P35~37解比例 教案教学设计(人教新课标六年级下册)

| 收藏本文 下载本文 作者:高高兴兴上学

下面是小编为大家准备的P35~37解比例 教案教学设计(人教新课标六年级下册)(共含12篇),欢迎阅读借鉴。同时,但愿您也能像本文投稿人“高高兴兴上学”一样,积极向本站投稿分享好文章。

P35~37解比例 教案教学设计(人教新课标六年级下册)

篇1:P35~37解比例 教案教学设计(人教新课标六年级下册)

第二课时

教学内容:P35~37  解比例

教学目的:1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。

3、培养学生的知识迁移的能力,增强学生的合作意识。

教学重点:使学生掌握解比例的方法,学会解比例。

教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

教学过程:

一、回顾旧知,复习铺垫

1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

2、判断下面每组中的两个比是否能组成比例?为什么?

6:3和8:4      : 和 :

3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)

二、引导探索,学习新知

1、什么叫解比例?

我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

2、教学例2。

(1)把未知项设为X。解:设这座模型的高是X米。

(2)根据比例的意义列出比例:X:320=1:10

(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。

根据比例的基本性质可以把它变成什么形式?3x=8×15。

这变成了什么?(方程。)

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。

(4)学生说,教师板书解比例的过程。

教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

3、教学例3。

出示例3:解比例 =

提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)

这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6

让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。

4、总结解比例的过程。

刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

5、P35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。

三、巩固深化,拓展思维

P37第7题。

四、全课小结,提高认识

什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?

五、课堂练习,辅助消化

P37~38第8~11题。

六、课外补充,拓展延伸

1、P38第12、13题。

2、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?

3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。

4、一个比例的四个项都是大于0的整数,它的两个比的比值都是 ,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。

篇2:解比例教学设计 (人教新课标六年级下册)

导学内容:P35页例2例3,完成做一做及练习六7--11题

导学目标

1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。

3、培养学生的知识迁移的能力,增强学生的合作意识。

导学重点:使学生掌握解比例的方法,学会解比例。

导学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

预习学案

依照下面的条件列出比例,并且解比例。

(1)72和24的比等于15和x的比。

(2)等号左端比的前项和后项分别是0.4和16,等号右端的比是8:x。

(3)x和23 的比等于35 和14 的比。

(4)比例的两个外项分别是4和10,两个内项分别是x和28。

导学案

我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

学习例2

(1)把未知项设为x。

(2)根据题意列出比例:x::320=1:10

(3)怎样解这个比例?解比例的根据是什么?

(4)一名同学到黑板解答。

从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。新课标第一网

学习例3 解比例1.52.5 =6x

这个比例和例2的比例有什么区别?哪是比例的前项和后项?根据比例的基本性质应该怎样解?

根据学生的回答总结出,像例3这种形式的比例要交叉相乘来解。

总结解比例的过程。

刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

课堂检测新课标第一网

1、解比例。

X:10=14 :13     0.4:x=1.2:2    1.2:2.4=3:x

2、汽车厂按1:24的比生产了一批汽车模型。轿车模型长24.92厘米,它的实际长度是多少?公共汽车长11.76米,模型车的长度是多少?

课后拓展

小芳调制了两杯糖水,第一杯用了25克糖和200克水,第二杯用了30克糖和250克水。

(1)分别写出每杯糖水中糖与水质量的比,看它们能否组成比例。

(2)按照第一杯糖水中糖与水的比计算,300克水中应加入糖多少克?

板书设计

解比例

解比例:求比例中的未知项。

例2 法国巴黎的埃菲尔铁塔320m。        例3 解比例 1.52.5 =6x

北京的“世界公园”里有一座埃菲            解:1.5x=2.5×6

尔铁塔的模型,它的高度与原塔高                1.5x=15

度的比是1:10。这座模型高多少米?               x=151.5

解:设这座模型的高度是x米。                     X=10

x:320=1:10

10x=320×1

x=3 新课标第一网

x=32

篇3:《解比例》教学设计 (人教新课标六年级下册)

张鸿森供稿

【教学内容】人教版六年级下册P35例2、例3及做一做。

【教学目标】

1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

2、学会应用比例的意义和基本性质解决实际问题。

【教学重点】掌握解比例的方法,会解比例。

【教学难点】应用比例的意义和基本性质解决生活中的实际问题。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做解比例

2、我国国旗的长与宽的比是3:2,如果我们学校的国旗长是240厘米,求我们学校国旗的宽是多少厘米?

(1)你会解答吗?独立解答后,同桌间相互说说想法。

(2)反馈交流

①240÷3×2=160(厘米)

②解:设我们学校国旗的宽是 厘米。

240:  =3:2

3 =240×2

=240×2÷3

=160

答:我们学校国旗的宽是160厘米。

(3)你是怎么想的?

二、关键点拨

1、用比例解决实际问题

(1)你明白第二种解法的意思吗?

(2)国旗长和宽的最简整数比和实际长度比可以组成比例,所以可以把国旗的宽设为 厘米,建立比例240:  =3:2,再通过解比例求出 的值。

(3)小结:这种方法叫做用比例解决实际问题。

2、解比例的方法

(1)你是怎样解比例240:  =3:2的?

(2)根据比例的意义,先求出3:2的比值,把比例转化为方程,再求 的值。

(3)根据比例的基本性质“两个外项的积等于两个內项的积”把比例转化为方程,再求出 的值。

(4)怎样才可以确定 的值是正确的?(检验)

(5)你更喜欢哪种解法?为什么?

三、巩固练习

1、解下面的比例

:10= :    0.4:  =1.2:2     =

2、把左边的三角形按比例缩小后得到右边的三角形,求未知数X。(单位:厘米)

学生独立完成,汇报交流。

3、小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水;第二杯用了30毫升蜂蜜和250毫升水。

(1)分别写出每杯蜂蜜水中蜂蜜和水体积的比,看它们能否成比例。

(2)照第一杯蜂蜜水中蜂蜜和水的比计算,300毫升水中应加入蜂蜜多少毫升?

学生回答第一个问题,板书。再让学生观察是否能成比例。

分析:第一个问题应该说比较简单,比分别是25:200和30:250。

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

《练习六》的教学设计

张鸿森供稿

【教学内容】人教版六年级下册P36-38练习六。

【教学目标】

1、通过练习,进一步巩固比例的意义和基本性质。

2、培养学生学习数学的自信心。

【教学重点】掌握解比例的方法,会解比例。

【教学难点】应用比例的意义和基本性质解决生活中的实际问题。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

小组代表展示对“比例的意义和基本性质”的整理成果,小组内成员可以互相补充完善。

(可能出现文字整理和用具体例子并画图整理的情况。)

【设计意图:让每一位学生动起来,首先让小组内后进生先说,有优生补充。给每类学生展示的舞台。】

二、智慧大冲关

师:下面我们进行智慧大冲关,这里为同学们准备了几关练习题,看你能冲到哪一关。

第一关:我学会了比例的意义和基本性质

1、下面是不是比例,为什么?

15:3    20:4    0.3:0.4=3:4      a:b=1:2

2、下面两个比能否组成比例吗?为什么?

3.6∶1.8和0.5∶0.25   40∶80和1/2∶1/4

18:12和30:20

有A类学生读答案,C类学生补充释疑。

生1:3.6∶1.8的比值是2,而且0.5∶0.25得比值也是2,所以他们能组成比例。

生2:3.6∶1.8=0.5∶0.25因为他们内项的积等于外项的积。

生3:我们要区分好比和比例。比例是一个等式,比不是。

师小结:我们可以根据两个相等的比叫做比例和比例的内项积等于外项积两种方法来判断是否能组成比例。

第二关:解比例,请独立做,比比看谁最认真。

X∶6.5=6∶4          5∶8= X∶16

由A类学生说答案,出现错题时给他一定的时间改错。

C类学生总结解比例需要注意的事项。

师小结:用内项的积等于外项的积来解比例。

第三关:请独立思考,有疑难点小组内讨论解决。

1、请大家用1,2,4,8这四个数组成一些比例

学生展示组成的比例并解释理由。

师总结:判断两个比能否组成比例的基本性质的三种方法:①比例的意义;②比例的基本性质;③比的基本性质。要根据具体情况灵活选择判断方法。

生继续展示其他的比例。

师:前面我们利用4个数可以组成8个不同的比例,并且从中发现了比例的基本性质。

2、a∶b=c∶d,如果把a扩大到原来的10倍,要使比例成立,则(    )

① b缩小到原来的          ②c扩大到原来的10倍

③d扩大到原来的10倍      ④c缩小到原来的

第四关:请自由组合,共同探讨,共同解决。

1、根据4×6 = 3×8写出比例,你能写出几个?

2、已知a和b都是自然数,3∶b=a∶8,你知道ab各是多少吗?

下课前2分钟,师出示本题的答案,请优等生们比较讨论。不做统一的讲解。

师:如果这道题同学有什么问题,可以课后问老师。

三、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

学习成绩较差的学生更渴望得到老师和同学们的欣赏,更渴望享受成功的快乐。

在数学练习课的设计上,我摒弃以往的通学通练的模式,而是将练习题由易到难设计成几关,前两关是基础题,后两关是能力题。如此,让优等生能攻克更多的难题,更重要的是让后进生也能体验到冲关成功的快乐,增强他们的信心。提高他们的学习兴趣。

不足之处:练习题的设计层次性还要再加强一些。第三关的题要再稍微降低一些难度,让A层次的学生有时也能做出来。

篇4:人教新课标六年级下册《解比例》教学设计

人教新课标六年级下册《解比例》教学设计

一、教材分析

这部分内容是比例基本性质的应用,方法是依据比例的基本性质,把比例转化为方程,通过解方程的方法来求解。学习这节内容,可以为接下来学习比例尺和用比例解决问题做准备。

二、教学目标

1、在解比例的过程中进一步理解和掌握比例的基本性质,学会解比例的方法。

2、联系学生的生活实际创设情境,体现解比例在生产、生活中的广泛应用。

3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力。

三、教学重难点

1、重点:自主探究出解比例的方法,并能轻松求出比例中的未知项。

突破方法:小组交流讨论,探究比例中未知项的各种计算方法,并从中进行优化。

2、难点:灵活运用解比例的方法解决问题。

突破方法:了解各种和比例知识相关的问题,掌握应用比例的基本性质灵活解决这些问题的方法。

四、教法与学法

1、教法:教师指导学生通过自主思考,交流讨论掌握解比例的方法。

2、学法:学生独立探究,全班交流,优化出解比例的方法。

五、教学准备

1、教师:教材例题投影图。

2、学生:常规学习用具。

六、教学过程

复习导入1、复习

(1)什么叫做比例?什么叫做比例的基本性质?

(2)用比例的基本性质判断下面哪一组中的`两个比可以组成比例?

18:20和7.2:8、100:0.2和10:0.0022导入新课

谁能很快说出下面比例中缺少的项各是几?(学生试说)14:21=2:、1.25:()=2.5:4

教师指出:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。这节课我们就一起来探究解比例的方法。设计意图:通过复习比例的意义和比例的基本性质,为学习解比例的知识做准备。互动新授

(一)教学例二

1、投影出教材第42页例二。

法国巴黎的埃菲尔铁塔高度约320m,北京的世界公园里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1:10.这座模型高多少米?

2、阅读与理解

(1)学生独立读题,找出已知条件和所求问题。

(2)小组内交流获得的信息。

已知条件:埃菲尔铁塔的高度约320m,埃菲尔铁塔模型的高度与原塔高度的比是1:10。所求问题:这座模型高多少米?

3、分析与解答

(1)分析题意,根据题意描述两个相等的比。模型高度:实际高度=1:10。

(2)指出其中的未知项,说一说你想怎样解答。

设计意图:引导学生先独立思考,再组织学生合作交流。交流中既要听取学生的意见,又要注意引导学生从多角度思考解决问题的方法。

例如,把比看作除法,那么x:320=1:10就可以转化成x/320=1/10,学生就可以运用原来学习解方程的有关知识来解;也可以应用比例的基本性质,把x:320=1:10转化成10x=320*1来解。

(3)教师根据学生的汇报交流情况进行板书。解:设这座模型的高度是xm。x:320=1:10

10x=320*1(问:根据什么?)x=320*1/10x=32

答:这做模型高32m。

(二)教学例三

1、出示教材第42页例三。

解比例2.4/1.5=6/x。

2、让学生说说这个比例中的内项和外项分别是什么。内项是1.5和6,外项是2.4和x。

3、学生独立解答

教师巡视,进行个别辅导。

4、组织交流订正解:2.4*x=1.5*6x=1.5*6/2.4x=15/4

5、小结

提问:解比例的方法是什么?

比例就是一种特殊的方程,不论在书写格式还是验算方法上,它与解方程都是相同的。解比例时,先根据比例的基本性质把比例转化为方程,再按解方程的方法进行解答。

七、巩固练习

1、教材第42页“做一做”第一题

这道题设计了三道未知项的位置不相同以及不同形式的比例,通过练习巩固解比例的方法。先让学生独立解答,再进行交流订正。

2、教材第42页“做一做”第二题

这道题的解题方法和例题类似,可以让学生独立思考解答。

3、在一个比例中,两个外项正好互为倒数,已知一个内项是3,另一个内项是多少?

八、课堂小结

通过这节课的学习,你有什么收获?

今天这节课,我们学习了解比例的知识。在解比例时,我们先根据比例的基本性质把比例转化成方程,再按照解方程的方法进行解答。

九、板书设计解比例

例2:解:这座模型的高度是xm。x:320=1:10

10*x=320*1(根据比例的基本性质)x=320*1/10x=32

答:这座模型高32m。

篇5:《解比例》教学设计 (人教新课标六年级上册)

张鸿森供稿

【教学内容】人教版六年级下册P35例2、例3及做一做。

【教学目标】

1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

2、学会应用比例的意义和基本性质解决实际问题。

【教学重点】掌握解比例的方法,会解比例。

【教学难点】应用比例的意义和基本性质解决生活中的实际问题。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做解比例

2、我国国旗的长与宽的比是3:2,如果我们学校的国旗长是240厘米,求我们学校国旗的宽是多少厘米?

(1)你会解答吗?独立解答后,同桌间相互说说想法。

(2)反馈交流

①240÷3×2=160(厘米)

②解:设我们学校国旗的宽是 厘米。

240:  =3:2

3 =240×2

=240×2÷3

=160

答:我们学校国旗的宽是160厘米。

(3)你是怎么想的?

二、关键点拨

1、用比例解决实际问题

(1)你明白第二种解法的意思吗?

(2)国旗长和宽的最简整数比和实际长度比可以组成比例,所以可以把国旗的宽设为 厘米,建立比例240:  =3:2,再通过解比例求出 的值。

(3)小结:这种方法叫做用比例解决实际问题。

2、解比例的方法

(1)你是怎样解比例240:  =3:2的?

(2)根据比例的意义,先求出3:2的比值,把比例转化为方程,再求 的值。

(3)根据比例的基本性质“两个外项的积等于两个內项的积”把比例转化为方程,再求出 的值。

(4)怎样才可以确定 的值是正确的?(检验)

(5)你更喜欢哪种解法?为什么?

三、巩固练习

1、解下面的比例

:10= :    0.4:  =1.2:2     =

2、把左边的三角形按比例缩小后得到右边的三角形,求未知数X。(单位:厘米)

学生独立完成,汇报交流。

3、小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水;第二杯用了30毫升蜂蜜和250毫升水。

(1)分别写出每杯蜂蜜水中蜂蜜和水体积的比,看它们能否成比例。

(2)照第一杯蜂蜜水中蜂蜜和水的比计算,300毫升水中应加入蜂蜜多少毫升?

学生回答第一个问题,板书。再让学生观察是否能成比例。

分析:第一个问题应该说比较简单,比分别是25:200和30:250。

四、分享收获  畅谈感想

这节课,你有什么收获?

听课随想

反思与体会:

篇6:比和比例 教案教学设计(人教新课标六年级下册)

第一课时

教学目标:

使学生进上步理解和掌握比和比例的意义与性质。

区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

教学过程:

讲述本课复习课题并板书

基本概念的复习

比和比例的意义与性质。

什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?

比和分数、除法有什么联系?

说说比的基本性质的比例的基本性质?

比的基本性质与比例的基本性质各有什么用处?

看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

完成教材95的“做一做”。

结合第3题让学生说说什么叫做解比例?根据是什么?

示比值和化简比。

独立完成教材96页上的题目。

说说求比值与化简比的区别?

(求比值是根据比的意义。用前项除以后项,得到 结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

看书中的表,总结方法。

完成教材96页的“做一做”

比例尺

问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

比例尺除写成数字化形式处,还可怎样表示?

完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)

练习巩固

完成教材十九页第1~4题。

全课总结(略)

篇7:用比例知识解应用题 教案教学设计(人教新课标六年级下册)

第三课时

教学目标:

使学生进一步理解和掌握用比例知识解答应用题的方法。

抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。

通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。

教学过程:

师:谁能够说说用比例知识解应用题的关键是什么?

判断下题中各量成什么比例?并说明理由?

指导学习题例。

让学生独立解答例7。

在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。

相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。

不同点:第一种解法是直接设所求问题为X。

第二种解法是间接设,即解出X后,还要用X减3才是所求问题。

师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。

学习例6

师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。

对比小结

比较例5 例6有什么不同?分别是根据什么关系来解答的?

(强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用X代替,列出方程解答)

算术解法和比例解法的比较和联系。

观察算式(例5)

练习巩固

笔答题:教材117页1~3题。

全课总结(略)

篇8:比例的应用 教案教学设计(人教新课标六年级下册)

教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

(一)复习

1.说说正、反比例的意义。

2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从A地到B地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

(二)新课

例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

(1)用以前方法解答。

(2)研究用比例的方法解答

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题

甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

1、以前的发法解答。

2、怎样用比例知识解答?

3 讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

整理和复习

教学要求:

1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

2、使学生能正确理解正、反比例的意义,能正确进行判断。

3、 培养学生的思维能力。

教学过程:

知识整理

1回顾本单元的学习内容,形成支识网络。

2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

复习概念

什么叫比?比例?比和比例有什么区别?

什么叫解比例?怎样解比例,根据什么?

什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

什么叫比例尺?关系式是什么?

基础练习

1填空

六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是(    )。

小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是(     )。

甲乙两数的比是5:3。乙数是60,甲数是(    )。

2、解比例

5/x=10/3                   40/24=5/x

3 、完成26页2、3题

综合练习

1、A×1/6=B×1/5              A:B=(   ):(   )

2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

3用5、2、15、6四个数组成两个比例(  ):(  )、( ):( )

实践与应用

1、如果A=C/B那当(  )一定时,(   )和(   )成正比例。当(  )一定时,(  )和(   )成反比例。

2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?

篇9:比例的应用 教案教学设计(人教新课标六年级下册)

教学内容:教科书第6~8页的例4~例6,练习二的第1题。

教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。

教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。

教学难点:设未知数时长度单位的使用。

教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。

教学过程:

一、复习

1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。

1米=(    )分米=(     )厘米=(      )毫米

1千米=(     )米=(      )厘米

2.什么叫做比?

3.化简下面各比。        12 :8          10厘米:100厘米

2米:140厘米    3米:15千米        16厘米:90千米

二、新课

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。Xkb1.com

1.教学比例尺的意义。

(1)教学例4。

设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。

让学生读题。指名回答:

“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)

“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离 :实际距离

“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:

图上距离 :实际距离

10厘米 :    10米

“10厘米和10米的单位相同吗?能直接化简吗?”

教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)

“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。

“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“ :”,板书成如下形式:

图上距离 :实际距离

10  :  1000

请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:…”。

然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或

图上距离 =比例尺

实际距离

图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。

教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

最后教师指出:

①比例尺与一般的尺不同,这是一个比,不应带计量单位。

②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。

③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。比如,例4中的比例尺通常写成:1:100=

(2)巩固练习。

让学生完成第6页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“ l”。

2.教学根据比例尺求图上距离或实际距离。

教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。

(1)教学例5。

在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米? 新 课标 第一 网

指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)

教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。

“这道题的图上距离是多少?”板书:15

“实际距离不知道,怎么办?”(用x表示。)在15的下面板书出x,并在它们中间画上分数线。

“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。

“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:

15 =    1

x 6000000

指定一名学生到前面求X的值,其他学生在练习本上做。订正后,回答:

“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:90000000厘米=900千米,并写出这道题的答。

之后,再回忆一下解答过程。

(2)巩固练习。

做第 7页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。

(3)教学例6。

出示例6:一个长方形操场,长110米,宽90米,把它画在比例尺是 的图纸上,长和宽各应画多少厘米?

指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)

教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少?

然后让学生求x的值,并说出求解过程,教师板书出来。

“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。

三、练习

1、比例尺=(         )          实际距离=(                )              图上距离=(                 )

2.2.5米=(         )厘米         0.00006千米=(            )厘米      0.032米=(        )厘米             350000厘米=(             )千米              3.5千米=(           )厘米

1、独立完成练习二第1题,并订正。

2、完成练习二的第2题、3题。

第3题,让学生先想想比例尺子 表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。

篇10:用比例解决问题 教案教学设计(人教新课标六年级下册)

导学内容:P59--60页例5、例6,完成做一做及练习九3--7题

导学目标

1、使学生能正确判断实际问题中涉及的量成什么比例关系,能利用正、反比例正确解答实际问题。

2、引导学生利用已学知识,自主探索,培养学生问题解决的能力。

导学重点:用比例知识解答比较容易的归一、归总应用题。

导学难点:正分析题中的比例关系,列出方程。

预习学案

1.一辆汽车行驶的速度不变,行驶的时间和路程。

2.一辆汽车从甲地开往乙地,行驶的时间和速度。

看上面的题,回答下面的问题:

(1)各有哪三种量?

(2)其中哪一种量是固定不变的?

(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

导学案

1、学习例5

(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

(2)学生读题后,思考和讨论下面的问题:

① 问题中有哪两种量?

② 它们成什么比例关系?你是根据什么判断的?

③ 根据这样的比例关系,你能列出等式吗?

(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(4)根据正比例的意义列出方程:

解:设李奶奶家上个月的水费是χ元。

12.8/8=χ/10

8χ= 12.8×10

χ=128÷8

χ= 16 答:李奶奶家上个月的水费是16元。

(5)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、学习例6新课标第一网

(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

(3)指名板演,全班评讲。

4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

巩固练习

1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

2、完成练习九第5、6、7题。

总结:用比例知识解决问题的步骤是什么?

课堂检测

一、填空

1、车轮直径一定,所行的路程和车轮的转数成(    )比例。

2、因为每度电的价格一定,所以电费和用电的度数成(  )比例。

3、如果苹果的总重量一定,那么箱数和每箱的重量成(  )比例,也就是说,每箱的重量和箱数的(    )相等。

二、解决问题

1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地的距离是400千米,需要行驶多少小时?xkb1.com

2、一个修路队,原计划每天修400m,15天可以修完。结果12天就完成任务,实际每天修多少米?

3、学校用同样的方砖铺地,铺5m2 ,用了方砖120块,照这样计算,再铺23m2,一共用了这种方砖多少块?

课后拓展

如图,有一只老鼠沿着A→B→C的方向逃跑,同时有一只猫也从A点出发沿着A→D→C 的方向追捕老鼠,在E点将老鼠捉住。已知老鼠的速度是猫的58 ,且CE长9米。求平行四边形ABCD的周长。

板书设计

用比例解决问题

例5 张大妈家上个月用了8吨水,水费       例6.一批书如果每包20本,要

是12.8元,李奶奶家用了10吨水,水        捆18包,如果每包30本,要捆

费是多少元?                              多少包?

解:设李奶奶家上个月的水费是x元。      解:设要捆x包。

12.88 =x10                                  30x=20×18

8x=12.8×10                               30x=360

8x=128                                    30x=36030

x=1288                                       x=12

x=16

答:李奶奶家上个月的水费是16元。         答:要捆12包。

篇11:用比例解决问题 教案教学设计(人教新课标六年级下册)

教学内容:教科书P59~60例5、例6,练习九3、7题。

教学目标:

1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

3、培养学生良好的解答应用题的习惯。

教学重点:用比例知识解答比较容易的归一、归总应用题。

教学难点:正确分析题中的比例关系,列出方程。

教学过程:

一、复习铺垫,引入新课。(课件出示)

1、判断下面每题中的两种量成什么比例?

(1)速度一定,路程和时间.

(2)路程一定,速度和时间.

(3)单价一定,总价和数量.

(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

(5)全校学生做操,每行站的人数和站的行数.

2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

(1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

(2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

(3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?

(1)学生自己解答,然后交流解答方法。

(2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题

二、探究新知。

1、教学例5

(1)学生再次读题,理解题意。思考和讨论下面的问题:

① 问题中有哪三种量?哪一种量一定?哪两种量是变化的?

② 它们成什么比例关系?你是根据什么判断的?

③ 根据这样的比例关系,你能列出等式吗?

(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(3)根据正比例的意义列出方程:

12.88=χ10

解:设李奶奶家上个月的水费是χ元。

8χ= 12.8×10

χ=128÷8

χ= 16

答:李奶奶家上个月的水费是16元。

(4)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、教学例6

(1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)

(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?

(3)学生独立解答。

(4)指名板演,全班交流。

三、巩固提高。

做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

四、课堂小结。

今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

五、课堂作业。

教科书P62练习九第3、7题。

自行车里的数学

教学目标

知识与技能:巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。

过程与方法:经历“提出问题-分析问题-建立数学模型-求解-解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。

情感态度与价值观:加深学生对所学知识及其相互关系的理解。培养学生学以致用,做事认真,用数学眼光透视周围事物,增强数学意识。

教学重难点

引导学生理解变速自行车能变速的原理。

教学过程

一、揭示课题

1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。

2、自行车里会有数学问题吗?想一想。

二、研究普通自行车的速度与内在结构的关系

1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。

2、分析问题

(1)学生讨论如何解决问题。

方案一:直接测量,但是误差较大。

方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。

(2)讨论:前齿轮转一圈,后齿轮转几圈?

前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数

3、建立数学模型,收集数据并求解。

(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)

(2)分组收集所需要的数据,带入上述模式,求出答案。

4、汇报结果。

各小组展示并解释本组的研究过程和结果,在比较结果。

三、研究变速自行车能组合出多少种速度?

1、提出问题:变速自行车能组合出多少种速度?

(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)

(2)根据这个结构,可以组合出多少种速度?

2、分析问题,求解,汇报。

3、蹬同样的圈数,哪种组合使自行车走得最远?

四、学以致用

一辆变速自行车有2个前齿轮,分别有46和38个齿,有4个后齿轮,分别有20、16、14、12个齿,车轮直径66cm。小明从家到学校有一段平路和不是很陡的上坡路。平路1000米,上坡800米,小明如何使用变速车比较合理?小明骑车走这段平路至少蹬多少圈?

五、课堂小结

自行车里的学问可真大,你还能提出一些数学问题并解决吗?

[自行车里的数学]

1、踏板蹬一圈,是不是车轮也走一圈?

2、踏板蹬一圈,所走的路程与什么有关

3检测

(1)、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?

(2)、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)

篇12:《比例的意义》教学设计 (人教新课标六年级下册)

张鸿森供稿

【教学内容】《义教课标实验教科书  数学》(人教版)六年级下册第32-33页例1及“做一做”。

【教学目标】

1、明确比例的意义,掌握组成比例的条件,并熟练地判断两个比能否组成比例。 能根据不同要求,正确的列出比例式。

3、通过学习培养学生学习数学的兴趣。培养学生的观察能力、判断能力。        【教学重点】比例的意义。

【教学难点】求比值判断两个比能否组成比例,并能正确地组成比例。。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做比例?

表示两个比相等的式子叫做比例。

2、今天是星期天,小瑜和小丽一起到文具店去买东西。

(1)小瑜用1 2元买了4本数学本,小丽用9元买了3本,谁买的本子便宜些?

(2)反馈:

①谁买的本子便宜些?说说你的理由。

②还有别的方法吗?

③这两个比能组成比例吗?为什么?

二、关键点拨

1、比例的意义。

出示课件:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(时) 2 5

路程(千米) 80 200

根据表中的数量你能写出几个比例?你是怎么想的?他们的比值分别表示什么?

2、小结:判断两个比能否组成比例,最关键是看什么?

3、比和比例有什么区别?

生讨论汇报:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

三、巩固练习

1、下面哪组中的两个比能组成比例?把组成的比例写出来。课本第33页“做一做”第1题。

2、独立完成“做一做”第2题后反馈交流。

3、5:8和1:5 这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?

反馈:

(1)你给5:8找的朋友是(    ),组成的比例是(    ),向大家介绍你用了什么方法找到的。

(2)想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:www.xkb1.com

在本节课中,我充分重视了学生原有的认知基础,即在学生理解掌握比的意义和基本性质的基础上进行教学的,找准了新知识的生长点,为学生探究新知搭建了平台。 其次,主要采取探究的方式,充分发挥了学生小组合作,组间交流的作用。在比例的意义和基本性质的教学,我都把知识的探究过程留给了学生,问题让学生去发现,共性让学生去探索,将学习内容的“大板块”交给学生,给学生留有足够的时间、空间。采取小组合作交流的方式,获取结论,并对结果进行相互评价,从而使他们体会成功,共享合作学习的乐趣。在这个过程中,学生的主观能动性得以发挥,主体地位得到充分体现。最后,针对在以往的教学中发现学生学习完比例后把比例和比混淆的问题,我还特意增加了比和比例从意义、各部分名称、基本性质等方面进行横向对比的教学环节,加深学生对知识的印象。当然,纵观全课,还有很多不足之处,比如:如何在教学过程中让学生探讨的问题更贴近生活?教师要进行怎样的引导还值得我进一步思考。

《比例的基本性质》教学设计

张鸿森供稿

【教学内容】人教版六年级下册P34比例的基本性质。

【教材分析】

《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材直接以比例“2.4:1.6=60:40” 教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:

“       2.4×40○1.6×60”。在此基础上,发现规律,揭示比例的基本性质。“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。个人认为这样的材料呈现方式至少存在两个弊端:(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;(2)没有给学生想想的猜想和验证的空间。

【教学目标】

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

【教学重点】探索并掌握比例的基本性质。xkb1.com

【教学难点】判断两个比能否组成比例,根据乘法等式写出正确的比例。

【教学设想】:

1、教学情境的呈现

创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。

教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是(    ),两个內项的积是(    ),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。个人认为这样的情境太直接,牵住学生的思维走,没有提供可探究的空间。为此,我简单创设了这样一个情境:老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?这个问题简单却开放,答案不唯一,为学生的思考打开了空间,同时学生可以通过求比值的方法解决:先填进一个数,然后就出比值,再确定另一个数。只要老师有意识的把学生的回答有序板书,可以达到引导有序思考的作用。

2、教学方式的选择

教育的真谛应该是促进人的发展,人的发展当然需要积累一定量的基础知识,更重要的是思维水平的提升和分析问题、解决问题能力的发展。我们的课堂教学要引领学生掌握知识,更要侧重引领学生经历知识的形成过程,让学生在探索知识形成过程的学习中,不断拓展思维的宽度和增加思维的厚度。

比例的基本性质本身并没有难度,难在通过观察、猜测、验证、归纳等数学活动探索“在比例中,两个外项的积等于两个內项的积”这个结论的形成过程。我想,这个探究过程应该就是一个合作、探究学习的过程吧。只有当学生经历了这个探究式学习过程,才有可能真正体验思考与合作的成就感,才能真正激发学生对数学的学习兴趣。

3、练习的设计

(1)判断下面哪组中的两个比可以组成比例。旨在巩固对比例基本性质的掌握,应用比例的基本性质解决问题,渗透假设、验证的解决问题方法,假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。补问引出求比值的方法判断两个比能否组成比例,追问引领学生对求比值判断两个比能否组成比例和用比例的基本性质判断两个比能否组成比例的方法进行比较优化,凸显了比例基本性质的应用价值。

(2)根据乘法等式“2×9=3×6”写比例。既是对比例基本性质的逆用,又旨在渗透有序思考的解决问题策略和方法。

(3)如果a×2=b×4,则a:b=(    ):(    ),旨在将比例的基本性质逆用推广到一般。追问:如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?旨在激发学生的思维矛盾,引领学生打破思维定势,体验变与不变的思想。那么a、b还可能是多少?你发现了什么?旨在引导学生经历一个列举、归纳的过程,提升思维水平。

(4)猜猜我是谁?6:(  )=5: 4,旨在应用比例的基本性质时,渗透方程思想,为解比例的学生作铺垫。

【教学预设】

一、认识比例各部分的名称ww w.xk b1.co m

1、呈现:4:5和8:10

(1)认识吗?叫什么?

(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)

(3)求比值,判断两个比能否组成比例。

2、介绍比例各部分的名称

4:5=8:10 中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4:  = :5  (2)  =

二、探究比例的基本性质

1、猜数

呈现比例“12∶□=□∶2”。

(1)想一想,这两个内项可能是哪两个数?如1和24,2和12,……

(2)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积”;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法?

(2)你觉得应该怎样举例呢?

(3)合作要求

1)前后4个同学为一个小组;

2)每个同学写出一个比例,小组内交换验证。

3)通过举例验证,你们能得出什么结论?

4、小结

(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?

(2)其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)

5、完善

(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)

(2)老师这里也有一个比例0:0=0:0,可以吗?

(3)比例的项不能为0。

6、如果比例写成分数形式 = ,这怎么相乘?

三、巩固练习,应用比例的基本性质

1、判断下面哪组中的两个比可以组成比例。

(1)6:3和8:5       (2) : 和 :

(3)1.2:  和 :5   (4) 和

【学法指导:假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。渗透假设、验证的解题策略和方法。】

(1)先让学生尝试判断,再交流明确思考方法。

(2)还可以用什么方法来判断?你能用求比值的方法1.2:  和 :5能否组成比例吗?

(3)这两种方法,你更喜欢哪种?为什么?

2、根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?

追问:你为什么写得这么快?有什么窍门?【渗透有序思考】

3、如果a×2=b×4,则a:b=(    ):(    );

如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?

那么a、b还可能是多少?你发现了什么?

4、猜猜我是谁?

6:(  )=5: 4新课 标第 一网

四、分享收获  畅谈感想

这节课,你有什么收获?

反思与体会:

课中,猜数环节,学生举了一个这样的例子:12:60=1.2:20,这是一个出错的比例,因为12:60=0.2,1.2:20=0.6,两个比的比值不等,所以两个比不能组成比例,也可以用比例的基本性质判断,12×20≠60×1.2。学生报出错例后我没有及时处理,而是等到学生经历了猜想、验证过程得出了比例的基本性质这一结论后,我才引着学生回头来看这个错例,运用比例的基本性质判断例子的错误性,并改正。也许这可以算本节课的一个亮点,教师抓住了学生的错误,把错误用作了很好的生成资源,从反面验证了比例的基本性质是两个外项的积等于两个內项的积。但是,现在我还是耿耿于怀,我是否应该在学生报出例子后及时指出学生的错误,并引导学生利用求比值的方法进行改正。

《解比例》教学设计 (人教新课标六年级上册)

比例的应用(比例尺) 教案教学设计(人教新课标六年级下册)

《用比例解决问题》的教学设计 (人教新课标六年级下册)

比例的应用 教案教学设计(人教新课标六年级上册)

解比例教学反思

解比例教学设计

《解比例》教学反思

六年级下册数学比例教案15篇

小学六年级数学解比例教案最新范文

倒数的认识 教案教学设计(人教新课标六年级下册)

P35~37解比例 教案教学设计(人教新课标六年级下册)(推荐12篇)

欢迎下载DOC格式的P35~37解比例 教案教学设计(人教新课标六年级下册),但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档