比例的应用 教案教学设计(人教新课标六年级上册)

| 收藏本文 下载本文 作者:七月就要奇迹

下面是小编整理的比例的应用 教案教学设计(人教新课标六年级上册)(共含20篇),欢迎大家阅读借鉴,并有积极分享。同时,但愿您也能像本文投稿人“七月就要奇迹”一样,积极向本站投稿分享好文章。

比例的应用 教案教学设计(人教新课标六年级上册)

篇1:比例的应用 教案教学设计(人教新课标六年级上册)

1.

教学内容:比例尺

教学目标:

1. 使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。

2. 认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。

3. 理解比例尺的书写特征。

教学重点:比例尺的意义。

教学难点:将线段比例尺改写成数值比例尺。

教学过程:

一揭示课题

1. 出示地图。(挂图)

(1) 学生观察地图,找到图中标注的比例尺。

(2) 教师说明比例尺的作用。

师:在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。这个比就是我们要学习的内容--比例尺。

2. 板书课题:比例尺。

二探索新知

1. 什么叫做比例尺?

师:一幅地图的图上距离的比,叫做这幅图的比例尺。

板书:图上距离:实际距离=比例尺

2. 数值比例尺。

(1) 出示课文插图。新课标第一网

(2) 找到“比例尺1:100000000”。

(3) 认识数值比例尺。

① 1:100000000是数值比例尺。

② 1:100000000表示图上距离1厘米相当于实际距离100000000厘米。(并做相应板书。

③ 因为1千米=1000米

1米=100厘米

所以1厘米:100000000厘米

=1厘米:1000千米

1:10000000也可以表示图上距离1厘米相当于实际距离1000千米。

④ 1:100000000有时也写成分数形式 。

3. 线段比例尺。

(1) 出示课文插图。

(2) 找到“比例尺                      ”。

(3) 认识线段比例尺。

①说明:“比例尺                    ”是线段比例尺。

②“比例尺                     ”表示图上距离1厘米相当于实际距离50千米。

(写出相应板书)

(4) 改写成数值比例尺。(例1)

① 你会把这个线段比例尺改成数值比例尺吗?

② 学生尝试改写,并与同学交流,最后师生共同改写。

板书:图上距离:实际距离

=1㎝:5000000㎝

=1:5000000

4. 放大比例尺。

在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数后,再画在图纸上。

(1) 出示课文中的“图纸”。

(2) 找到“比例尺2:1”。

(3) 比例尺2:1表示图上距离2厘米相应于实际距离1厘米。

板书:比例尺2      :  1

图上距离   实际距离

(4) 这个比例尺与上面的比例尺有什么相同点,什么不同点。

相同点:都表示图上距离与实际距离的比。

不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。

5. 比例尺书写特征。

(1) 观察:比例尺1:100000000

比例尺1:5000000

比例尺2:1

(2) 看一看,比例尺书写形式有什么特征。

为了计算方便,通常把比例尺写成前项或后项是1的比。

三巩固练习

1. 做一做。

过程要求:

(1) 学生独立完成。(要求写出数值比例尺)

(2) 同学之间互相交流。

(3) 汇报交流结果。

2. 完成课文练习八第1~3题。

教学内容:解决问题

教学目标:

1. 使学生进一步理解比例尺的意义,掌握利用比例尺求图上距离和实际距离的方法。

2. 使学生能综合运用比例尺知识,解决有关问题,提高学生解决问题的能力。

教学重点:求图上距离和实际距离。

教学难点:求实际距离。

教学过程:

一旧知铺垫

1. 什么叫做比例尺?

板书:图上距离:实际距离=比例尺

2.说一说下列各比例尺表示的具体意义。

(1)比例尺1:45000

(2)比例尺80:1

(3)比例尺

二探索新知

1. 教学例2。

(1) 出示课文例题及插图。

(2) 说一说从中你得到哪些信息。

已知条件:

① 1号线的图上长度是10㎝;

② 条幅地图的比例尺1:500000。

所求问题:1号线的实际长度是多少?

(3) 你认为可以用什么方法解决问题?

① 学生尝试解决问题。

② 教师巡视课堂,了解解答情况,并对个别学生进行指导,帮助他们找到解决问题的方法。

③ 汇报解答情况。

方程解:

解:设地铁1号线的实际长度是X厘米。

根据

X=10×500000(问:根据什么?)

根据比例的基本性质。

X=5000000

5000000㎝=50㎞

答:略

算术解:

根据 ,得出:实际距离

10÷

=10×500000

=5000000(㎝)

5000000㎝=50㎞

答:略

2. 教学例3。

(1) 出示例题,学生了解题目要求。

(2) 讨论:你想怎样画?

通过讨论,使学生进一步理解在绘制平面图的时候,需要把实际距离按一定的比缩小,再画在图纸上。这时,就要确定;图上距离和相对应的实际距离的比。

① 确定比例尺;

② 求出图上的距离;

③ 画出操场的平面图。

(3) 小组同学合作,解决问题。

学生练习活动时,教师巡视课堂,了解学生解决问题的情况,记录存在的问题。

(4) 汇报,交流。

① 小组派代表说明你的方案和结果。

② 选择合适的方案,展示结果,并说明解决方案

如:选择比例尺1:1000画图。

图上的长=80× =0.08m

0.08m=8㎝

图上的宽=60× =0.06m

0.06m=6㎝

操场平面图:

三巩固练习

1.完成课文“”做一做”

2. 完成课文练习八第4~10题。

教学内容:图形的放大与缩小

教学目标:

1. 结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。

能按一定的比,将一些简单图形进行放大或缩小。

教学重点:图形的放大与缩小。

教学难点:按一定的比把图形放大或缩小。

教学过程:

一揭示课题

1. 你见过下面这些现象吗?

出示课文插图。

问:这些现象中,哪些是把物体放大?哪些是把物体缩小?

图1把物体缩小。

图2、3、4把物体放大。

2. 今天,我们就一起来学习这一内容。

板书课题:物体的放大与缩小。

二、探索新知

1.教学例4。

(1)出示图形

要求:按2:1画出这个图形放大后的图形。

①“按2:1放大”是什么意思?

先让学生说出自己的理解,然后教师说明。

师:按2:1放大,也就是各边放大到原来的2倍。

②说一说放大后图形的边长。

原来的边长是3倍,放大后图形的边长是6倍。

③ 画一画。

学生在方格纸上画一画,然后展示学生的作品。

(3) 出示图形。

要求:按2:1画出这个图形放大后的图形。

过程要求:

① 学生说一说“按2:1放大”的意思。

交流后使学生懂得按2:1放大,就是把长和宽都放大到原来的2倍。

② 学生各自尝试画图。

③ 展示学生的作品。

(4) 出示图形。

要求:按2:1画出这个图形放大后的图形。

过程要求:

①“接2:1放大”在这里是什么意思?

让学生交流,说出各自的理解,然后教师引导学生理解这个2:1的意思。即把三角形的两条直角边都放大到原来的2倍。

②学生尝试画图。

③展示作品。

④ 想一想:斜边是否也变为原来的2倍?

学生若有疑问,可以通过实验(如量一量,剪一剪,比一比等)进行验证。

(5) 讨论。

放大后的图形与原来的图形相比,有什么相同的地方?有什么不同的地方?

过程要求:

① 分小组讨论、交流。

② 汇报讨论结果。

要点:形状相同,大小不一样。

3. 练一练。

如果把放大后的三个图形的各边按1:3缩小,图形又发生了什么变化,画画看。

(1) 按1:3缩小是什么意思?

通过交流,使学生明确按1:3缩小就是各边长度缩小到原来的 。

(2) 学生尝试画一画。

(3) 实物投影展示学生的作品。

(4) 想一想。

缩小后的图形与原来的图形相比,有什么相同的地方?有什么不同的地方?

4. 课堂小结。

图形的各边按相同的比放大或缩小后,所得的图形与原来有什么相同的地方?有什么不同的地方?

三巩固练习

1. 完成“做一做”。

2. 完成课文练习九第1、2题。

教学内容:用比例解决问题。

教学目标:使学生掌握运用比例解决问题的方法,能正确运用正、反比例知识解决有关问题,发展学生的应用意识和实践能力。

重难点、关键:

重点:运用正、反比例解决实际问题。

难点:正确判断两种量成什么比例。

关键:弄清题中两种量的变化情况。

教学方法:尝试教学法、引导发现法等。

教学过程:

一、旧知铺垫

1、下面各题两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从甲地到乙地,行驶的速度和时间。

(3)每块地砖的面积一定,所需地砖的块数和所铺面积。

(4)书的总本数一定,每包的本数和包装的包数。

过程要求:

①说一说两种量的变化情况。

②判断成什么比例。

③写出关系式。

如:

2、根据题意用等式表示。

(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

70×4=56×5

二、探索新知

1、教学例5

(1)出示课文情境图,描述例题内容。

板书:    8吨水                       10吨水

水费12.8元                 水费?元

(2)你想用什么方法解决问题?

过程要求:

①学生独立思考,寻找解决问题的方式。

②教师巡视课堂,了解学生解答情况,并引导学生运用比例解决问题。

③ 汇报解决问题的结果。

引导提问:

A. 题中哪两种量是变化的量?说说变化情况。

B. 题中哪一种量一定?哪两种量成什么比例?

C. 用关系式表示应该怎样写?

④ 板书:解:设李奶奶家上个月的水费是X元

8X=12.8×10

X=

X=16       答:略

(3)与算术解比较。

①检验答案是否一样。

②比较算理。算述解答时,关键看什么不变?

板书:先算第吨水多少元?

12.8÷8=1.6(元)

每吨水价不变,再算10吨多少元。

1.6×10=16(元)

(4)即时练习。

王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

过程要求:

① 用比例来解决。

② 学生独立尝试列式解答。

③ 汇报思维过程与结果。

想:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,水费和用水吨数的比值相等。

解:设王大爷家上个月用了X吨水。

12.8X=19.2×8

X=

X=12

或者:

16X=19.2×10

X=

X=12

3. 教学例6。

(1) 出示课文情境图,了解题目条件和问题。

(2) 说一说题中哪一种量一定,哪两种量成什么比例。

(3) 用等式表示两种量的关系。

每包本数×包数=每包本数×包数

(4) 设末知数为X,并求解。

(5) 如果要捆15包,每包多少本?

3. 完成课文“做一做”。

4. 课堂小结。

三巩固练习

完成练习九第3~5题。

教学内容:练习课

练习目标:使学生进一步熟练掌握正、反比例解决问题的方法,能正确地解决有关实际问题,提高学生的实践能力。

教学过程:

一基础练习

1. 判断下面各题中相关联的量成什么比例。

(1) 三角形面积一定,底和高。

(2) 水池的容积一定,水管每小时注水量和所用时间。

(3) 总面积一定,每块砖的面积和砖的块数。

(4) 在一定的时间里,加工每个零件所用时间和加工零件个数。

2. 说一说。

(1) 判断两种量成正比例还是成反比例的关键是什么?

(2) 用比例解决问题的步骤。

二、综合练习

1.用比例解决下面两个问题。

(1)有一批纸,可以装订每本24矾的练习簿216本,如果要装订成每本18页的练习簿,可以装订几本?

(2)装订一种练习簿,装订200本要用4800页纸,有1页的纸可以装订多少本?

过程要求:

① 找出相关联的量,判断成什么比例。

② 写出关系式。

③ 列式解答,指名两位学生板演。

3. 引导比较。

(1) 说出题中数量关系,写关系式。

每本页数×本数=总页数

(2) 说一说哪一种量一定,另外两种量成什么比例。

(3) 针对以上两题,说一说思维过程和解题步骤

① 找出题中数量关系,判断哪一种量一定,另外两种量成什么比例。

② 根据等量关系列比例式。

③ 解比例。

④ 检验。

三巩固练习

完成课文练习九第6、7题。

篇2:《解比例》教学设计 (人教新课标六年级上册)

张鸿森供稿

【教学内容】人教版六年级下册P35例2、例3及做一做。

【教学目标】

1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

2、学会应用比例的意义和基本性质解决实际问题。

【教学重点】掌握解比例的方法,会解比例。

【教学难点】应用比例的意义和基本性质解决生活中的实际问题。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做解比例

2、我国国旗的长与宽的比是3:2,如果我们学校的国旗长是240厘米,求我们学校国旗的宽是多少厘米?

(1)你会解答吗?独立解答后,同桌间相互说说想法。

(2)反馈交流

①240÷3×2=160(厘米)

②解:设我们学校国旗的宽是 厘米。

240:  =3:2

3 =240×2

=240×2÷3

=160

答:我们学校国旗的宽是160厘米。

(3)你是怎么想的?

二、关键点拨

1、用比例解决实际问题

(1)你明白第二种解法的意思吗?

(2)国旗长和宽的最简整数比和实际长度比可以组成比例,所以可以把国旗的宽设为 厘米,建立比例240:  =3:2,再通过解比例求出 的值。

(3)小结:这种方法叫做用比例解决实际问题。

2、解比例的方法

(1)你是怎样解比例240:  =3:2的?

(2)根据比例的意义,先求出3:2的比值,把比例转化为方程,再求 的值。

(3)根据比例的基本性质“两个外项的积等于两个內项的积”把比例转化为方程,再求出 的值。

(4)怎样才可以确定 的值是正确的?(检验)

(5)你更喜欢哪种解法?为什么?

三、巩固练习

1、解下面的比例

:10= :    0.4:  =1.2:2     =

2、把左边的三角形按比例缩小后得到右边的三角形,求未知数X。(单位:厘米)

学生独立完成,汇报交流。

3、小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水;第二杯用了30毫升蜂蜜和250毫升水。

(1)分别写出每杯蜂蜜水中蜂蜜和水体积的比,看它们能否成比例。

(2)照第一杯蜂蜜水中蜂蜜和水的比计算,300毫升水中应加入蜂蜜多少毫升?

学生回答第一个问题,板书。再让学生观察是否能成比例。

分析:第一个问题应该说比较简单,比分别是25:200和30:250。

四、分享收获  畅谈感想

这节课,你有什么收获?

听课随想

反思与体会:

篇3:比例的应用 教案教学设计(人教新课标六年级下册)

教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

(一)复习

1.说说正、反比例的意义。

2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从A地到B地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

(二)新课

例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

(1)用以前方法解答。

(2)研究用比例的方法解答

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题

甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

1、以前的发法解答。

2、怎样用比例知识解答?

3 讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

整理和复习

教学要求:

1、 使学生进一步理解比例的意义和基本性质,能区分比和比例。

2、 使学生能正确理解正、反比例的意义,能正确进行判断。

3、  培养学生的思维能力。

教学过程:

知识整理

1回顾本单元的学习内容,形成支识网络。

2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

复习概念

什么叫比?比例?比和比例有什么区别?

什么叫解比例?怎样解比例,根据什么?

什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

什么叫比例尺?关系式是什么?

基础练习

1填空

六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是(    )。

小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是(     )。

甲乙两数的比是5:3。乙数是60,甲数是(    )。

2、解比例

5/x=10/3                   40/24=5/x

3 、完成26页2、3题

综合练习

1、 A×1/6=B×1/5              A:B=(   ):(   )

2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

3用5、2、15、6四个数组成两个比例(  ):(  )、( ):( )

实践与应用

1、如果A=C/B那当(  )一定时,(   )和(   )成正比例。当(  )一定时,(  )和(   )成反比例。

2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?

篇4:比例的应用 教案教学设计(人教新课标六年级下册)

教学内容:教科书第6~8页的例4~例6,练习二的第1题。

教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。

教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。

教学难点:设未知数时长度单位的使用。

教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。

教学过程:

一、复习

1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。

1米=(    )分米=(     )厘米=(      )毫米

1千米=(     )米=(      )厘米

2.什么叫做比?

3.化简下面各比。        12 :8          10厘米:100厘米

2米:140厘米    3米:15千米        16厘米:90千米

二、新课

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。Xkb1.com

1.教学比例尺的意义。

(1)教学例4。

设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。

让学生读题。指名回答:

“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)

“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离 :实际距离

“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:

图上距离 :实际距离

10厘米 :    10米

“10厘米和10米的单位相同吗?能直接化简吗?”

教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)

“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。

“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“ :”,板书成如下形式:

图上距离 :实际距离

10  :  1000

请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:…”。

然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或

图上距离 =比例尺

实际距离

图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。

教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

最后教师指出:

①比例尺与一般的尺不同,这是一个比,不应带计量单位。

②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。

③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。比如,例4中的比例尺通常写成:1:100=

(2)巩固练习。

让学生完成第6页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“ l”。

2.教学根据比例尺求图上距离或实际距离。

教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。

(1)教学例5。

在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米? 新 课标 第一 网

指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)

教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。

“这道题的图上距离是多少?”板书:15

“实际距离不知道,怎么办?”(用x表示。)在15的下面板书出x,并在它们中间画上分数线。

“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。

“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:

15 =    1

x 6000000

指定一名学生到前面求X的值,其他学生在练习本上做。订正后,回答:

“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:90000000厘米=900千米,并写出这道题的答。

之后,再回忆一下解答过程。

(2)巩固练习。

做第 7页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。

(3)教学例6。

出示例6:一个长方形操场,长110米,宽90米,把它画在比例尺是 的图纸上,长和宽各应画多少厘米?

指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)

教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少?

然后让学生求x的值,并说出求解过程,教师板书出来。

“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。

三、练习

1、比例尺=(         )          实际距离=(                )              图上距离=(                 )

2.2.5米=(         )厘米         0.00006千米=(            )厘米      0.032米=(        )厘米             350000厘米=(             )千米              3.5千米=(           )厘米

1、 独立完成练习二第1题,并订正。

2、 完成练习二的第2题、3题。

第3题,让学生先想想比例尺子 表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。

篇5:《比例的意义》教学设计 (人教新课标六年级上册)

张鸿森供稿

【教学内容】《义教课标实验教科书  数学》(人教版)六年级下册第32-33页例1及“做一做”。

【教学目标】

1、明确比例的意义,掌握组成比例的条件,并熟练地判断两个比能否组成比例。 能根据不同要求,正确的列出比例式。

3、通过学习培养学生学习数学的兴趣。培养学生的观察能力、判断能力。        【教学重点】比例的意义。

【教学难点】求比值判断两个比能否组成比例,并能正确地组成比例。。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做比例?

表示两个比相等的式子叫做比例。

2、今天是星期天,小瑜和小丽一起到文具店去买东西。

(1)小瑜用1 2元买了4本数学本,小丽用9元买了3本,谁买的本子便宜些?

(2)反馈:

①谁买的本子便宜些?说说你的理由。

②还有别的方法吗?

③这两个比能组成比例吗?为什么?

二、关键点拨

1、比例的意义。

出示课件:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(时) 2 5

路程(千米) 80 200

根据表中的数量你能写出几个比例?你是怎么想的?他们的比值分别表示什么?

2、小结:判断两个比能否组成比例,最关键是看什么?

3、比和比例有什么区别?

生讨论汇报:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

三、巩固练习

1、下面哪组中的两个比能组成比例?把组成的比例写出来。课本第33页“做一做”第1题。

2、独立完成“做一做”第2题后反馈交流。

3、5:8和1:5 这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?

反馈:

(1)你给5:8找的朋友是(    ),组成的比例是(    ),向大家介绍你用了什么方法找到的。

(2)想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

在本节课中,我充分重视了学生原有的认知基础,即在学生理解掌握比的意义和基本性质的基础上进行教学的,找准了新知识的生长点,为学生探究新知搭建了平台。 其次,主要采取探究的方式,充分发挥了学生小组合作,组间交流的作用。在比例的意义和基本性质的教学,我都把知识的探究过程留给了学生,问题让学生去发现,共性让学生去探索,将学习内容的“大板块”交给学生,给学生留有足够的时间、空间。采取小组合作交流的方式,获取结论,并对结果进行相互评价,从而使他们体会成功,共享合作学习的乐趣。在这个过程中,学生的主观能动性得以发挥,主体地位得到充分体现。最后,针对在以往的教学中发现学生学习完比例后把比例和比混淆的问题,我还特意增加了比和比例从意义、各部分名称、基本性质等方面进行横向对比的教学环节,加深学生对知识的印象。当然,纵观全课,还有很多不足之处,比如:如何在教学过程中让学生探讨的问题更贴近生活?教师要进行怎样的引导还值得我进一步思考。

篇6:比的应用 教案教学设计(人教新课标六年级上册)

红河镇小学导学案

(至上学期)

六年 级       数学 学科                          教 师:高春枝

学习

内容

学习

标 1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

重难

点及

突破

措施 教学重点:进一步掌握按比例分配应用题的结构特点和解题思路。

教学难点:正确分析解答比例分配应用题。

课前

准备

导学案设计 个性化设计

流  1、学习例2。

(1)阅读例2:

(2)弄清题意后,思考:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)

(3)思考:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)

(4)你能求出两种各多少ml吗?怎样求?把你的方法写出来,在小组内交流。

稀释液平均分成的份数:1+4=5

① 浓缩液的体积:500×       =100(ml)

② 水的体积:500×        =400(ml)

答:稀释液100ml,水400ml。

(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4

(6)试做,练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)

2、补充练习

(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)

(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)

(4)怎样分别算出各班应种的棵数?引导学生解答:

① 三个班的总人数:47+45+48=140(人)

② 一班应栽的棵数: 280×  = 94(人)

③ 二班应栽的棵数: 280× = 90(人)

④ 三班应栽的棵数: 280× = 96(人)

答:一班栽树94棵,二班栽树90棵,三班栽树96棵。

(5)进行检验。

(6)试做“做一做”中的第2题。

三、巩固练习。

练习十二的第1、3题。

作业:练习十二第2、4、5、6、7题。

审核人:

新课标第一网

篇7:比和比例 教案教学设计(人教新课标六年级下册)

第一课时

教学目标:

使学生进上步理解和掌握比和比例的意义与性质。

区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

教学过程:

讲述本课复习课题并板书

基本概念的复习

比和比例的意义与性质。

什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?

比和分数、除法有什么联系?

说说比的基本性质的比例的基本性质?

比的基本性质与比例的基本性质各有什么用处?

看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

完成教材95的“做一做”。

结合第3题让学生说说什么叫做解比例?根据是什么?

示比值和化简比。

独立完成教材96页上的题目。

说说求比值与化简比的区别?

(求比值是根据比的意义。用前项除以后项,得到 结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

看书中的表,总结方法。

完成教材96页的“做一做”

比例尺

问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

比例尺除写成数字化形式处,还可怎样表示?

完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)

练习巩固

完成教材十九页第1~4题。

全课总结(略)

篇8:比例的意义和性质 教案教学设计(人教新课标六年级上册)

在本节课中,我充分重视了学生原有的认知基础,即在学生理解掌握比的意义和基本性质的基础上进行教学的,找准了新知识的生长点,为学生探究新知搭建了平台。 其次,主要采取探究的方式,充分发挥了学生小组合作,组间交流的作用。在比例的意义和基本性质的教学,我都把知识的探究过程留给了学生,问题让学生去发现,共性让学生去探索,将学习内容的“大板块”交给学生,给学生留有足够的时间、空间。采取小组合作交流的方式,获取结论,并对结果进行相互评价,从而使他们体会成功,共享合作学习的乐趣。在这个过程中,学生的主观能动性得以发挥,主体地位得到充分体现。最后,针对在以往的教学中发现学生学习完比例后把比例和比混淆的问题,我还特意增加了比和比例从意义、各部分名称、基本性质等方面进行横向对比的教学环节,加深学生对知识的印象。当然,纵观全课,还有很多不足之处,比如:如何在教学过程中让学生探讨的问题更贴近生活?教师要进行怎样的引导还值得我进一步思考。

解比例的教学反思

本课时新内容不多,主要把新知识融入学生原有认知结构中,依靠学生已经掌握的知识自己探索解决问题的方法.所以在本课重点展示如何将新知识(解比例)转化成学生原有知识(解方程)的过程,并且这个转化完全建立在学生的自主探索上.教学中运用“同学们能运用原来学习的知识求出3∶8=15∶x中x的值吗?”的提问,密切新旧知识之间的联系,建立用原有知识推动新知识学习的学习策略,然后运用“独立思考──相互交流──归纳小结”的学习方式,使学生参与学习的全过程,深刻理解到在知识的探究过程中我们有时要把未知的新知识转化成已知的知识来进行解答,而在本节课转化的过程中起到搭桥作用的知识就是比例的基本性质。同时在练习过程汇总,我们应该结合比和除法和分数的联系,对解比例进行变式,例如在练习中给出:15÷5=60:X ;25/X=12:24等题目,使学生能够灵活应用知识。

比例尺

本节课的整体设计思路是:“从实际生活出发引入──抽象得出概念──再回到实际生活解决问题.” 首先,从中国地图入手,设下悬念,诱发学生的求知欲.紧接着,让学生汇报自己预习的情况,注意从中捕捉有价值的问题组织学生进行探讨研究.我让学生采取小组合作的学习方式,通过动手实践,操作,得出求比例尺、实际距离、图上距离的计算方法.在学习的过程中,我通过创设设计学校平面图这一生活情景,使学生始终处于动手操作、动脑思考的状态,让学生自己思考需要提供什么条件才能完成,解决了一个又一个的数学问题,以此培养学生思维的灵活性.这样让孩子在获得知识的同时,培养了能力,通过本节课让学生真真切切的感受到生活中有数学,生活中处处有数学,提高了学生学数学用数学的意识。在练习的设计上可以举面积计算的例子,强调比例尺只是距离比,不是面积比,同时可以举一些图上距离比实际距离扩大的例子,避免学生形成惯性思维。

正比例的意义

正比例的意义教学其实就是概念教学,要把概念中的重难点全部把握到位,在以往的教学中往往比较重视强调找到定值,结果却发现在实践中基础不太好的学生连相关联的两都找不准,所以在这次的教学中我利用表格,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。一步步帮助学生建立严谨的判断形成正比例的步骤,首先找相关联的两个量--判断两个量之间的变化规律--两个量的比值是不是定值,抓住本节重点,突破难点。并且在教学过程中多给学生时间去说,小组之间每个同学选一题按照总结出来的步骤一步步进行判断,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。

反比例的意义

因为前面已经有了正比例意义的教学,反比例意义的教学可以放手给学生更多的空间去进行知识的探索。所以本节课是通过知识引进、知识讨论、知识运用总结进行的。首先通过复习,巩固了正比例的意义。通过旧知识引出新知识“反比例的意义”,过渡自然,知识做到了连贯性。在引导学生复习正比例学习的基础上,启发学生按照研究正比例的方法主动、自觉地去观察、分析、概括、发现规律,从而既学到了新知识,又增长了自学能力。最后还要有一个正反比例对比的教学环节,通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,培养了总结、区别、沟通的能力。练习的多样、及时,使学生加深概念的理解。

比例的应用(解应用题)

应用比例知识解应用题其实归根到底就是正反比例的判断,只是把它提高到了解决实际问题,要实际应用的高度,学生对解决实际问题总是觉得困难,其实就是不会审题,分析题目,

所以我在本节课的教学过程中主要还是结合前面学习的基础,着重培养训练学生的分析题目的能力,让学生从分析题目告诉我们的条件入手,先确定两个相关联的量--判断两个量之间的变化规律--两个量的比值或者乘积是不是定值--写出关系式--根据关系式列式,建立一个完整的解题模式,同时学会理解题目当中一些关键性的句子,例如:按照这样的速度;一件工作等等其实是告诉了我们什么条件。课堂上要多给学生机会去说去想,练习设计一系列的米题目给学生分析列式,逐步培养学生严谨的逻辑性。另外还要加强用比例知识解应用题和算术方法的对比,通过对比使学生意识到用比例知识解题目可以不把题目中的第三个量求出来,但算术方法却一定要,所以在解教复杂的应用题时,用比例知识会更有优势。

圆柱的认识

教学用书安排“圆柱的认识”为一课时,“圆柱的侧面积和表面积的计算”为另一课时。但在实际教学中,我觉得“圆柱的认识”这一课时里介绍侧面积的展开图,如果跟侧面积的公式的推导联系起来会显得非常的紧密;而且侧面积的学习对表面积又起着重要的作用,必须要让学生弄懂,所以我大胆的把“圆柱的认识及侧面积的计算”作为一课时来进行教学。教学圆柱的特征时,我先让学生观察,一眼看上去,圆柱和我们以前学的立体图形有什么不同,找一找圆柱的特征,从许多各不相同的圆柱中粗略地找出圆柱的共同特征--都有两个面是圆,上下粗细相同,有一个曲面。然后再让学生看一看、比一比、摸一摸认识各部分特点,在充分感知的基础上,揭示底面和侧面的名称,全面归纳各部分特点,抽象出圆柱的空间图形,建立圆柱的空间观念。探究侧面展开图时,先让学生动手操作,通过教师课件证实后,学生再次动手操作,把一张长方形的纸或一张正方形的纸分别卷成一个圆柱体的侧面,卷成前后图形之间的关系就不言而喻了。对比较抽象的数学知识的学习,让学生亲自动手去体验,既遵循了学生的认知规律,又培养了学生的动手能力,还让学生轻松愉快地掌握了新知识,可谓一举多得。在练习部分,为了提高效率,我采用了改变条件,一题多练的方法,如告诉周长和高求侧面积变成告诉半径和高应该怎么做,提高学生综合运用知识的能力,拓展了思维。

圆柱的表面积

这节课的学习首先从复习长方体的表面积入手,自然过渡到圆柱的表面积概念。因为前面已经推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转平面、形变量不变的辩证关系,培养同学们的观察分析能力。本节课的练习设计是一个重点,要针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。最后要让学生小结计算过程中容易出现的错误,尤其要指出计算侧面积的时候要涉及到圆周长的计算,计算底面积的时候要涉及到圆面积的计算公式。

圆柱的体积

本节课的一个重点是“转化”,所以在教学中第一部分的内容就是复习。复习近平行四边形、三角形、梯形、圆面积公式的推导过程,先为学生铺垫一个学习基础:把没有学国的知识转化成已经学过的知识来解决。第二部分,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,结合课件不断的直观演示,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析和归纳能力。第三部分,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。

圆锥的体积

圆柱体积的计算方法是探索圆锥体积计算方法的基础。在探索圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜想--验证说明”的探索过程,从而理解圆锥体积的计算方法。新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后通过老师演示试验,学生观察,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。在教学之后感觉到遗憾的是,由于教具有限,,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

篇9:鸡兔同笼 教案教学设计(人教新课标六年级上册)

教学内容:六上数学广角之鸡兔同笼问题

教学目标:使学生学会用三种不同的方法解鸡兔同笼问题

教学重点:列方程解鸡兔同笼问题

教学过程:

1.       导入:

《孙子算经》中记载有这样的一个有趣的问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”

向学生解释题意

2.       新授:

(1)       复习用列表法解

鸡只数

兔只数

脚总数

1

34

2+4*34=138

2

33

2*2+4*33=136

.。。。。。

。。。。。。

。。。。。。

23

12

2*23+4*12=94

师引导学生得出此方法比较繁琐,特别是数目较大的,要试多次。

(2)复习假设法解题

(A.) 师提问:如果笼里的35只全是兔子,则应该有脚:4*35=140(只),而现在只有94只脚,少了多少只脚?(140-94=46只),是什么原因导致的呢?

(B.) 师引导学生得出:是由于35只里有一些是鸡,而每只鸡只有两只脚,比每只兔子少2只脚。

(C)  分析:每只鸡比每只兔子少2只脚,想一想,多少只鸡就少46只脚?(46/2=23只)即笼里有鸡23只,则兔子有(35-23=12只)。

(D) 师要求学生自行列出综合算式。

( 4*35-94)/(4-2)=23(只)

35-23=12(只)

答:鸡有23只,兔有12只。

(3) 列方程解题

(A.)师引导:笼里有35只鸡和兔,一共有脚94只。

板书:   鸡的脚数   +   兔的脚数   =   一共有脚94只

(B.)分析:由于题中鸡和兔的只数是要求的问题,我们无法得出具体的数字,也不能得出鸡和兔的脚数,但我们可以用含有未知数的代数式来表示。

板书:解:设有鸡X只,那么有兔(35-X)只。

(C) 师提问:每只鸡有2只脚,每只兔有4只脚,那么X只鸡有多少只脚,(35-x)只兔有多少只脚?

画表:

只数

每只脚数

脚总数

X

2

2X

35-X

4

4(35-X)

板书:   鸡的脚数   +   兔的脚数   =   一共有脚94只

2X          4(35-X)              94

即:2X + 4(35-X) = 94

(D)解答

学生自行解方程,师巡视解答过程,如有困难的学生单独辅导。特别要提醒学生要写答句。

(E)师生总结:

此类数量关系中含有两个未知数的应用题,我们可以先设其中一个为X,另一个用含有X的代数式来表示,再根据题中的等量关系列出方程,然后解答。

3  作业练习:

李老师带43位学生去公园划船,共租了9条船,每条小船坐4人,每条大船坐6人,刚好每条船都坐满,你知道大船小船各租了多少条吗?

(提示:李老师和43位学生一共有44人)

篇10:《比例的基本性质》教学设计 (人教新课标六年级上册)

张鸿森供稿

【教学内容】人教版六年级下册P34比例的基本性质。

【教材分析】

《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材直接以比例“2.4:1.6=60:40” 教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:

“       2.4×40○1.6×60”。在此基础上,发现规律,揭示比例的基本性质。“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。个人认为这样的材料呈现方式至少存在两个弊端:(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;(2)没有给学生想想的猜想和验证的空间。

【教学目标】

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

【教学重点】探索并掌握比例的基本性质。

【教学难点】判断两个比能否组成比例,根据乘法等式写出正确的比例。

【教学设想】:

1、教学情境的呈现

创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。

教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是(    ),两个內项的积是(    ),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。个人认为这样的情境太直接,牵住学生的思维走,没有提供可探究的空间。为此,我简单创设了这样一个情境:老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?这个问题简单却开放,答案不唯一,为学生的思考打开了空间,同时学生可以通过求比值的方法解决:先填进一个数,然后就出比值,再确定另一个数。只要老师有意识的把学生的回答有序板书,可以达到引导有序思考的作用。

2、教学方式的选择

教育的真谛应该是促进人的发展,人的发展当然需要积累一定量的基础知识,更重要的是思维水平的提升和分析问题、解决问题能力的发展。我们的课堂教学要引领学生掌握知识,更要侧重引领学生经历知识的形成过程,让学生在探索知识形成过程的学习中,不断拓展思维的宽度和增加思维的厚度。

比例的基本性质本身并没有难度,难在通过观察、猜测、验证、归纳等数学活动探索“在比例中,两个外项的积等于两个內项的积”这个结论的形成过程。我想,这个探究过程应该就是一个合作、探究学习的过程吧。只有当学生经历了这个探究式学习过程,才有可能真正体验思考与合作的成就感,才能真正激发学生对数学的学习兴趣。

3、练习的设计

(1)判断下面哪组中的两个比可以组成比例。旨在巩固对比例基本性质的掌握,应用比例的基本性质解决问题,渗透假设、验证的解决问题方法,假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。补问引出求比值的方法判断两个比能否组成比例,追问引领学生对求比值判断两个比能否组成比例和用比例的基本性质判断两个比能否组成比例的方法进行比较优化,凸显了比例基本性质的应用价值。

(2)根据乘法等式“2×9=3×6”写比例。既是对比例基本性质的逆用,又旨在渗透有序思考的解决问题策略和方法。

(3)如果a×2=b×4,则a:b=(    ):(    ),旨在将比例的基本性质逆用推广到一般。追问:如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?旨在激发学生的思维矛盾,引领学生打破思维定势,体验变与不变的思想。那么a、b还可能是多少?你发现了什么?旨在引导学生经历一个列举、归纳的过程,提升思维水平。

(4)猜猜我是谁?6:(  )=5: 4,旨在应用比例的基本性质时,渗透方程思想,为解比例的学生作铺垫。

【教学预设】

一、认识比例各部分的名称

1、呈现:4:5和8:10

(1)认识吗?叫什么?

(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)

(3)求比值,判断两个比能否组成比例。

2、介绍比例各部分的名称

4:5=8:10 中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4:  = :5  (2)  =

二、探究比例的基本性质

1、猜数

呈现比例“12∶□=□∶2”。

(1)想一想,这两个内项可能是哪两个数?如1和24,2和12,……

(2)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积”;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法?

(2)你觉得应该怎样举例呢?

(3)合作要求

1)前后4个同学为一个小组;

2)每个同学写出一个比例,小组内交换验证。

3)通过举例验证,你们能得出什么结论?

4、小结

(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?

(2)其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)

5、完善

(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)

(2)老师这里也有一个比例0:0=0:0,可以吗?

(3)比例的项不能为0。

6、如果比例写成分数形式 = ,这怎么相乘?

三、巩固练习,应用比例的基本性质

1、判断下面哪组中的两个比可以组成比例。

(1)6:3和8:5       (2) : 和 :

(3)1.2:  和 :5   (4) 和

【学法指导:假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。渗透假设、验证的解题策略和方法。】

(1)先让学生尝试判断,再交流明确思考方法。

(2)还可以用什么方法来判断?你能用求比值的方法1.2:  和 :5能否组成比例吗?

(3)这两种方法,你更喜欢哪种?为什么?

2、根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?

追问:你为什么写得这么快?有什么窍门?【渗透有序思考】

3、如果a×2=b×4,则a:b=(    ):(    );

如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?

那么a、b还可能是多少?你发现了什么?

4、猜猜我是谁?

6:(  )=5: 4

四、分享收获  畅谈感想

这节课,你有什么收获?

反思与体会:

课中,猜数环节,学生举了一个这样的例子:12:60=1.2:20,这是一个出错的比例,因为12:60=0.2,1.2:20=0.6,两个比的比值不等,所以两个比不能组成比例,也可以用比例的基本性质判断,12×20≠60×1.2。学生报出错例后我没有及时处理,而是等到学生经历了猜想、验证过程得出了比例的基本性质这一结论后,我才引着学生回头来看这个错例,运用比例的基本性质判断例子的错误性,并改正。也许这可以算本节课的一个亮点,教师抓住了学生的错误,把错误用作了很好的生成资源,从反面验证了比例的基本性质是两个外项的积等于两个內项的积。但是,现在我还是耿耿于怀,我是否应该在学生报出例子后及时指出学生的错误,并引导学生利用求比值的方法进行改正。

篇11:人教新课标六年级下册《解比例》教学设计

人教新课标六年级下册《解比例》教学设计

一、教材分析

这部分内容是比例基本性质的应用,方法是依据比例的基本性质,把比例转化为方程,通过解方程的方法来求解。学习这节内容,可以为接下来学习比例尺和用比例解决问题做准备。

二、教学目标

1、在解比例的过程中进一步理解和掌握比例的基本性质,学会解比例的方法。

2、联系学生的生活实际创设情境,体现解比例在生产、生活中的广泛应用。

3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力。

三、教学重难点

1、重点:自主探究出解比例的方法,并能轻松求出比例中的未知项。

突破方法:小组交流讨论,探究比例中未知项的各种计算方法,并从中进行优化。

2、难点:灵活运用解比例的方法解决问题。

突破方法:了解各种和比例知识相关的问题,掌握应用比例的基本性质灵活解决这些问题的方法。

四、教法与学法

1、教法:教师指导学生通过自主思考,交流讨论掌握解比例的方法。

2、学法:学生独立探究,全班交流,优化出解比例的方法。

五、教学准备

1、教师:教材例题投影图。

2、学生:常规学习用具。

六、教学过程

复习导入1、复习

(1)什么叫做比例?什么叫做比例的基本性质?

(2)用比例的基本性质判断下面哪一组中的`两个比可以组成比例?

18:20和7.2:8、100:0.2和10:0.0022导入新课

谁能很快说出下面比例中缺少的项各是几?(学生试说)14:21=2:、1.25:()=2.5:4

教师指出:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。这节课我们就一起来探究解比例的方法。设计意图:通过复习比例的意义和比例的基本性质,为学习解比例的知识做准备。互动新授

(一)教学例二

1、投影出教材第42页例二。

法国巴黎的埃菲尔铁塔高度约320m,北京的世界公园里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1:10.这座模型高多少米?

2、阅读与理解

(1)学生独立读题,找出已知条件和所求问题。

(2)小组内交流获得的信息。

已知条件:埃菲尔铁塔的高度约320m,埃菲尔铁塔模型的高度与原塔高度的比是1:10。所求问题:这座模型高多少米?

3、分析与解答

(1)分析题意,根据题意描述两个相等的比。模型高度:实际高度=1:10。

(2)指出其中的未知项,说一说你想怎样解答。

设计意图:引导学生先独立思考,再组织学生合作交流。交流中既要听取学生的意见,又要注意引导学生从多角度思考解决问题的方法。

例如,把比看作除法,那么x:320=1:10就可以转化成x/320=1/10,学生就可以运用原来学习解方程的有关知识来解;也可以应用比例的基本性质,把x:320=1:10转化成10x=320*1来解。

(3)教师根据学生的汇报交流情况进行板书。解:设这座模型的高度是xm。x:320=1:10

10x=320*1(问:根据什么?)x=320*1/10x=32

答:这做模型高32m。

(二)教学例三

1、出示教材第42页例三。

解比例2.4/1.5=6/x。

2、让学生说说这个比例中的内项和外项分别是什么。内项是1.5和6,外项是2.4和x。

3、学生独立解答

教师巡视,进行个别辅导。

4、组织交流订正解:2.4*x=1.5*6x=1.5*6/2.4x=15/4

5、小结

提问:解比例的方法是什么?

比例就是一种特殊的方程,不论在书写格式还是验算方法上,它与解方程都是相同的。解比例时,先根据比例的基本性质把比例转化为方程,再按解方程的方法进行解答。

七、巩固练习

1、教材第42页“做一做”第一题

这道题设计了三道未知项的位置不相同以及不同形式的比例,通过练习巩固解比例的方法。先让学生独立解答,再进行交流订正。

2、教材第42页“做一做”第二题

这道题的解题方法和例题类似,可以让学生独立思考解答。

3、在一个比例中,两个外项正好互为倒数,已知一个内项是3,另一个内项是多少?

八、课堂小结

通过这节课的学习,你有什么收获?

今天这节课,我们学习了解比例的知识。在解比例时,我们先根据比例的基本性质把比例转化成方程,再按照解方程的方法进行解答。

九、板书设计解比例

例2:解:这座模型的高度是xm。x:320=1:10

10*x=320*1(根据比例的基本性质)x=320*1/10x=32

答:这座模型高32m。

篇12:解比例教学设计 (人教新课标六年级下册)

导学内容:P35页例2例3,完成做一做及练习六7--11题

导学目标

1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。

3、培养学生的知识迁移的能力,增强学生的合作意识。

导学重点:使学生掌握解比例的方法,学会解比例。

导学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

预习学案

依照下面的条件列出比例,并且解比例。

(1)72和24的比等于15和x的比。

(2)等号左端比的前项和后项分别是0.4和16,等号右端的比是8:x。

(3)x和23 的比等于35 和14 的比。

(4)比例的两个外项分别是4和10,两个内项分别是x和28。

导学案

我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

学习例2

(1)把未知项设为x。

(2)根据题意列出比例:x::320=1:10

(3)怎样解这个比例?解比例的根据是什么?

(4)一名同学到黑板解答。

从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。新课标第一网

学习例3 解比例1.52.5 =6x

这个比例和例2的比例有什么区别?哪是比例的前项和后项?根据比例的基本性质应该怎样解?

根据学生的回答总结出,像例3这种形式的比例要交叉相乘来解。

总结解比例的过程。

刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

课堂检测新课标第一网

1、解比例。

X:10=14 :13     0.4:x=1.2:2    1.2:2.4=3:x

2、汽车厂按1:24的比生产了一批汽车模型。轿车模型长24.92厘米,它的实际长度是多少?公共汽车长11.76米,模型车的长度是多少?

课后拓展

小芳调制了两杯糖水,第一杯用了25克糖和200克水,第二杯用了30克糖和250克水。

(1)分别写出每杯糖水中糖与水质量的比,看它们能否组成比例。

(2)按照第一杯糖水中糖与水的比计算,300克水中应加入糖多少克?

板书设计

解比例

解比例:求比例中的未知项。

例2 法国巴黎的埃菲尔铁塔320m。        例3 解比例 1.52.5 =6x

北京的“世界公园”里有一座埃菲            解:1.5x=2.5×6

尔铁塔的模型,它的高度与原塔高                1.5x=15

度的比是1:10。这座模型高多少米?               x=151.5

解:设这座模型的高度是x米。                     X=10

x:320=1:10

10x=320×1

x=3 新课标第一网

x=32

篇13:《解比例》教学设计 (人教新课标六年级下册)

张鸿森供稿

【教学内容】人教版六年级下册P35例2、例3及做一做。

【教学目标】

1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

2、学会应用比例的意义和基本性质解决实际问题。

【教学重点】掌握解比例的方法,会解比例。

【教学难点】应用比例的意义和基本性质解决生活中的实际问题。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做解比例

2、我国国旗的长与宽的比是3:2,如果我们学校的国旗长是240厘米,求我们学校国旗的宽是多少厘米?

(1)你会解答吗?独立解答后,同桌间相互说说想法。

(2)反馈交流

①240÷3×2=160(厘米)

②解:设我们学校国旗的宽是 厘米。

240:  =3:2

3 =240×2

=240×2÷3

=160

答:我们学校国旗的宽是160厘米。

(3)你是怎么想的?

二、关键点拨

1、用比例解决实际问题

(1)你明白第二种解法的意思吗?

(2)国旗长和宽的最简整数比和实际长度比可以组成比例,所以可以把国旗的宽设为 厘米,建立比例240:  =3:2,再通过解比例求出 的值。

(3)小结:这种方法叫做用比例解决实际问题。

2、解比例的方法

(1)你是怎样解比例240:  =3:2的?

(2)根据比例的意义,先求出3:2的比值,把比例转化为方程,再求 的值。

(3)根据比例的基本性质“两个外项的积等于两个內项的积”把比例转化为方程,再求出 的值。

(4)怎样才可以确定 的值是正确的?(检验)

(5)你更喜欢哪种解法?为什么?

三、巩固练习

1、解下面的比例

:10= :    0.4:  =1.2:2     =

2、把左边的三角形按比例缩小后得到右边的三角形,求未知数X。(单位:厘米)

学生独立完成,汇报交流。

3、小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水;第二杯用了30毫升蜂蜜和250毫升水。

(1)分别写出每杯蜂蜜水中蜂蜜和水体积的比,看它们能否成比例。

(2)照第一杯蜂蜜水中蜂蜜和水的比计算,300毫升水中应加入蜂蜜多少毫升?

学生回答第一个问题,板书。再让学生观察是否能成比例。

分析:第一个问题应该说比较简单,比分别是25:200和30:250。

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

《练习六》的教学设计

张鸿森供稿

【教学内容】人教版六年级下册P36-38练习六。

【教学目标】

1、通过练习,进一步巩固比例的意义和基本性质。

2、培养学生学习数学的自信心。

【教学重点】掌握解比例的方法,会解比例。

【教学难点】应用比例的意义和基本性质解决生活中的实际问题。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

小组代表展示对“比例的意义和基本性质”的整理成果,小组内成员可以互相补充完善。

(可能出现文字整理和用具体例子并画图整理的情况。)

【设计意图:让每一位学生动起来,首先让小组内后进生先说,有优生补充。给每类学生展示的舞台。】

二、智慧大冲关

师:下面我们进行智慧大冲关,这里为同学们准备了几关练习题,看你能冲到哪一关。

第一关:我学会了比例的意义和基本性质

1、下面是不是比例,为什么?

15:3    20:4    0.3:0.4=3:4      a:b=1:2

2、下面两个比能否组成比例吗?为什么?

3.6∶1.8和0.5∶0.25   40∶80和1/2∶1/4

18:12和30:20

有A类学生读答案,C类学生补充释疑。

生1:3.6∶1.8的比值是2,而且0.5∶0.25得比值也是2,所以他们能组成比例。

生2:3.6∶1.8=0.5∶0.25因为他们内项的积等于外项的积。

生3:我们要区分好比和比例。比例是一个等式,比不是。

师小结:我们可以根据两个相等的比叫做比例和比例的内项积等于外项积两种方法来判断是否能组成比例。

第二关:解比例,请独立做,比比看谁最认真。

X∶6.5=6∶4          5∶8= X∶16

由A类学生说答案,出现错题时给他一定的时间改错。

C类学生总结解比例需要注意的事项。

师小结:用内项的积等于外项的积来解比例。

第三关:请独立思考,有疑难点小组内讨论解决。

1、请大家用1,2,4,8这四个数组成一些比例

学生展示组成的比例并解释理由。

师总结:判断两个比能否组成比例的基本性质的三种方法:①比例的意义;②比例的基本性质;③比的基本性质。要根据具体情况灵活选择判断方法。

生继续展示其他的比例。

师:前面我们利用4个数可以组成8个不同的比例,并且从中发现了比例的基本性质。

2、a∶b=c∶d,如果把a扩大到原来的10倍,要使比例成立,则(    )

① b缩小到原来的          ②c扩大到原来的10倍

③d扩大到原来的10倍      ④c缩小到原来的

第四关:请自由组合,共同探讨,共同解决。

1、根据4×6 = 3×8写出比例,你能写出几个?

2、已知a和b都是自然数,3∶b=a∶8,你知道ab各是多少吗?

下课前2分钟,师出示本题的答案,请优等生们比较讨论。不做统一的讲解。

师:如果这道题同学有什么问题,可以课后问老师。

三、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

学习成绩较差的学生更渴望得到老师和同学们的欣赏,更渴望享受成功的快乐。

在数学练习课的设计上,我摒弃以往的通学通练的模式,而是将练习题由易到难设计成几关,前两关是基础题,后两关是能力题。如此,让优等生能攻克更多的难题,更重要的是让后进生也能体验到冲关成功的快乐,增强他们的信心。提高他们的学习兴趣。

不足之处:练习题的设计层次性还要再加强一些。第三关的题要再稍微降低一些难度,让A层次的学生有时也能做出来。

篇14:比例的应用(用比例解决问题) 教案教学设计(人教新课标六年级下册)

教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

(一)复习

1.说说正、反比例的意义。

2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从A地到B地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

(二)新课

例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

(1)用以前方法解答。

(2)研究用比例的方法解答

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题

甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

1、以前的发法解答。

2、怎样用比例知识解答?

3 讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

篇15:《桃花心木》教学设计 (人教新课标六年级上册)

一、谈话导入,引出话题:

师:春天来了,万物复苏,每年3月12日是中国植树节。同学们养过花、种过树吗?你们通常是怎么照料它们的?生:(畅所欲言)师:你们都说了自己的想法,想不想知道有一个种树高人在培育树苗时是怎么做的?今天,老师就带你们走进语文第9课《桃花心木》去看一看。(板书课题

二、初读感知通大意:

1.林清玄资料

2. 请同学们自由读文,思考:文中讲了一件什么事?

三、品读感受晓内容

默读课文,画出直接描写桃花心木的句子。

生:(生活动)指名读句子。

师:这么优雅自在、充满生命力的桃花心木,你们想看看吗?(课件出示)

师:这就是桃花心木,它是常绿乔木,树杆笔直,树冠茂盛,树高达15公尺以上,也就是我们五层教学楼那么高,甚至还要高。

师:(课件出示)瞧,这又是什么?生:桃花心木苗师“对,这就是桃花心木苗,难以至信,就是这么小的树苗居然能长成那样的参天大树,这得花费多少心血,经过怎样的精心照料啊?

师:如果你是种树人,你会怎样培育呢?

生:天天浇水、施肥。

生:给它除草。

师:那书中的种树人是怎样育苗的呢?现在请同桌一起读文,共同找出描写种树人培育树苗的句子。

师:谁来读一读。

生:(读句子)

师:(板书:种树苗  天数  浇水  无规律 )

师: 这么粗心、不负责任的种树人为什么能培育出姿态优美,高大挺拔的桃花心木呢?老师奇怪了,你们奇怪吗?

生:齐声 :感到奇怪。

师:作者也奇怪了,(出示:奇怪的……越来月趣怪的……更奇怪的…..)快到文中找找,谁能带着感到奇怪的语气来试着读读。

四、研读感悟明道理

生:(读课文)

师:谁还能再试试(指导朗读)

点评:多读深入体会当时作者的奇怪及所产生的疑惑心理。

师:作者越来越奇怪了(出示:“我起先以为……..但是….”)那一段

师:谁来读读,能不能不改变句子的原意,把两个问句换一种说法。

生:但懒的人不会知道有几棵树苗枯萎了,忙的人不可能行事那么从容。

师:是啊,这样说不是也可以吗?可是作者为什么要用问句呢?

生:反问句更能增加作者当时奇怪的心理。

点评:通过插入的句子训练,让学生细读体会说法的不同,在表达意义上程度也不同,问句更能体现作者奇怪的心理。

师:是啊!真的好奇怪!面对我们的不解和疑问,种树人怎么回答的?快动笔画画种树人说的话。

生:(读书、动笔画)

师:画好了,谁原意当种树人来读读。(生读文,同时课件出示种树人说的一段话)

师:同桌一个扮演种树人,一个扮演作者,相互问一问说一说。(生活动)

点评: 在我们的日常生活中,每个人都要经常地跟别人交流,而交流最主要的手段是口语,那么,口头表达能力的强弱就直接关系到交流的效果,因此,口头表达能力的培养就显得尤为重要。又因为小学阶段是一个人发展语言的黄金时期,那么,尽快培养学生清楚、准确地运用语言,培养口头表达能力。

师:谁能用上“之所以……是因为……”这个句式说一说种树人的话

师:种树人的话你们都理解了吗?那老师来当记者采访一下,谁来当种树人。(指名)师:你好!种树人,你不按时给树苗浇水,有的树苗都枯死了,你不后悔吗?如果总来浇水并浇一定量的水结果会怎样?

生:不后悔,只有在不确定中寻找水源,拼命的扎根,才能长成参天大树。如果每天来浇并浇一定量的水,树苗就会养成依赖的习性,根就会浮在地表,无法深入地下。

师:听了你的话,我明白了你的良苦用心,你真是一个了不起的种树人。同学们:十年树木,百年树人,种树和育人一样。(板书:育人)种树人的话让我们明白了一个道理。你知道什么道理吗?

生:齐读“在不确定中生活的人……”(课件出示)

师:你是怎么理解这句话的?这个“不确定”指什么?(师板书:不确定)

生:指生活的变化无常、经受困难或遭受不幸。

师:是啊!在我们生活中有很多这样的人,尽管他们遭遇了不幸,但他们能勇敢的面对困难,这样的例子你能说说吗?

点评:由树联想到了人,培养学生结合生活实际拓展知识同时培养了学生语言表达能力。

五、美读拓展升情感生:(举例说)

师:他们的事迹让我们感动,他们的精神值得我们学习,这样的面孔你海熟悉吗?(出示5.12地震中的小英雄的图片,让学生说他们的事迹)

师:这些孩子用他们的行动诠释了“坚强”,面对生活中的不幸,他们做到不放弃,勇敢的面对,他们才是(生齐:在不确定中生活的人,比较经得起生活的考验。)

师:让我们再一次为那些生活在很艰苦的环境中,但从不放弃努力的人们说一声(生齐:在不确定中生活的人,比较经得起生活的考验)

师:我们很感谢种树人给我们的启迪,同学们:如果你就是那棵已经长大了的桃花心木,你想对谁说点什么?(课件出示)

生:(畅所欲言)

点评:通过种树人给的启迪,让学生进一步理解‘环境造就人’的道理,让学生走进文本,换角色深入体会。师:同学们,这是一篇借物喻理的文章,学习了本课,结合自己的学习和生活,你从以下三道题中任选一题,写出你的心里话。(课件出示)生:(动笔写作)师:谁写好了,能给大家读读吗?生:(展示自己的习作,师给予评价)师:同学们: 不经历风雨怎么能见彩虹,在今后的学习和生活中,老师希望你们无论遇到什么困难,都要勇敢坚强的面对,做一个自强不息的孩子!

[《桃花心木》教学设计 (人教新课标六年级上册)]

篇16:《位置》教学设计 (人教新课标六年级上册)

第一单元   位置

教学目标:

1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 使学生能在方格纸上用数对确定位置。

教学重点:能用数对表示物体的位置。

教学难点:能用数对表示物体的位置,正确区分列和行的顺序。

一、 导入

1、 我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

2、 学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、 新授

1、 教学例1

(1) 如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

(2) 学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

(3) 教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

2、 小结例1:

(1) 确定一个同学的位置,用了几个数据?(2个)

(2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

3、 练习:

(1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

(2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

4、 教学例2

(1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

(2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(3) 同桌讨论说出其他场馆所在的位置,并指名回答。

(4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

三、 练习

1、 练习一第4题

(1) 学生独立找出图中的字母所在的位置,指名回答。

(2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

2、 练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

3、 练习一第6题

(1) 独立写出图上各顶点的位置。

(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3) 照点A的方法平移点B和点C,得出平移后完整的三角形。

(4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

四、 总结

我们今天学了哪些内容?你觉得自己掌握的情况如何?

五、 作业

练习一第1、2、5、7、8题。

练习课

教学目标:

1、使学生熟练掌握用两个数据决定物体位置的方法,并能正确运用确定位置的方法解决有关的问题。

2、丰富学生对现实空间的认识,建立空间观念。

体会数学与人类生活的密切联系,体验数学活动充满着探索与创造。

教学重点:能用数对表示物体的位置。

教学难点:能用数对表示物体的位置,正确区分列和行的顺序。

教学过程:

一、基础练习

1、说一说。

怎样确定物体的位置?确定一个物体的位置用了几个数据?通常情况第1个数据表示什么?第2个数据表示什么?

2、练一练。

(1)介绍一下,你在班上的座位是第几列第几行,你的几个好朋友分别在第几列第几行。

(2)利用方格图标出你和你的朋友的座位。(电脑课件呈现)

(3)完成后,学生说一说座位的具体位置和表示的数据。

二、专项练习

完成课本练习一中第6~8题

1、第6题。

(1)画出三角形ABC向右和向左平移5个单位后所在的位置,并在顶点用A′B′C′表示。

(2)依据顶点A(1,1),写出其它各顶点的位置。

(3)观察各顶点位置,说一说你有什么发现。

2、第7题

(1)认真观察题目,然后填上数据。

(2)按顺序描述王玲的活动路线。

3、第8题

(1)认真读题,弄清题意。

(2)独立思考,设计编号的方法。

(3)反馈结果,全班交流。

三、作业

选用课时作业设计。

篇17:《有的人》教学设计 (人教新课标六年级上册)

教学目标

1.能有感情地朗诵诗歌,培养鲜明的爱憎感情,懂得为人民服务的人将得永生,与人民为敌的人必然灭亡的道理。

2.了解本文运用的对比手法,体会这种手法运用的好处。

教学难点: 理解两种人的含义

教学流程

一、轻叩鲁迅,引入课题

师:同学们,你们知道他是谁吗?(幻灯出示鲁迅图片)

师:对,他就是鲁迅!一个多么响亮的名字!通过本组前面几篇课文的学习,我们对鲁迅这个中国伟大的革命者、思想家、文学家已经有了较深刻地认识,接下来让我们看一段影像资料。(课件播放《鲁迅》电影片尾葬礼部分)

师:看了这段影像资料,你心里体会到了些什么?

生说:(送葬的人多,鲁迅得到了许多人的尊敬和热爱……)

师:下面请大家再来读这段一遍,体会人民对鲁迅的尊敬和热爱。(课件出示文段)

师导接:是呀!“鲁迅死了,但他永远活在我们的心中!”  1949年10月19日,鲁迅逝世13周年,全国各地第一次公开、隆重地纪念鲁迅,著名诗人臧克家参加了首都的纪念活动,他深切追忆鲁迅为了人民鞠躬尽瘁的一生,百感交集,写下了《有的人》这首短诗。

生:齐读诗题两遍

二、听范读,理顺思路

1.自读诗歌。

师:下面请同学们一起走进诗歌--齐读一遍。

师:哪位同学来读一读,可以选择你喜欢的小节读一读?)

师:你觉得他读得怎样?为什么?(注意表扬:他读得很有感情,你点评得也很到位,掌声送给他们。)

2.听范读。

师:下面请大家来看一看、听一听朗诵家沙桐和长潇是如何诵读的这首诗歌的? (课件播放新诗会沙桐和长潇朗诵的《有的人》)

过渡:听了两位朗诵家的朗诵后,你是否有一种被感染了的感受呢?下面就请大家好好地学习这首一诗吧,好好体会鲁迅伟大的人生。首先,让我们来了解诗歌的主要内容及层次。

3.理思路。

师提问:这首诗一共有几节?可以分为几部分?每一部分的主要内容是什么?(生说后,师课件出示,再齐读段意。)

三部分:第一部分(第1节): 作者提出了对生和死的不同的观点。

第二部分(第2、3、4节):写了两种人对待人民的不同态度。

第三部分(第5、6、7节): 写了人民对待两种人的不同态度。

师提问:请同学们认真分析三部分之间是什么结构关系?(课件出示)

(第一部分是全诗的总纲,二、三部分是对第一部分提出的感触最深的两点分别进行解说和深入开掘,赞颂鲁迅鞠躬尽瘁为人民的伟大精神。)

三、品读重点句子、词语,理解诗意,体会句子所表达的思想感情。

(一)思考问题:

诗歌前四节中每节有两个“有的人”,它们的意思是否相同呢?(课件出示)

(每节诗前两句都是指反动统治者。每节诗后两句都是指鲁迅以及像鲁迅一样的人。)

(二)小组内交流,理解诗句意思。

看看你还有哪些诗句的意思是不明白的?先在小组内交流,把解决不了的问题提出来吧。

(三)读重点句子,体会深层含义。

诗句1.有的人活着,他已经死了;有的人死了。他还活着。

思考一:这一节写了几种人?(两种)他们指的是哪些人?(课件出示)

填空完成对这节诗的理解。(课件出示)

思考二:两个“活”与“死”有什么不一样的含义呢? (课件出示)

前面的“活”是指人活着,后面的“活”是指精神活着。前面的“死”是指精神死了,后面的“死”是指人死了。 (课件出示)

诗句2. 有的人/ 骑在人民头上:“呵,我多伟大!”

有的人/ 俯下身子给人民当牛马。

哪个同学来读读这节诗?其他同学听后说说:你是怎样理解这节诗的?(温馨提示:注意红色的字词)

诗句3.  情愿作野草,等着地下的火烧。

请同学跟老师一起来理解这句诗的意思。

诗句4. 骑在人民头上的/ 人民把他摔垮;给人民作牛马的/ 人民永远记住他!

这里的“摔垮”有什么深刻的含义呢?

诗句5. 把名字刻入石头的/ 名字比尸首烂得更早; 只要春风吹到的地方/ 到处是青青的野草。

请同学跟老师一起来理解这句诗的意思。

四、分角色朗读,体会表达方法。

1.朗读要求:

(1)男同学读每节诗的第一、二行,女同学读每节诗的第三、四行。

(2)要有感情地读,读出人民对反动派的恨和对像鲁迅这样的人的爱的感情来。

2读完成后思考:诗歌是为纪念鲁迅先生(“有的人”)而写,但为什么还要写反动统治者(“有的人”)?这样写的用意是什么?

这里运用了对比的手法。更好地表现了广大人民群众对鲁迅先生的无比崇敬和爱戴之情

3. 请找出文中具体运用对比的手法的地方

1、每一小节前后两句话构成对比。

2、第二小节和第五小节构成对比。

3、第三小节和第六小节构成对比。

4、第四小节和第七小节构成对比。

五、领悟诗歌主旨。 (填空:课件出示)

六、拓展延伸。

1. 你还知道哪些像鲁迅一样一心为人民的典范呢?请你说一说。

图片出示鲁迅这样的人物(配解说)

2. 欣赏歌曲《八荣八耻》。

[《有的人》教学设计 (人教新课标六年级上册)]

篇18:比例的意义和基本性质 教案教学设计(人教新课标六年级上册)

1、

教学内容:比例的意义

教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

教学重点:比例的意义。

教学难点:找出相等的比组成比例。

教学过程:

一、 旧知铺垫

1、 什么是比?

(1) 一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

300:5=60:1

(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

1.2:1.4=12:14=6:7

2.求下面各比的比值。

12:16      :     4.5:2.7     10:6

二、探索新知

1.教学例1。

(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

①说一说各幅图的情景。

②图中有什么相同之处?

(2) 你知道这些国旗的长和宽是多少吗?

① 出现各图中国旗的长、宽数据。

② 测量教室里国旗的长、宽各是多少厘米。

(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?

学生回答教师板书:

60:40=

(3) 操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

① 学生回答长、宽比值。

2.4:1.6=

② 两面国旗的长和宽的比值相等。

板书:2.4:1.6=60:40

也可以写成 =

(5)什么是比例?

在这一基础上,教师可以明确告诉学生比例的意义,并板书:

表示两个比相等的式子叫做比例。

(6)找比例。

师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?

过程要求:

① 学生猜想另外两面国旗长、宽的比值。

② 求出国旗长、宽的比值,并组成比例。

③ 汇报。

如:5: =           15:10=

5: =15:10      5: =2.4:1.6

=             =

2.做一做。

完成课文“做一做”。

第1题。

(1) 什么样的比可以组成比例?

(2) 把组成的比例写出来。

(3) 说一说你是怎么找的。

(4) 同学之间互相交流,检验各自所写的比例。

第2题。

(1) 学生独立写比例,看谁写得多。

(2) 同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

3.课堂小结。

(1)什么叫做比例?

(2)一个比例式可以改写成几个不同的比例式?

三巩固练习

完成课文练习六第1~3题。

四作业

课后记:

教学内容:比例的基本性质

教学目标:

1. 使学生进一步理解比例的意义,懂得比例各部分名称。

2. 经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3. 能运用比例的基本性质判断两个比能否组成比例。

教学重点:比例的基本质性。

教学难点:发现并概括出比例的基本质性。

教学过程:

一、 旧知铺垫

1. 什么叫做比例?]

2. 应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4        : 和5:2

: 和 :               0.2:  和1:4

3. 用下面两个圆的有关数据可以组成多少个比例?

如(1)半径与直径的比:  =

(2)半径的比等于直径的比:  =

(3)半径的比等于周长的比:  =

(4)周长与直径的比:  =

二探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6 = 60:40

内项

外项

(2)学生认一认,说一说比例中的外项和内项。

如: : = :

外  内  内  外

项  项  项  项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1) 学生独立探索其中的规律。

(2) 与同学交流你的发现。

(3) 汇报你的发现,全班交流。

板书:两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

外项的积等于内项的积。

(4) 举例说明,检验发现。

如: :0.5=1.2:

两个外项的积是 × =0.6

两个内项的积是0.5×1.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如: =

2.4×40=1.6×60

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5) 归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4. 填一填。

(1) =

(    )×(    )=(    )×(     )

(2)0.8:1.2=4:6

(    )×(    )=(    )×(     )

(3)4×5=2×10

4:(    )=(    ):(     )

=

5. 做一做。

完成课文中的“做一做”。

6. 课堂小结

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例?

三巩固练习

完成课文练习六第4~6题。

作业

课后记:

教学内容:解比例

教学目标:

1、 使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。

2、 能综合运用比例知识解决有关的实际问题,发展学生的实践能力。

教学重点:解比例。

教学难点:解比例的方法。

教学过程:

一旧知铺垫

1. 什么叫做比例?

2. 什么叫做比例的基本性质?

3. 下面哪组中的两个比可以组成比例?你用什么方法检验?

9:10和3.6:4      1000:0.2和10:0.002

: 和 :          和

4. 填一填.

(1)  =

1.6×(    )=(    )×(    )

(2)5:  =2.4:1.6

5×(    )=(    )×(    )

(3)8×0.1=1×

二探索新知

1.什么叫解比例?

(1)比例中共有几个项?有什么关系?

(2)如果已知比例中的任何三项,能不能求出这个比例中的另外一个未知项?

(3)说明什么叫做解比例。

板书:求比例中的未知项,叫做解比例。

2.教学例2。

(1)出示课文例题和情境图。

(2)根据题意,描述两个相等的比。

(3) 指出其中的未知项,说一说你想怎样解答。

(4) 学生独立思考,解决问题。

(5) 汇报解答情况。

板书:

解:设这座模型的高度为X米。

X:320=1:10

10X=320×1       (问:根据什么?)

X=

X=32

或者:

10X=320×1         (问:根据什么?)

X=

X=32

(6) 小结。

说一说你是怎样解比例的,解比例的关键是什么?

4. 教学例3。

解比例 =

过程要求:

(1) 学生独立练习,求出未知项。

(2) 同学之间互相交流,发现问题,及时解决。

(3) 请一位学生上台板演。

解:1.5X=2.5×6

X=

X=10

4.做一做。

5.课堂小结。

(1)说一说解比例的方法。

(2)你有什么不懂之处,与同学交流。

三巩固练习。

完成课文练习六的第7~13题。

作业:

课后记:

篇19:3.比和比的应用 教案教学设计(人教新课标六年级上册)

【教学目标】

1、理解比的意义,掌握比的各部分名称,能正确地读写比,并会正确地读比值。

2、理解比的基本性质,掌握化简比的方法。

3、学会并掌握按比例分配应用题的解答方法,能运用这个知来解决一些日常工作、生活中的实际问题。

【教学重点】

1、比的意义。新课标第一网

2、理解比与除法、分数的关系。

3、比的基本性质。

4、会运用商不变的性质或分数的基本性质化简比。

5、理解按一定比例来分配一个量的意义。

6、根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。

【教学难点】

1、理解比的意义,建立比的概念。

2、理解比与除法、分数的关系。

3、理解比的基本性质,掌握化简比的基本方法。

4、能解决一些简单的实际问题。

第一课时   比的意义

【教学过程】

一、创设情境,揭示课题

1、电脑课件呈现我国第一艘载人飞船“神舟”五号顺利升空的影像资料。(或实物投影出示课文插图)

画面呈现联合国国旗和中华人民共和国国旗。

师:根据杨利伟展示的两面旗都是长15cm,宽10cm。你可以提出什么问题,怎样解答(分组讨论并汇报讨论结果)

二、课堂实施:

(1)比的意义:

师:在长和宽的关系中,我们可以把15÷10和10÷15换成另一种说法。就是长和宽的比是15比10,宽和长的比是10比15。这就是我们今天所要学习的新的知识。(板书课题)

师: 这是一组同类量之间的比,不同类量之间也可以比  如“神舟”五号进入运行轨道后,在距地350千米的高空作圆周运动,平均90分钟绕地球一周,大约运行42252千米。我们也可以用比来表示路程和时间的关系。

路程和时间的比是42252比90。

由此可以推出比的意义:两个数相除又叫做两个数的比。

(2)比的写法: (学生自己独立阅读教材,掌握比的写法)

(3)比中各部分的名称:

师:比是除法的另一种表示方法,当除法写成比后,各部分的名称就发生了变化,请同学们在教科书中查出比各部分的名称。

(4)比的另一种写法:根据分数与除法的关系,两个数的比也可以写成分数形式。例如:15:10也可以写成15/10,仍读作“15比10”。(5)讨论比、分数和除法的关系 (分组讨论并汇报)

三、课堂练习:教科书第44页“做一做”

四、板书设计:

比的意义

同类量:                            比的写法:

长和宽的比是15比10,         15比10写作:15:10

宽和长的比是10比15。         10比15写作:10:15

不同类量:

路程和时间的比是42252比90    42252比90写作:42252:90

比的意义:两个数相除又叫做两个数的比。

篇20:用比例解决问题 教案教学设计(人教新课标六年级下册)

导学内容:P59--60页例5、例6,完成做一做及练习九3--7题

导学目标

1、使学生能正确判断实际问题中涉及的量成什么比例关系,能利用正、反比例正确解答实际问题。

2、引导学生利用已学知识,自主探索,培养学生问题解决的能力。

导学重点:用比例知识解答比较容易的归一、归总应用题。

导学难点:正分析题中的比例关系,列出方程。

预习学案

1.一辆汽车行驶的速度不变,行驶的时间和路程。

2.一辆汽车从甲地开往乙地,行驶的时间和速度。

看上面的题,回答下面的问题:

(1)各有哪三种量?

(2)其中哪一种量是固定不变的?

(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

导学案

1、学习例5

(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

(2)学生读题后,思考和讨论下面的问题:

① 问题中有哪两种量?

② 它们成什么比例关系?你是根据什么判断的?

③ 根据这样的比例关系,你能列出等式吗?

(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(4)根据正比例的意义列出方程:

解:设李奶奶家上个月的水费是χ元。

12.8/8=χ/10

8χ= 12.8×10

χ=128÷8

χ= 16 答:李奶奶家上个月的水费是16元。

(5)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、学习例6新课标第一网

(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

(3)指名板演,全班评讲。

4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

巩固练习

1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

2、完成练习九第5、6、7题。

总结:用比例知识解决问题的步骤是什么?

课堂检测

一、填空

1、车轮直径一定,所行的路程和车轮的转数成(    )比例。

2、因为每度电的价格一定,所以电费和用电的度数成(  )比例。

3、如果苹果的总重量一定,那么箱数和每箱的重量成(  )比例,也就是说,每箱的重量和箱数的(    )相等。

二、解决问题

1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地的距离是400千米,需要行驶多少小时?xkb1.com

2、一个修路队,原计划每天修400m,15天可以修完。结果12天就完成任务,实际每天修多少米?

3、学校用同样的方砖铺地,铺5m2 ,用了方砖120块,照这样计算,再铺23m2,一共用了这种方砖多少块?

课后拓展

如图,有一只老鼠沿着A→B→C的方向逃跑,同时有一只猫也从A点出发沿着A→D→C 的方向追捕老鼠,在E点将老鼠捉住。已知老鼠的速度是猫的58 ,且CE长9米。求平行四边形ABCD的周长。

板书设计

用比例解决问题

例5 张大妈家上个月用了8吨水,水费       例6.一批书如果每包20本,要

是12.8元,李奶奶家用了10吨水,水        捆18包,如果每包30本,要捆

费是多少元?                              多少包?

解:设李奶奶家上个月的水费是x元。      解:设要捆x包。

12.88 =x10                                  30x=20×18

8x=12.8×10                               30x=360

8x=128                                    30x=36030

x=1288                                       x=12

x=16

答:李奶奶家上个月的水费是16元。         答:要捆12包。

《解比例》教学设计 (人教新课标六年级上册)

比例的应用(比例尺) 教案教学设计(人教新课标六年级下册)

P35~37解比例 教案教学设计(人教新课标六年级下册)

课题:《位置》 教案教学设计(人教新课标六年级上册)

比例尺的应用 教案教学设计(人教新课标六年级下册)

四年级上册语文教案设计人教部编版

新课标六年级数学上册教案

《用比例解决问题》的教学设计 (人教新课标六年级下册)

《一夜的工作》教案 (人教新课标六年级上册)

《负数的应用》教学设计 (人教新课标六年级下册)

比例的应用 教案教学设计(人教新课标六年级上册)(共20篇)

欢迎下载DOC格式的比例的应用 教案教学设计(人教新课标六年级上册),但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档