柱的表面积是285.74平方厘米。
例8、(考点透视)一个圆柱形的游泳池,底面直径是10米,高是4米。在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?
分析与解:要求水泥的质量,先要求水泥的面积。在圆柱形的游泳池的四周和底部涂水泥,涂水泥的面积是一个底面积加上侧面积。
解答:
侧面积:3.14 × 10 × 4 = 125.6(平方米)
底面积:3.14 × (10 ÷ 2)2 = 78.5(平方米)
涂水泥的面积:125.6 + 78.5 = 204.1(平方米)
水泥的质量:204.1 ÷ 5 = 40.82(千克)
答:共需40.82千克水泥。
例9、(考点透视)把一个底面半径是2分米,长是9分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米?
分析与解:锯圆柱形木头,表面积增加的部分是若干个相同的底面积。锯成三段,要锯两次,每锯一次增加两个面,锯了两次增加了四个面。
3.14 × 2 2 × 4 = 50.24(平方分米)
数学总复习专题讲解及训练(四)
模拟试题
下面( )图形旋转会形成圆柱。
3、在下图中,以直线为轴旋转,可以得出圆锥的是( )。
4、求下列圆柱体的侧面积
1)底面半径是3厘米,高是4厘米。
2)底面直径是4厘米,高是5厘米。
3)底面周长是12.56厘米,高是4厘米。
5、求下列圆柱体的表面积
1)底面半径是4厘米,高是6厘米。
2)底面直径是6厘米,高是12厘米。
3)底面周长是25.12厘米,高是8厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)
7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
8、一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。如果每平方米要用水泥20千克,一共要用多少千克水泥?
参考答案:
上图上面从左到右依次是:底面、侧面积
中间从左到右依次是:高、高
下面从左到右依次是:底面、底面周长、底面周长
下面( A )图形旋转会形成圆柱。
3、在下图中,以直线为轴旋转,可以得出圆锥的是( ④ )。
4、求下列圆柱体的侧面积
1)底面半径是3厘米,高是4厘米。 3.14×3×2×4 = 75.36(厘米)
2)底面直径是4厘米,高是5厘米。 3.14×4×5 = 62.8(厘米)
3)底面周长是12.56厘米,高是4厘米。12.56×4 = 50.24(厘米)
5、求下列圆柱体的表面积
1)底面半径是4厘米,高是6厘米。
底面积:3.14 × 4 2 = 50.24(平方厘米)
侧面积:3.14 × 4 × 2 × 6 = 150.72(平方厘米)
表面积:50.24 × 2 + 150.72 = 251.2(平方厘米)
2)底面直径是6厘米,高是12厘米。
底面积:3.14 × (6÷2)2 = 28.26(平方厘米)
侧面积:3.14 × 6 × 12 = 226.08(平方厘米)
表面积:28.26 × 2 + 226.08 = 282.6(平方厘米)
3)底面周长是25.12厘米,高是8厘米。
底面积:25.12 ÷ 3.14 ÷ 2 = 4(厘米)
3.14 × 4 2 = 50.24(平方厘米)
侧面积:25.12 × 8 = 200.96(平方厘米)
表面积:50.24 × 2 + 200.96 = 301.44(平方厘米)
6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)
侧面积:3.14 × 3 × 15 = 141.3(平方分米)≈ 142(平方分米)
7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
解法一:选择①和④
底面积:3.14 × (3÷2)2 = 7.065(平方分米)
侧面积:9.42 × 2 = 18.84(平方分米)
表面积:7.065 × 2 + 18.84 = 32.97(平方分米)
解法二:选择②和③
底面积:3.14 × (4÷2)2 = 12.56(平方分米)
侧面积:12.56 × 5 = 62.8(平方分米)
表面积:12.56 × 2 + 62.8 = 87.92(平方分米)
8、一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。如果每平方米要用水泥20千克,一共要用多少千克水泥?
底面积:25.12 ÷ 3.14 ÷ 2 = 4(米)
3.14 × 4 2 = 50.24(平方米)
侧面积:25.12 × 4 = 100.48(平方米)
表面积:50.24 + 100.48 = 150.72(平方米)
水泥质量: 150.72 × 20 = 3014.4千克
数学总复习专题讲解及训练(五)
主要内容
圆柱和圆锥的体积
学习目标
1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式正确计算圆柱体积或圆柱形容器的容积以及解决简单的实际问题。
2、通过转化的思想,在实验的基础上使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积以及解决简单的实际问题。
3、通过圆柱、圆锥体积计算公式的推导、运用的过程,培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力,并体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
考点分析
1、圆柱所占空间的大小是圆柱的体积,圆柱的体积(容积) = 底面积 × 高,用含有字母的式子表示是:V = sh 或者V = лr2h 。
2、圆锥所占空间的大小是圆锥的体积,圆锥的体积是与它等底等高的圆柱体积的三分之一。即V = sh 或者V = лr2h 。
典型例题
例1、(计算圆柱的体积)一个圆柱,底面周长9.42分米,高20厘米。求它的体积?
分析与解:求圆柱的体积,一般根据V = sh或者 V = лr2h ,题中没有给出底面积,又没有给出底面半径,所以要先求出底面半径,同时题目中单位名称不统一,要注意化单位,可以统一为分米,也可以统一为厘米。
20厘米 = 2分米
底面半径:9.42 ÷ 3.14 ÷ 2 = 1.5(分米)
体积: 3.14 × 1.52× 2 = 14.13(立方分米)
例2、(计算圆柱的容积)
一个圆柱形的粮囤,从里面量得底面周长是9.42米,高是2米,每立方米稻谷约重545千克,这个粮囤约装稻谷多少千克?(得数保留整千克数)。
分析与解:先通过底面周长求出底面半径,再求出底面积,进而求出容积。再去求能装稻谷多少千克。
3.14 ×(9.42÷3.14÷2)2 × 2 × 545 = 7700.85 ≈ 7701(千克)
例3、(计算和圆柱的体积相关的实际问题)
有一个高为6.28分米的圆柱形机件,它的侧面展开正好是一个正方形,求这个机件的体积?
分析与解:圆柱侧面展开是个正方形,说明圆柱的底面周长和高相等。先通过底面周长求出底面积,再求体积。
3.14 ×(6.28÷3.14÷2)2 × 6.28 =19.7192(立方分米)
例4、(综合题)一种抽水机出水管的直径是1分米,管口的水流速度是每秒2米,1分钟能抽水多少立方米?
分析与解:每秒流出来的水的形状,可以看成是一个底面直径1分米,高2米的圆柱,这个圆柱的体积就是1秒种流出的水的体积,再乘60得出1分钟抽水的体积。
1分米 = 0.1米
3.14 ×(0.1÷2)2 × 2 = 0.0157(立方米)
0.0157 × 60 =0.942(立方米)
答:1分钟能抽水0.942立方米。
例5、(综合题)把一根长4米的圆柱形钢材截成两段,表面积比原来增加31.4平方厘米。这根钢材的体积是多少立方厘米?
分析与解:长4米是圆柱的高,要求圆柱的体积还要知道底面积。把圆柱截成两段,增加了两个底面的面积,即增加31.4平方厘米,可以求出圆柱的底面积。
4米 = 400厘米
31.4 ÷ 2 = 15.7(平方厘米)
15.7 × 400 = 6280(立方厘米)
答:这根钢材的体积是6280立方厘米。
例6、(计算圆锥的体积)一个圆锥的底面半径是6厘米,高是4厘米,求它的体积。
分析与解:已知圆锥的底面半径、直径、周长时,都要先求出底面积,然后根据V = sh来计算圆锥的体积。在计算时,千万不要忘记除以3或乘 。
× 3.14 ×6 2 × 4 = 150.72(立方厘米)
例7、(解决和圆锥体积计算相关的实际问题)
一个圆锥形沙堆高1.5米,底面周长是18.84米,每立方米沙约重1.7吨,这堆沙约重多少吨?
分析与解:要求沙堆的质量,先要求沙堆的体积。沙堆是圆锥形,已知它的高和底面周长,根据圆锥体积的计算公式,先求圆锥的底面积。
底面半径:18.84÷3.14÷2 = 3(米)
体积: × 3.14 ×3 2 × 1.5 = 14.13(立方米)
沙堆的质量:14.13 × 1.7 = 24.021(吨)
答:这堆沙约重24.021吨。
例8、判断:(1)圆锥的体积是圆柱体积的 。………… ( )
2)如果一个圆锥的体积是一个圆柱体积的 ,那么它们等底等高。… ( )
分析与解:(1)一个圆锥的体积是和它等底等高的圆柱体积的 ,这一结论是将它的体积和它等底等高的圆柱进行比较得到的。
2)等底等高的圆锥的体积是圆柱体积的 ;但圆锥的体积是圆柱体积的 ,并不意味着它们等底等高。
例9、(综合题)一个圆锥的底面半径是3厘米,体积是75.36立方厘米,高是多少厘米?
分析与解:要求圆锥的高,根据圆锥体积计算的公式,可以先用体积乘3,求出和它等底等高的圆柱的体积,再除以底面积,即高 = 体积 × 3 ÷ 底面积,注意不能用圆锥的体积直接除以底面积。也可以根据圆锥体积计算的公式列方程解答。
方法1:
底面积:3.14 ×3 2 = 28.26(平方厘米)
高:75.36 × 3 ÷ 28.26 = 8(厘米)
方法2:设高是ⅹ厘米。
× 3.14 ×3 2 × ⅹ = 75.36
9.42ⅹ = 75.36 …… 先算左边的 ×3.14×3 2
例10、(综合题)把一个棱长为12厘米的正方体木块加工成一个最大的圆锥,圆锥的体积是多少立方厘米?削去的部分是多少立方厘米?
分析与解:将正方体木块加工成一个最大的圆锥,圆锥的底面直径和高都等于正方体的棱长。
正方体的体积:12 × 12 ×12 = 1728(立方厘米)
圆锥的体积: ×3.14 ×(12÷2)2 × 12 = 452.16(立方厘米)
削去部分的体积:1728 – 452.16 = 1275.84(立方厘米)
答:圆锥的体积是452.16立方厘米,削去的部分是1275.84立方厘米
小学数学一年级下册总复习综合训练题
一、口算。
40+30= 52-30= 70+7= 77-70=
50-8= 97-5= 23+60= 52+7=
68+20= 49-7= 63-21= 43+22=
21-9= 34+8= 56-18= 80-70=
64+5= 85+6= 46+4= 99-77=
二、填空。
1.
58
62
65
91
88
2.一个数十位上是7,个位上是3,这个数是( )。一个数个位上是1,十位上是4,这个数是( )。
3.七十九里面有( )个十和( )个一。五个一和六个十是( )。七个十是( )。 八个一( )。
4.写出下面各数。
五十八 七十 一百
( ) ( ) ( )
5.40比39多( ),72比27多( )。
38比42少( ),45比54少( )。
6.一个加数是47,另一个加数是29,和是( )。减数是76,被减数是82,差是( )。
7.5角=( )分 80分=( )角
2角7分=( )分 43分=( )角( )分
8.6角+4角=( )元 1角-4分=( )分
7角-5角=( )角 1元-6角=( )角
9.在○里填上“>”、“<”或“=”
32+5○38 75+8○93 42-5○37 55-8○53
10.下图中:
长方体( )个 正方体( )个
圆柱体( )个 球( )个
三、判断正误。正确画“√”,错误画“×”。
1.4个十写作“4十”.( )
2.从小到大一个一个地数59后面是70. ( )
3.最小的两位数是11. ( )
4.最大的两位数是90. ( )
5.83里面有8个十和3个1. ( )
小学数学毕业总复习应用题训练
1、甲、乙两框苹果重量之比是4:5,如果从乙中取6千克放入甲,则两框重量之比是5:4,两框共有多少千克?
假设两框共有X千克
(4/9X+6):(5/9X-6)=5:4
2、一个数,如果把它的小数部分扩大3倍就是4.1,如果把它的小数部分扩大9倍便是8.3,这个数是多少?
(1)整数部分+小数部分的3倍=4.1
(2)整数部分+小数部分的9倍=8.3
2式减去1式
(整数部分+小数部分的9倍)-(整数部分+小数部分的3倍)=8.3-4.1
小数部分的6倍=8.3-4.1
小数部分=0.7
整数部分:2
这个数是:2.7
3、有一块铜锌合金,铜与锌重量的比是2:3,现在加入6克锌,共得新合金36克,求新合金内铜与锌重量的比。
铜:(36-6)÷(3+2)×3=18
锌:(36-6)÷(3+2)×2=12
新合金内锌:12+6=18
铜:锌=18:18=1:1
4.操场上有一圆形花坛,在花坛四周每隔2dm摆放一盆花,一共摆了157盆。这个花坛的半径有多少米?
圆形花坛的周长:
2×157=314(分米)
圆形花坛的半径:
314÷3.14÷2=50(分米)
5.运动场的跑道中间是一个长100米,宽40米的长方形,两头是半圆形。为了平整场地,拉来8车黄沙,每车7立方米,要尽量均匀铺在跑道内,你认为应该怎么分配呢?(π取3.14)
运动场的面积:
长方形+圆100×40+3.14×(40÷2)×(40÷2)=5256(平方米)
拉来多少黄沙
7×8=56(立方米)
黄沙均匀铺在跑道内的厚度
56÷5256≈0.01(米)
6.一个等腰三角形的一个底角度数是顶角的二分之一,这个三角形的顶角是多少度?
把一个底角度数看作1份
顶角就是2份
1份:
180÷(1+1+2)=45
顶角就是2份
45×2=90
7.一个圆的周长和直径相加的合适20.7米,这个圆的`面积是多少平方米?
周长=3.14×直径
圆的周长和直径相加的和是20.7米
也就是:
3.14×直径+直径=20.7米
直径×(3.14+1)=20.7
直径:20.7÷(3.14+1)=5
半径:5÷2=2.5
面积:3.14×2.5×2.5
8.小明寒假共放了45天,其中三分之一的时间在乡下姥姥家,九分之二的时间外出旅游,剩余的时间休息,学习,请你提出几个问题,并请你提出三个问题,并列式解答。
1:还剩下几分之几的时间休息
1-1/3-2/9
2:还剩下多少时间休息
45÷(1-1/3-2/9)
3:小明寒假外出旅游是多少天
45×2/9
9.寒假开始,红领巾志愿者参加社区劳动。有50%的同学扫楼道,有五分之二的同学运垃圾,在这些同学之中有7人两项都做,占志愿者总数的14%。志愿者共几人?除了扫楼道的和运垃圾的学生外,其他人擦窗户,擦窗户的几人?
在这些同学之中有7人两项都做,占志愿者总数的14%
志愿者总数的14%是7人
志愿者总数:7÷14%=50
志愿者有50%的同学扫楼道
扫楼道同学:50×50%=25
志愿者有五分之二的同学运垃圾
运垃圾同学:50×2/5=20
除了扫楼道的和运垃圾的学生外,其他人擦窗户,擦窗户的几人?
50-25-20+7=12
1.一条路,已修了全长的五分之三,还剩120千米没修.这条路全部有多少千米?
120÷(1-3/5)=300
2.小红看一本小说,第一天看了全书的五分之一,第二天看了全书的四分之一,还剩121页没有看,这本小说共多少页?
121÷(1-1/5-1/4)=220
总复习教学工作不仅是帮助学生梳理知识,更是培养学生学习习惯的一个重要阶段,尤其要培养学生认真做题的良好习惯。通过这段时间的复习,我有以下体会:
首先是审题要严谨。数学的逻辑性强,不能由于审题时的一点差错,而使结果出错。对题目意思理解上的一个小小的疏忽,直接影响学生正确解答问题的最后结果。因此培养学生认真审题的良好习惯显的非常重要。其次是要教会学生解题的思路和方法,解决实际问题的题目在解答后还要考虑答案的合理性。最后要做到认真检查验算。在解题完成之后的复查,找出错误之处尤其重要,也是一件考验学生能力的`事情,要把求得的答案当作一个条件代入题目中进行检验,这就需要老师平时通过一定的训练使之成为一种习惯,而平时学生这点往往做不到,好象也没有这个习惯,所以老师平时必须加强这个方面习惯与能力的培养。让他养成检查的好习惯。
好的学习习惯不是一下子形成的,从中需要我们老师在平时有意识地加强这些方面的训练,老师不仅要关注教了什么,更要关注学生学了什么,学生是如何学的,教给学生好的学习方法,培养学生好的学习习惯,才能提高学生学习的能力。
小学数学总复习策略(北师大版)
小学数学总复习策略(北师大版)小学数学总复习是教师引导学生对所学习过的知识材料进行再学习的过程,在这个学习过程中,要引导学生把所学的知识进行系统归纳和总结,弥补学习过程中的缺漏,使六年来所学的数学知识条理化、系统化,从而更好地掌握各部分知识的重点和关键。“而小学数学总复习面广量大,内容较多,时间紧迫,任务艰巨,又极易引起两极分化。
复习中我们又不能按部就班地照着书本编排重讲知识或每课练,免得学生觉得枯燥无味,消沉厌烦,费时费力效果又低。为了使复习课更贴近学生的实际,从而可以用较少的时间达到较好的复习效果。
一、在充分了解学情的基础上制订切实可行的复习计划
小学数学总复习是学生完成整数和小数、简易方程、数的整除、分数和百分数、计量单位和几何初步知识、比和比例、简单统计表、应用题八大部分后进行的,前后知识情况间隔达六年,如果我们对学生掌握知识状况不能全面了解,就不能做到对症下药,如何才能真正了解学生情况呢?我们是这样做的:
1、复习前探测,找准存在的问题。即以教学大纲为依据,针对于每一部分知识中的基础、重点和难点内容,在复习每一板块之前,选择六、七个中等难度的题目作为家庭作业,要求学生在自己复习的基础上独立认真的完成。我们通过批改发现学生中存在的问题,同时结合平时作业情况和各单元测试情况,照准学生在该板块学习中的难点、疑点及问题所在。找准各知识点容易出错的原因。老师复习时就能做到心中有数,对症下药。
2、归纳、整理、理清复习结构网络。在全面了解学生的学习情况后,我们教师反复阅读大纲和教材,弄清重点章节,以及每一章节的复习重点。制订复习计划时,要切实把握复习的具体内容,贯彻落实大纲的精神,使复习具有针对性、目的性和可行性。找准重点、难点,增强复习的针对性。着手编写复习课教学计划时,重点理清基本概念、基础计算、基本操作、基本应用方面的知识结构网络,建议以三步进行
(1)根据教材的几大板块安排进行复习
(2)再分概念、计算、应用题三大块进行训练;
(3)最后适当进行综合训练。切实保证复习效果。
二、分类整理,梳理、强化复习的系统性
1、复习时应建立了基础知识结构网络。
让学生重新去品味基础知识、归纳要点,理清每部分知识的重点、难点,全方位出发,促提高。作为复习课的一个重要特点就是在系统原理的指导下,引导学生对所学的知识进行系统的整理,把分散的知识综合成一个整体,使之形成一个较完整的知识体系。从而提高学生对知识的掌握水平。
如分数的意义和性质一章,可以整理成表,使学生对于本章内容从分数的意义到分数与除法的关系、分数的'大小比较,分数的分类与互化,以及分数的基本性质与应用,有一个系统的了解,有利于知识的系统化和对其内在联系的把握。再如,复习分数的基本性质,可把除法的商不变的规律、比的基本性质与之结合起来,使学生能够融会贯通。做到梳理――训练――拓展有序发展,真正提高复习的效果。
2、辨析比较,区分弄清易混概念。
对于易混淆的概念,首先要抓住意义方面的比较。如:质数和奇数的比较;合数和偶数的比较;质数和质因数;比和比例等。对易混概念的分析,能够帮助学生全面把握概念的本质,避免不同概念的干扰。对易混的方法也应该进行比较,以明确解题方法。如求比值和化简比。
3、注意知识的内在联系 在整个复习过程中,不要只顾单一的知识总复习,更重要的是把前后知识联系起来,综合运用。有些题目,可以从不同的角度去分析,得到不同的解题方法。如解应用题时,同一道题,可以看成是工程问题,也可以看成是归一问题,还可以看成是比,一题多解可以培养学生分析问题的能力,灵活解题的能力。不同的分析思路,列式不同,结果相同。收到殊途同归的效果。同时也给其他的学生以启迪,开阔解题思路。
有些应用题,虽然题目的形式不同,但它们的解题方法是一样的。如工程问题和相遇问题中的部分习题,题目的类型不同,但解题的思路和分析方法是一样的。复习时,要引导学生从不同的角度去思考,引导学生对各类习题进行归类,这样才能使所学的知识融会贯通,提高解题的灵活性。
4、把握住复习中的重难点
我认为,小学毕业复习中的最难点是应用题,在复习中特别要多下工夫。对应用题的复习,我觉得要注意以下两个方面的问题:
(1)、分类复习
小学的应用题,按知识性分类,可以分为一般应用题、平均数应用题、行程问题、工程问题等;按解题方法可以分为简单应用题、复合应用题,比例知识解应用题、列方程解应用题等几类。复习时按照一定的标准,根据实际情况进行合理的分类复习,弄清各种应用题的基本解题方法。
分类复习完后,还要进行各种应用题的整合训练,练习用不同的方法解应用题,使这部分知识彻底系统化。
(2)、针对本班的实际情况,对学生掌握得不好的一类或几类应用题加大力度训练,精心设计练习题,注意内容的层次,循序渐进,由易到难,把握好”会“、”熟“、”活“三个阶段,最后形成较强 的解题能力。
小学数学总复习的基本任务,就是要让学生进一步熟悉、巩固和深化小学数学最基础、最核心的知识点,以便能由此出发进一步了解这些知识点间的关联。因而数学总复习课首先要激活相关内容的知识点。教师要注意调动学生的主动性,提供思维空间,注意组织学生通过思考、交流,再现、激活以往分散学习的知识点。
对于有些内容的复习,可以以具有一定思考空间的问题,引导学生回忆、交流已学知识点。例如,在复习数的运算时,可以引导学生回忆、交流:在小学阶段你学过哪些四则运算?你能举例说一说这些运算的方法吗?能结合你的例子说说为什么要这样算吗?这样的问题,有利于学生主动、积极地回忆、提取相关内容,加深理解,促进学生的思考与互动交流。
对于有些内容的复习,还可以设置一些问题情境,唤醒学生的记忆,再现知识点。例如,在复习“可能性”的知识时,可以设置这样的情境:用两个透明袋,一个袋里全部放红球,一个袋里放绿球和黄球(两种球个数可以不同),让学生思考:如果从不同的袋里任意摸一个球,你对结果有什么想法?从而回忆在一定条件下事件发生的结果及相关内容,激活“可能性”的知识。
学生学习、理解与掌握数学知识,就是认识、理解知识本质及相互间的联系,形成良好的数学认知结构。数学复习课突出“知识链”的建构与完善,就能在原来学习的基础上,帮助学生进一步调整和明晰数学认知结构,优化数学知识在头脑里的组织方式,从而清晰地把握知识间的内在联系,有条理地储存和记忆数学知识,并达到对知识理解的融会贯通。因此,数学复习课要在激活、再现相关知识点的基础上,引导学生比较、整理、归纳,建构知识间的联系,使知识的理解更精当,知识条理更清晰,形成知识的网状结构。
组织学生沟通整理,首先要依据数学知识结构合理地划分为若干个知识块,按块状知识有序地组织复习;然后再根据知识间联系的紧密程度,把块状知识里若干个知识点划分为一个小块,作为一个课时内容。这样按内在联系有系统地安排复习内容,就便于在激活知识点的基础上组织学生梳理知识,形成“知识链”。
沟通整理知识间的联系,可以引导学生立足知识点,结合知识产生、理解的过程,主动思考和整理、归纳。例如,复习围成的平面图形的认识,可以在再现学过的平面图形的基础上,引导学生小组讨论、合作整理、系统归纳:这些围成的平面图形各有哪些特点呢?你能根据它们的特点把这些图形分类整理、并找出相互间的区别和联系吗?可以用文字或画图表示出来。学生通过交流呈现了知识的联系:
有些内容也可以引导学生结合各知识点的再现,同步建构知识间的内在联系,形成知识体系。例如,“可能性”知识的复习,可以在借助情境交流想法的过程中,先回忆事件发生结果存在两种情况:确定的和不确定的,其中不确定事件由于条件的不同,发生的可能性或相等,或有大小;接着明确根据可能性的大小,可以判断游戏规则的公平性,并认识可能性大小可以根据条件用分数或百分数表示出来。
★ 小学数学总复习讲解及训练(六) 教案教学设计(人教新课标六年级总复习)
★ 小学数学总复习讲解及训练(三) 教案教学设计(人教新课标六年级总复习)