下面是小编整理的三角形的面积 教案教学设计(人教新课标五年级上册)(共含19篇),希望能帮助到大家!同时,但愿您也能像本文投稿人“AKA就酱啦”一样,积极向本站投稿分享好文章。
编排意图:
教材以小组合作学习的形式展现学生探究的过程。首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题;接着根据平行四边形面积公式推导的方法提出解决问题的思路:把三角形也转化成学过的图形;通过学生动手操作和探索,推导出三角形面积计算公式。最后用字母表示出面积计算公式。
教学建议:
(1)本部分教学可按提出问题、寻找思路、实验探究的步骤,以小组合作学习为主的形式进行。学生已经经历了平行四边形面积公式的推导过程,要以学生在推导中获得的经验为基础,放手让学生自主去探究。
(2)学生动手操作实验环节是本部分教学的重点。按教材的编排,把三角形转化成已学过的图形,没有采用平行四边形的割补方法,而是用两个同样三角形拼摆的方法。这个方法推导过程简单,学生比较容易理解和掌握。每个小组最少应准备相同的直角三角形、锐角三角形、钝角三角形各两个,教师可提出明确的操作和探究要求。学生可能拼出三角形、长方形和平行四边形,其中长方形和平行四边形学生已经会计算面积。在小组操作和讨论的基础上组织交流。可以选择用直角三角形、锐角三角形、钝角三角形拼的三种情况分别进行汇报,要求学生能根据拼出的图形叙述出推导的过程。在此基础上作总结归纳。
(3)根据学生的基础,也可以让学生用剪拼或折的方法进行推导,或结合教材第96页介绍的我国古代数学家刘徽的三角形面积计算方法,让学生进行推导,增强学生探究的兴趣,提高学生推理的能力。
练习十六
第1题还可以进行交通常识的教育。
第2题没有给出底和高的数值,要学生想办法求出每个三角形的面积。
第3题根据乘除法的互逆关系灵活运用三角形面积计算公式。
第6题根据三角形面积计算公式,使学生理解三角形相等的基本条件是等底(两个三角形共底)和等高(平行线间的垂直距离都相等)。可以让学生先讨论:图中你能找到几个三角形?哪两个三角形面积相等吗?为什么?再根据等底等高三角形面积相等的道理,画出三角形。
第7题是运用等底等高三角形面积相等的道理去分三角形(将底平分为4份)。
第8*题是选作题。已知两个三角形的面积和高,可以分别求出它们的底长,也就是平行四边形的两条边长。
第9*题也是选作题。可以让学生根据三角形面积公式的推导和对三角形面积相等的判别知识进行推理。平行四边形的对角线把平行四边形分成两个相等的三角形,每个三角形面积是平行四边形面积的一半; 点是其中一个三角形底边的中点。根据等底等高三角形面积相等,涂色的三角形的面积是这个三角形面积的一半,也就是平行四边形面积的四分之一。所以涂色三角形的面积是 48÷4=12(㎡)。
梯形的面积
编排意图:
与前两节一样,先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形面积计算公式。但是要求又有提高,不再给出具体的方法,而是要求用学过的方法去推导梯形面积计算公式。这里仍然要运用转化成已学过图形的方法,但是从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。
教学建议:
(1)学生经过平行四边形和三角形面积公式的推导,已经知道要把梯形转化为学过的图形进行推导。前面平行四边形和三角形转化的方法不同,平行四边形主要是用割补的方法,而三角形主要用拼的方法。本课要求用学过的方法去推导,没有指明具体的方法。在学生操作实验前,可以先回忆一下前面运用过的两种方法,有条件的可以把前面推导的过程制成课件,比较直观。在此基础上放手让学生自己去做,教师不必提出统一的操作要求。
(2)梯形面积计算公式推导有多种方法,教材显示了三种方法。
第(1)种方法比较容易推导和理解,(2)和(3)因为涉及乘除法运算定律 、性质和等式变形,学生的推导会有困难。教学中要鼓励学生用多种方法进行推导,在此基础上进行汇报和交流。可以第(1)种方法为研究重点,让学生叙述推导的过程,得出梯形面积计算公式。(2)和(3)种方法可视学生接受能力,不做统一要求。
学生在操作实验中,可能会出现更多的方法。例如教材第96页的方法,注意给学生留有较充分的操作和交流时间。
练习十七
第3题要选择条件进行计算,有些是间接条件要转化为直接条件。通过练习可以加深学生对梯形面积计算公式的理解和记忆。
第6题,可结合教材中的图使学生理解圆木堆的横截面可以看作一个梯形,梯形的上底长相当于顶层的根数,梯形的下底长相当于底层的根数,梯形的高相当于圆木的层数。所以可以借助梯形面积计算公式计算出圆木的总根数。
第8*题是选作题。首先要考虑如何剪去一个最大的平行四边形。应该是以梯形上底长度为底长的平行四边形。
组合图形的面积
组合图形面积的计算在义务教育教材中是选学内容。现在放在多边形面积计算最后学习,有利于综合运用平面图形计算的知识,进一步发展学生的空间观念。
编写意图:
由于实际生活中,我们见到的物体表面,许多是由我们已学过的正方形、长方形、平行四边形、三角形及梯形组合成的图形,所以教材紧密结合生活实际认识组合图形。
首先提供了几个生活中具体物品:中队旗、房屋的一面墙、风筝、由七巧板拼成的一个长方形,通过在这些物品的表面中找图形,使学生认识组合图形是由几个简单图形组合而成的。然后要求学生在自己的生活中找一找组合图形,以巩固对组合图形的认识。
例4是学习组合图形面积的计算,因为限于简单的组合图形,教材主要安排2~3个简单图形的组合。由于一个组合图形可以有不同的分解方法,教材展示了两种计算方法。
教学建议:
(1)可以使用教材中的实例,也可以应用学生身边的实例。有条件的地方可以做成幻灯片或多媒体课件,方便学生观察和讨论。着重让学生观察这些物品的表面有哪些我们学过的图形,建立组合图形的概念,同时为学习组合图形面积的计算打下基础。
(2)观察实物注意从易到难,例如,房子和七巧板,比较容易找到组成它们的图形,而中队旗学生可能就会有不同的看法,可以看成有两个梯形,也可以看成有一个长方形和两个三角形,还可以看成有一个梯形和一个三角形。要鼓励学生发表不同的看法。
(3)找生活中的组合图形时,要强调从物体的表面上找,不要与立体组合图形混淆。
(4)教学例4时,可先组织学生讨论:怎样才能计算出这面墙表面的面积?明确计算组合图形面积的基本思路,即可以把组合图形分成我们已经会计算面积的简单图形,分别计算出它们的面积,再求和。
(5)在讨论的基础上,让学生试做。鼓励学生用不同的方法去计算,然后交流各自的算法。还可结合学生提出的方法,让学生比较一下,哪种方法简便。通过试做、交流、讨论,使学生进一步理解和掌握组合图形面积的计算方法,认识到要根据已知条件对图形进行分解,不是任意分解都能计算的;分解图形时要考虑尽量用简便的方法计算。
练习十八
第1题和第2题图形形状是相同的,只是给出的条件不同,都可以用不同的方法计算。
第3、4、5题的思考方法是一样的。通过这几题的练习,使学生知道计算组合图形的面积,不仅做加法,有时也要用一个图形面积减去另一个图形的面积。可以选一道题让学生讨论计算的方法,再独立完成其他几题。第5题要指导学生看图,它不是两幅图,而是一个组合图形的分解图。
五、教学建议
1. 重视动手操作与实验。
本单元面积公式的推导都是建立在学生数、剪、拼、摆的操作活动之上的,所以操作是本单元教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,切忌由教师带着做。通过实际操作活动,发展学生的空间观念,培养动手操作能力。
2. 引导学生探究,渗透“转化”思想。
“转化”是数学学习和研究的一种重要思想方法,本单元面积公式的推导都采用了转化的方法。教学中,应以学生的探究活动为主要形式,教师加强指导和引导。通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法,切忌由教师直接演示讲给学生。利用讨论和交流等形式,要求学生把自己操作--转化--推导的过程叙述出来,以发展学生的思维和表达能力。
3.注意培养学生用多种策略解决问题的意识和能力。
运用转化的方法推导面积计算公式和计算多边形面积,可以有多种途径和方法。教师注意不要把学生的思维限制在一种固定或简单的途径或方法上,要尊重学生的想法,鼓励学生从不同的途径和角度去思考和探索解决问题。
教学内容:
人教版义务教育课程标准实验教科书《数学》五年级上册P84~P85的内容,三角形的面积。
教学目标:
1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重、难点:
重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。
教、学具准备:
CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
教学过程:
一、创设情境、导入新课
1、提出问题。
师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?
2、揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)
二、操作“转化”,推导公式
1、寻找思路。
师:是的,我们还不会计算三角形的面积。那同学们想一想,开始我们同样不会计算平行四边形的面积,后来我们通过什么方法推导出了平行四边形的面积计算公式的呢?
师:对,我们用“割补”的方法把平行四边形“转化”(板书:转化)成了一个长方形,这样推导出了平行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?
师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?
2、动手“转化”。
师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。
小组合作拼组图形,教师巡视指导。
师:拼好了吗?用这种拼一拼的方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?
图1 图2 图3
师:同学们,为什么有些小组拼成了一个平行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?
[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]
3、尝试计算。
师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。(教师在图1中标示数据,如下图)
师:这个平行四边形就是由两个完全相同的三角形拼成的,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?
[评析:引导学生说出拼成的平行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]
师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。
师:算完了吗?它的面积是多大?
师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。
师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。
师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形的面积吗?算一算。
3cm
师:同学们,你们太棒了!又计算出了一个三角形的面积。再看屏幕,(课件出示,如下图)你们还能计算这个三角形的面积吗?
[评析:由清晰的由两个完全相同的三角形拼成的平行四边形,到由一实一虚的两个完全相同的三角形拼成的平行四边形,再到一个独立的三角形,面积计算逐步深入,层层推进,引导学生经历了由具象到抽象的过程,思维含量非常丰富。]
4、推导公式。
师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。
5、理解公式。
师:同学们,老师有点不明白,为什么你们写这个公式时用三角形的底乘高呢?“底×高”表示什么意思呢?为什么还要“÷2”呢?
[评析:通过请学生帮助老师解困惑,加深学生对三角形面积计算公式含义的理解:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为三角形的面积是拼成平行四边形面积的一半,所以要“÷2”。这样既突破了教学难点,更加深了学生对三角形面积计算公式的理解。]
6、用字母表示三角形的面积公式。
师:同学们,如果用a表示三角形的底,h表示三角形的高,S表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。
[评析:拼一拼、算一算、说一说、写一写……不知不觉中,同学们自己推导出了三角形的面积计算公式。学生自然地成为了学习的主人。]
师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本P85页的数学常识。)
[评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]
三、应用公式,解决问题
师:同学们,我们已经推导出了三角形的面积计算公式,现在我们就用三角形的面积计算公式解决一些实际的问题。这是刚才看到的那条红领巾,同学们,你们知道怎样才能求出做一条这样的红领巾要用多少红布吗?
师:对,要求做一条红领巾要用多少红布,实际是求这条红领巾的面积是多少?而要求这条红领巾的面积是多少?必须了解哪些数据呢?
师:那就请大家动手量一量它的底和高吧。
[评析:这里并没有直接给出红领巾的底和高,需要学生共同合作实际测量,培养了学生解决实际问题的能力。]
师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?
四、联系生活,适当拓展
师:同学们,你们认识这些道路交通警示标志吗?(课件出示下面这些道路交通警示标志。)知道它们的具体含义吗?
师:交通标志对于维护交通安全有着重要的意义和作用。同学们,这些交通标志是什么形状的?
师:对,它们都是三角形的。(课件出示其中一个三角形标志的底和高,如下图)请大家算一算,这个标志牌的面积大约是多少?
师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图)看谁算得又对又快!
四、全课总结,反思体验
教师:这节课你们学习了什么?有哪些收获?
[总评:这节课教师注重从学生已有的知识经验出发,并引导学生将“转化”的思想迁移到新知识的学习中,动手操作推导出三角形的面积公式,亲身经历了数学知识的形成过程,增强了学生学习数学的兴趣。整一节课,教师尽量把时间和空间让给学生,组织他们动手实践,引导他们自主探索,参与他们的合作交流,使学生真正成为了学习的主人。]
莞城区新沙小学 谢梅梅
教学内容:人教版义务教育课程标准实验教科书五年级上册第84-86页。
教学目标:
1.知识与技能:
(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的探索过程。
教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。
教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程:
一、 创设情境,揭示课题
师:我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题?
(屏幕出示红领巾图)
师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)
[设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将“教”的目标转化为学生“学”的目标。]
二、探索交流、归纳新知
1.寻找思路:(出示一个平行四边形)
师:(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)
(2)观察:沿平行四边形对角线剪开成两个三角形。
师:两个三角形的形状,大小有什么关系?(完全一样)
三角形面积与原平行四边形的面积有什么关系?
[设计意图:这一剪多问,学生在观察的基础上通过与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]
师:你想用什么办法探索三角形面积的计算方法?
(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)
师:上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?
(屏幕出示课本84页主题图让学生观察、引发思考)
接着出示思考题:
(1) 将三角形转化成学过的什么图形?
(2) 每个三角形与转化后的图形有什么关系?
[设计意图:学生由于有平行四边形面积公式
的推导经验,必然会产生:能不能把三角形也转化
成已学过的图形来求它的面积呢?从而让学生自己
找到新旧知识间的联系,使旧知识成为新知识的铺垫。]
2.分组实验,合作学习。(音乐)
(1)提出操作和探究要求。
让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼、摆一摆或剪拼。
屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形?
②拼出的图形与原来三角形有什么联系?
(2)学生以小组为单位进行操作和讨论。
[设计意图:这里,根据学生“学”的需要设计了一个合作学习的程序,让学生分组实验,合作学习,为学生创设了一个自己解疑释惑的机会。]
教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生:你是怎样拼的?能说一说你的拼法吗?(若学困生含糊的,动画显示一个作好高的三角形,移出一个与它同样大小的三角形,再把这个三角形旋转、移动,和下一个三角形拼成一个平行四边形。如图,让学困生模仿练习)
[设计意图:不仅使学生找到了新旧知识的连接点与转化方式,而且使学生正确掌握操作方法,形成操作技能]
(3)展示学生的剪拼过程,交流汇报。(音乐停)
①各小组汇报实验情况。(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)
可能出现以下情况:(用两个完全一样的三角形摆拼)
(两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)
②课件演示:用旋转平移的方法将三角形转化成各种已学过的图形。
师:通过实验,你们发现了什么?
引导学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形)
师:谁能说说,每个三角形的面积与拼成的平行四边形的面积有什么关系?
生:拼成的平行四边形是三角形面积的二倍。
生:每个三角形的面积是拼成的平行四边形的面积的一半。(评价、肯定)
[设计意图:在大量感知的基础上,通过自主学习,再通过课件的演示使同学们更具体、清晰地弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系。同时又渗透了转化的数学思想方法,突破了教学难点,提高了课堂教学效率。]
3.归纳公式
(1)讨论:(屏幕显示提纲)
A、三角形的底和高与平行四边形的底和高有什么关系?
B、怎样求三角形的面积?
C、你能根据实验结果,写出三角形的面积计算公式吗?
[由图形直观应用,进行观察,推理,加深对三角形的面积计算公式的理解。]
(2)归纳交流推导过程,说出字母公式。
根据学生讨论、汇报,教师进行如下板书:
因为:三 角 形 面 积=拼成的平行四边形面积÷2
所以:三 角 形 面 积=底×高÷2
师:为什么要除以2?
生:……
师:如果用S表示三 角 形 面 积,用α和h分别表示三 角 形的底和高,那么你能用字母写出三角形的面积公式吗?
结合学生回答,教师板书S=ah÷2
[设计意图:当将三角形转化成已学过的平行四边形,找出它们间的关系,使学生感知了三角形面积的计算后,讨论:“三角形面积的计算公式是怎样的?”从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,培养学生的抽象概括能力。]
4.看书质疑。指名讲述课本中是怎样得出三角形面积公式的。
(养成看书的良好习惯。)
师:我们刚才是从两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你们还能用别的方法去推导三角形的面积公式吗?
如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定。
老师课前做好下面课件帮助学生理解
方法一: 期量子论 方法二: 方法三:
得出:三角形的面积=底×(高÷2)=底×高÷2(方法一)
三角形的面积=底×(高÷2)=底×高÷2(方法二)
三角形的面积=(底÷2)×高=底×高÷2(方法三)
师:同学们真了不起,想到那么多的方法推导出三角形的面积公式。得到了这个公式,我们就可以求出任何三角形的面积。用这个公式计算三角形的面积(指板书),需要知道什么条件?(反扣公式,加深理解)
4、进行爱国教育
师:其实早在前,我国伟大的劳动人民就开始会用这个公式来计算三角形土地的面积了。请同学们课后把85页的“你知道吗”看一看。
三、应用新知,解决问题
师:有了公式,下面我们可以帮学校解决问题了。(回应引入问题)
1、(屏幕显示)出示85页例1:
学生独立完成(一生板演),集体订正。
师:你认为计算三角形的面积,什么地方容易出错?(强调“÷2”这一关键环节)
2、独立完成P85做一做。
完成后交流、讲评。
四、深化理解、应用拓展
1.课本86页的练习第1题。课件出示下图:
师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?
(教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)
2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。
师:要计算出每个三角形的面积,需要什么数据?要怎么做?
先让学生想,小组交流,再汇报,最后学生动手操作计算、评讲。
3、课本86页第3题:已知一个三角形的面积和底
(如右图),求高。
师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗?
(生讨论汇报,再计算、反馈。)
4.想一想,下面说法对不对?为什么 ?
(1)三角形面积是平行四边形面积的一半。( )
(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平
方米。( )
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
(4)等底等高的两个三角形,面积一定相等。 ( )
(5)两个三角形一定可以拼成一个平行四边形。 ( )
5、求右图三角形面积的正确算式是( )
①3×2÷2 ②6×2÷2
③6×3÷2 ④6×4÷2
6.做课本86页第4题(然后汇报、评讲。)
要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?
[设计意图:练习分三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过变题练习,训练学生思维的灵活性与逆向思维能力,同时深化对三角形求积公式的认识。]
五、回顾总结,深化提高:
1、师:这节课探究了什么?是怎样探究的呢?(渗透数学方法)
(屏幕显示)让学生说一说图意:
师:对!今天我们分小组通过动手操作,相互讨论、交流,用摆拼(还可以用折叠、割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种“转化”的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。
[设计意图:这两问引导学生从学习内容及学习方法对本课作出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于探究的精神。]
六、课外作业:P87-5、6、7
板书设计
因为:平行四边形的面积=底×高, 例1… …
三角形面积=拼成的平行四边形面积÷2 S=ah÷2
所以三角形面积=底×高÷2 =100×33÷2
S=ah÷2 =1650(cm)
麻涌镇中心小学 萧润章
教学内容:小学数学五年级上册书本P84-85的内容以及有关练习。
教学目的:理解三角形面积的计算公式;会运用三角形的面积公式解决实际问题;培养学生的推理能力。
教学重点、难点:会运用公式解决生活中的实际问题。
教学过程:
一、情景引入
1、教:上课前,谁愿意说一说你喜欢吃什么蔬菜?
2、教:这些蔬菜是种在菜园里(边出示图),在这个菜园里有一块平行四边形的菜地(边出示)你用什么方法来求出它的面积?
3、教:农民叔叔想把它平均分成两半,一半用来种白菜,另一半用来种菜心,你认为应该怎样平均分开呢?(演示三种方法)
4、让学生运用平行四边形的面积来求一个三角形的面积
[10×4÷2=20(平方米)]。
5、引入:那三角形也有它本身的面积公式吗?这节课我们就来研究三角形的面积公式(出示课题)。
二、新授
1、教:你们看到了什么?(边出示各类型三角形),这些三角形已放进你们的学具袋里。
2、让小组合作拼、摆,发现三角形面积的计算方法。
3、分小组汇报,并演示拼摆的过程,分小组说说每种三角形的面积方法,每汇报完一种情况,再演示。
4、通过操作和演示让学生总结三角形面积的计算方法,
5、理解三角形的面积=底×高÷2,每一步所表示的意义。
6、用字母式子表示,齐读公式。
7、利用“三角形的面积公式”再直接算出刚才每块菜地的面积
10×4÷2
底×高÷2
8、出示红领巾,引出例2,并让学生列式解答。
三、巩固练习
1、求三角尺的面积。
2、认识各种交通标志,并求一块标志牌的面积。
3、求一块草坪用多少元?
4、判断题。
5、怎样求风筝的面积?
四、总结:谈收获,质疑。
莫艳霞
内容:小学数学第九册( 84页--87页 )
教学目标:
1、学会用旋转、平移的方法,推导三角形面积计算公式。
2、使学生理解、掌握和运用三角形面积计算公式。
3、培养学生自学能力和动手操作的能力。渗透爱国主义 情感教育。
教学重点:三角形面积的计算
教学难点:每个三角形面积与它同底等高的平行四边形面积之间关系。
教具准备:动像投影片(锐角三角形、 钝角三角形、 直角三角形各两个)
学具准备:印发锐角三角形、钝角三角形、直角三角形各一对。
设计说明:
小学数学教学如何体现素质教育?我认为,重要措施之一就是要让学生生动、活泼、主动地学习与发展。在获取知识的同时,掌握数学思维方法,发展探究推理能力。教学要改革,首先是教师的教育思想、教学观念的更新,由传授知识为主的教学观,转变为引导学生主动探究、主动研讨、主动发展,结合教学内容有机进行操作训练、听说训练、思维训练。基于以上认识,在教学《三角形面积计算》一课时,改变常规“先分后总”的方法为“先总后分”给学生最大限度地提供操作、探究、思考的时间与空间,让学生在观察中思考,感知三角形面积计算规律;在操作中思考,分层验证公式;在练习中思考,训练思维能力。
教学过程:
一、观察--思考--感知规律
出示一个平行四边形。
回忆:平行四边形面积怎样计算?
观察:沿平行四边形对角线剪开成两个三角形。两个三角形的状,大小有什么关系?(完全一样)
思考、讨论:(1)三角形面积与原平行四边形的面积有什么关系?
(2)三角形面积计算规律是什么?
[说明:这一剪多问,学生在观察的基础上通过建立与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]
二、操作--思考--验证公式
“底×高÷2”这个规律适用于所有形状的三角形面积计算吗?学生持怀疑态度,又怀着较强烈的好奇心。教师因势利导让学生利用自己的学具进行操作、剪拼、思考、归纳。
三角形面积计算是一个什么样的计算规律呢?教师随着这个问题提出以下要求:
(1)学具袋里有一些三角形,同学们可以利用学过的知识进行剪、摆、拼、思考一下三角形面积是不是都有“底×高÷2”的计算规律。
(2)同桌同学可共同讨论、研究。
(3)有结论以后可到黑板前面展示其过程,并说明理由。随学生展示出现以下情况:
摆拼一:用两个完全一样的三角形摆拼
( 两个锐角三角形 ) (两个钝角三角形)
平行四边形面积=底×高
三 角 形 面 积=底×高÷2
(两个直角三角形)
长(正)方形面积=长×宽
三 角 形 面 积 = 底×高÷2
剪拼二:用一个三角形剪拼。
图(1)(2)(3)三角形面积=平行四边形(长方形)面积。
(1)三角形面积=底×(高÷2)=底×高÷2
(2)三角形面积=(底÷2)×高=底×高÷2
(3)三角形面积=底×(高÷2)=底×高÷2
从而归纳三角形面积=底×高÷2
4.引导学生用字母表示面积公式.
教师:如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式还可以表示成:
S=ah÷2
[说明:学生怀着验证三角形面积是不是“底×高÷2”的强烈心理动机在课堂提供了较大“自由”空间里。主动进行摆拼、剪拼、思考、讨论。归纳并验证了“三角形面积=底×高÷2”的求积公式。手、口、脑并用,操作能力、听说能力、概括能力、思维能力、得到了充分的训练]
5.出示第85页的例题,让学生独立做在练习本上,抽一学生板演,集体订正.
三、练习--思考--培养能力
1.完成第85页上的“做一做”.要求学生先指出三角形的底和高各是多少,再算出它的面积.订正时,教师引导学生重点弄清为什么要除以2?
2. 独立练习86面练习十六第1.2.3题。
3. 想一想,下面说法对不对?为什么?
(1)三角形面积是平行四边形面积的一半( )
(2)两个等底等高三角形可以拼成一个平行四边形( )
(3)一个三角形面积为20cm2与它等底等高平行四边形面积是40cm2
4. 思考:
(1)右图中甲、乙面积是( )
A. 一样大 B. 甲大
C. 乙大 D. 不能判断
(2)如右面三角形A.B.C的面积
为6cm2,底边AB长为4cm
在图中画出第三个顶点C的位置。
顶点C的位置仅有一处吗?
你能作几处呢?
[说明:练习分三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解;第三个层次,主要训练学生思维的灵活性与逆向思维能力,同时深化对三角形求积公式的认识。]
四、课堂小结
教师:今天这节课,我们主要学习了什么知识?你有什么收获?
板书设计
:
平行四边形面积=底 高
等底等高 三角 形 面 积=底 高 2
因为:平行四边形的面积=底×高, 例1… …
三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)
所以三角形面积=底×高÷2
S=ah÷2
课后记:
第四课
教学内容:三角形面积计算的练习(练习十八5~10题)
教学要求:
1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。
2.能运用公式解答有关的实际问题。
3.养成良好的审题、检验的习惯,提供正确率。
教学重点:运用所学知识,正确解答有关三角形面积的应用题。
教具准备:展示台
教学过程:
一、基本练习
1.填空。
(1)三角形的面积= ,用字母表示是 。
为什么公式中有一个“÷2”?
(2)一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是( )平方米,平行四边形的面积是( )平方米。
2、练习十六2题
二、指导练习
1.练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗?
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?
⑵看看图中哪两个三角形的面积相等?为什么?
⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来
2.练习十六第7题
(1) 让学生尝试分。
(2) 展示学生的作业
可能有 : a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。
b、也可把原三角形先二等分,再把每一份分别二等分。
3、练习十六9*
让学生抓住涂色的三角形的底只有平行四边形底的一半,它的高和平行四边形的高相等,平行四边形的面积=底×高,三角形的面积=(底÷2)×高÷2,所以三角形的面积等于48÷4
4.练习十六第3题:已知一个三角形的面积和底,求高?
让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了平行四边形的面积。
三、课堂练习
练习十六第8*题。
四、作业
练习十六第4、5题。
课后记:
教学内容 P84~85例子1~2
教学目标 1理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2培养学生观察能力、动手操作能力和类推迁移的能力.
知识重点 理解三角形面积计算公式,正确计算三角形的面积
教学难点 理解三角形面积公式的推导过程
学生准备的学具 每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程 教学方法和手段
引入 1.出示平行四边形
提问:
(1)这是什么图形?计算平行四边形的面积。 (板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
教学过程 开始探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?
4.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
5.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:拼摆图形
6.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
7、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
―――――――――――――――――――――――
教学例1
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1.由学生独立解答.
2.订正答案(教师板书)
课堂练习P85 做一做
P86~87 练习16
小结与作业
课堂小结 [单击此处输入课堂小结]
课后追记
本课用了两个相同的三角形拼成一个平行四边形,化未知为已知,一定要让学生亲自来拼摆,把可以目前可以计算和暂时无法计算的摆放方法都摆出来,再进行区分,选择可以计算的方法,虽然会占用一点课堂时间,但是学生记忆深刻,对公式的理解也比较深刻。动手能力也得到一定的加强
这个方法在以后的求面积上仍然会应用到,因此有必要让学生多动脑筋想想如果割补,化未知为已知。
第4课:三角形面积计算的练习
教学内容 三角形面积计算的练习(P86练习十八5~10题)
教学目标 1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。
2.能运用公式解答有关的实际问题
知识重点 运用所学知识,正确解答有关三角形面积的应用题
教学过程 教学方法和手段
一、基本练习
1.填空。
(1)三角形的面积= ,用字母表示是 。
为什么公式中有一个“÷2”?
(2)一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是( )平方米,平行四边形的面积是( )平方米。
2、练习十六2题
二、指导练习
1.练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗?
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?
⑵看看图中哪两个三角形的面积相等?为什么?
⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来
2.练习十六第7题
(1) 让学生尝试分。
(2) 展示学生的作业
可能有 : a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。
b、也可把原三角形先二等分,再把每一份分别二等分。
3、练习十六9*
让学生抓住涂色的三角形的底只有平行四边形底的一半,它的高和平行四边形的高相等,平行四边形的面积=底×高,三角形的面积=(底÷2)×高÷2,所以三角形的面积等于48÷4
4.练习十六第3题:已知一个三角形的面积和底,求高?
让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了平行四边形的面积。
教学过程
小结与作业
课堂小结 (1)三角形面积(底和高一定要对应)
(2)也可以通过和同底等高平行四边形面积的关系来求解
课后追记
在上面的小结中,我提到了有多组底和高的情况下计算三角形面积,一定要选择互相垂直的底和高来计算才可以。
第二,考题经常会选择 平行四边形和三角形 的关系来计算同面积同底、但是高有什么关系,或者是同底等高,面积又有什么关系?这类题目。
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力,进一步体会转化方法在图形中的应用。
3、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用,发展学生的空间观念。
4.培养学生勤于思考,积极探索的学习精神.
教学重点:理解三角形面积计算公式,正确计算三角形的面积.
教学难点:理解三角形面积公式的推导过程.
学具准备:每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程:
一、激发
1.怎样计算平行四边形的面积。 (板书:平行四边形面积=底×高)
平行四边形面积的计算公式是怎样推导的?
学生回答后,教师用教具进行演示并小结推导方法:第一步,转化图形;第二步,找到联系;第三步,推导公式。
2.(出示红领巾)这条红领巾是什么形状?它的面积是多少呢,今天这节课我们就一起来研究三角形面积的计算。(揭示课题:三角形面积的计算)
二、指导探索
(一)推导三角形面积计算公式.
1、拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2、启发提问:我们能将三角形转化成已学过的图形来研究它的面积计算公式吗?
3、组织学生利用学具试拼,教师参与学生拼摆,个别加以指导。
指名演示拼摆过程,教师示范,突出旋转、平移。
刚才大家都是用两个完全一样的三角形通过旋转平移转化成已经学过的平面图形的,那如果只用一个三角形,你们能通用割补或折叠的方法将它转化成已经学过的平面图形吗?(学生展示)
同学们你们真了不起,想到的方法十分富有创意。如果大家觉得还有什么好办法,我们可以在下一节实践活动课继续讨论。让我们来一起看看黑板上大家的研究成果吧!我们发现两个完全一样的三角形,无论是直角、锐角还是钝角三角形,都可以拼成一个平行四边形。
4、提问:
①每个三角形的面积与拼成的平行四边形的面积有什么关系?
②三角形的底和高与拼成的平行四边形的底和高之间有什么联系?
③三角形的面积该如何计算?
引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形,每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
②三角形的底就是这个平行四边形的底,三角形的高就是平行四边形的高。(同时板书)
③为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
5、如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
(二)教学例1
要求三角形面积需要知道哪两个已知条件?
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1.由学生独立解答.
2.订正答案(教师板书)
三、质疑调节
(一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:
(1)怎样求三角形的面积?
(2)求三角形面积为什么要除以2?
(3)三角形的面积计算公式是怎样推导出来的?
四、反馈练习
(一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积.
(二)计算下面每个三角形的面积.
1.底是4.2米,高是2米;
2.底是3分米,高是1.3分米;
3.底是1.8米,高是.1.2米;
(三) 判断
1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。 ( )
2、等底等高的两个三角形,面积一定相等。 ( )
3、两个三角形一定可以拼成一个平行四边形。 ( )
4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )
五、作业:85页做一做和练习十六1题
板书设计:
三角形面积的计算
因为:平行四边形的面积=底×高, 例1… …
三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)
所以三角形面积=底×高÷2
S=ah÷2
教学反思:
《三角形的面积》是我校研讨课内容,在我之前已经先后有两名同年组教师执教此课。由于我是最后一位上课的老师,因此只有我班学生在此之前提早学习完梯形的面积,也因此他们在探索面积推导的过程中相对而言要顺畅一些。当然,我在执教本课过程中也充分吸取了前几位教师的优秀作法。
第一位教师的精彩在于学生探究拼摆的结果纷呈。有的学生将两个完全一样的三角形转化成平行四边形,有的将两个完全一样的直角三角形转化成长方形,还有的学生将两个完全一样的等腰直角三角形转化成了正方形。面对这么多的转化结果,是一一进行分析从而得出相同的结论还是……?这位教师通过巧妙设问引导学生发现其中的联系,从而大大节省了时间。“平行四边形、长方形、正方形这三种图形有什么共同特别呢?”果然,学生很快就发现正方形、长方形是特殊的平行四边形,从而很快使研究聚焦到三角形与所拼成的平行四边形面积之间有怎样的关系上来。
第二位教师的精彩则体现在她充分尊重学生原有认知基础,不回避学生的问题。如在请学生尝试如何将三角形转化成已经学习过的平面图形时,有的学生仍旧采用割补法,将三角形沿它的一条高剪下,然后拼摆。可由于剪拼的是任意三角形,所以无论如何旋转、平移都无法转化成已经学过的平面图形。在多次尝试割补法无法成功找到解决问题的途径后,老师引导同学们另辟蹊径,从而发现用两个完全一样的的三角形拼摆的转化方法。又如当学生回答“两个三角形可以拼成一个平行四边形”时,教师立即出示两个面积不同的三角形请学生再次拼摆。此后学生完善说法为“将两个面积相等的三角形可以拼成一个平行四边形”时,教师又出示两张面积相同的纸(一张是4*3,另一张是2*6),告诉学生面积相同并不一定形状相同,最后学生终于正确表述为“将两个完全一样的三角形可以拼成一个平行四边形”。而且在这一过程中,学生清晰地明白了“完全一样”包括面积相同,形状相同两层含义。
我在设计教案时,考虑到绝大多数学生能够由梯形面积的推导方法迁移出三角形的推导方法,因此不回避现状,将计就计,先请学生将平行四边形剪成两个三角形,在此基础上再放手让学生探索,最后“杀一回马枪”,请学生“只用一个三角形,能通用割补或折叠的方法将它转化成已经学过的平面图形吗?”学生的方法还真是丰富,相关内容我请孩子们记录在周记中,会尽快将作业图片显现给大家。
第四课时
教学内容:三角形面积计算的练习(练习十八5~10题)
教学要求:
1.进一步理解和掌握三角形面积的计算公式,能运用公式解答有关的实际问题,提高学生运用知识解决问题的能力。
2.养成良好的审题、检验的习惯,提供正确率。
教学重点:运用所学知识,正确解答有关三角形面积的应用题。
教学难点:利用三角形面积的计算公式解决生活中的相关问题,提高学生运用知识分析和解决实际问题的能力。
教学过程:
一、基本练习
1.上节课我们学习了三角形的面积的计算公式,谁能说说这个计算公式是怎样的?如何用字母表示?为什么公式中有一个“÷2”?
2.一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是( )平方米,平行四边形的面积是( )平方米。
2、练习十六2题
二、指导练习
1、练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗?
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?
⑵看看图中哪两个三角形的面积相等?为什么?
师小结:等底(同底)等高的三角形面积相等。
⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来
2、练习十六第7题
我们知道等底等高的三角形面积相等,如果要把一个三角形分成4个面积相等的三角形,可以怎样分呢?
让学生尝试分。
展示学生的作业
可能有 :
a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。
b、也可把原三角形先二等分,再把每一份分别二等分。
3、练习十六9*
观察并分析平行四边形的面积和其中几个三角形面积之间有怎样的关系?
师:平行四边形的对角线把平行四边形分成两个相等的三角形,每个三角形的面积是平行四边形面积的一半。A点是其中一个三角形底边上的中点,根据等底等高的三角形面积相等,涂色三角形的面积是这个三角形面积的一半,也就是平行四边形面积的1/4。
学生尝试计算,集体订正。
4、练习十六第3题:已知一个三角形的面积和底,如何求高呢?
让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了平行四边形的面积。
5、练习十六第8*题。
(1)说一说已知什么?要求什么?
(2)已知三角形的面积和高,可以求出什么?
(3)如何求平行四边形的周长?
学生尝试解决后集体交流。
四、作业:练习十六第4、5题。
教学反思:
校内“同课异构”时,同年组其他两位教师都是将练习十六第6题放在第一课时完成。他们用小黑板直接出示用不同彩笔勾画的同底等高三角形,并分别注明为S1、S2,请学生判断两个三角形的面积。学生有“等底等高的平行四边形面积相等”作基础,不仅很快作出判断,而且准确地分析了原因,教学可谓“一帆风顺”。
我班由于时间关系,将此题留到了练习课中完成。由于我的呈现方式与其他两位教师不同,所以留给了学生更大的思考空间。又由于我喜欢关注学困生,所以指名回答的同学都是学习能力相对比较薄弱的学生。课堂上出现了我未曾预料到的结果。
生1:指图1阴影部分所指的两个三角形面积相等;
(我心里一惊一喜。惊的是学生有这么敏锐地观察能力,仅凭直观就能发现这两个三角形面积相等;喜的是这个发现很有数学的研究价值,值得深挖。)
师:XXX同学认为这两个三角形面积相等,还有其它不同想法的吗?
生2:指图2阴影部分所指的两个三角形面积相等;
(我心里是一凉一忧。凉的是这么显而易见的面积大小,学生居然无法正确判断;忧的是学生的空间观念太差,观察能力也还有待进一步地提高。)
万般无奈下,我只好请优生“出马”,他果然不负众望,指出了我所需要的结果。
当我引导学生根据这个结果顺利发现同底(等底)等高的三角形面积相等并在书上画出了与它们面积相等的三角形后,我立即杀出一记“回马枪”,又回到第一位学生所指的两个三角形面积是否相等的探索上来。因为有刚才的发现作基础,又有同学们的群策群力,生1在这一过程中实现了由直觉感受到真正理解质的飞跃。全班同学也明白了两个面积相等的三角形送去同样大小的三角形后所剩面积相等。班上甚至也人指出这应用了等式的性质,是等号两边同时减去相同的数,等式保持不变。
当我再次引导学生去分析生2的发现是否正确时,学生们从多种渠道、应用多种方法使他明白了面积不等的原因。还有人更深刻地分析出只有长方形(或正方形),这两个三角形的面积才相等。
【分析】
这是一次没有预设到的“错误”,这是一份没有预约的精彩。这份精彩源自于学生的错误,而这份精彩最终体现在学生思维的深化。通过这节课,让我体会到以下两点:
1、“错误”有时是宝贵的资源。
生1的发现不仅正确,而且极具数学研究价值,它丰富了教材练习的内涵,增加了练习的质量。生2的发现是生1的负迁移,可他促使学生更灵活地借助“等底等高的三角形面积相等”来思考问题。如有的学生答到“上面的小三角形是上底乘高除以2,再减去左边三角形的面积。下面的三角形是下底乘高除以2,再减去左边三角形的面积。由于它们的高相等,减去的三角形是同一个三角形,又因为上底比下底短,所以上面的三角形比下面的三角形面积小。”多么精彩的发言呀!在这一教学过程中让我感受到正确的可能只是模仿;错误的却可能是创新。同时在这一过程中我还深深体会到学生的错误不再是教学的“绊脚石”,而是探究活动的“生长点”。学生犯错的过程也是他们的一种尝试和创新的过程。
2、“错误”需要有心人挖掘。
平时教学中遇到学生错误时,我常常问“还有没有不同想法”而将他们的错误一笔带过。即使有心关注,也只是分析完正确答案后反馈一下“你听懂了吗”。这些资源就这么从我的手中悄悄地溜走了。若非今天生1的想法正好是常见考试题中精典内容,让我眼睛突然一亮,我想错误可能会再次与我擦肩而过。留住了这次的意外与精彩,我想在今后的教学中可得做一个有心人。对于学生的思维成果,我必须努力做到快速、灵活、高效地进行分析,判断其错误信息的价值,“挽留”住有价值的结果,并将其视为一种教育资源。从学生的错误中寻找教育契机,化腐朽为神奇,为开展教学活动,解决教学问题服务。
教学内容:
三角形面积计算的练习(练习十八5~10题)
教学要求:
1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。
2.能运用公式解答有关的实际问题。
3.养成良好的审题、检验的习惯,提供正确率。
4、在教学中渗透环保教育
教学重点:运用所学知识,正确解答有关三角形面积的应用题。
教具准备:展示台
教学过程:
一、基本练习
1.填空。
(1)三角形的面积= ,用字母表示是 。
为什么公式中有一个“÷2”?
(2)一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是( )平方米,平行四边形的面积是( )平方米。
2、练习十六2题
二、指导练习
1.练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗?
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?
⑵看看图中哪两个三角形的面积相等?为什么?
⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来
2.练习十六第7题
(1) 让学生尝试分。
(2) 展示学生的作业
可能有 : a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。
b、也可把原三角形先二等分,再把每一份分别二等分。
3、练习十六9*
让学生抓住涂色的三角形的底只有平行四边形底的一半,它的高和平行四边形的高相等,平行四边形的面积=底×高,三角形的面积=(底÷2)×高÷2,所以三角形的面积等于48÷4
4.练习十六第3题:已知一个三角形的面积和底,求高?
让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了平行四边形的面积。
三、课堂练习
练习十六第8*题。
四、作业
练习十六第4、5题。
第3课 梯形的面积
教学目标:
1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。
3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:理解、掌握梯形面积的计算公式。
教学难点:理解梯形面积公式的推导过程。
教学过程:
1.导入新课
(1)投影出示一个三角形,提问:
这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
2.新课展开
第一层次,推导公式
(1)操作学具
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习习近平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
第三层次,公式应用。
(1)出示课本第89页的例题,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。
3.巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题
瓯北五小 陈安娜
教学内容:人教版义务教育课程标准实验教科书《数学》五年级上册P80-81,平行四边形的面积。
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重点:探索并掌握平行四边形的面积计算公式。
教学难点:理解平行四边形的面积计算公式的推导过程。
教具学具:自制长方形框架、方格纸、CAI课件、平行四边形卡片、剪刀、三角板、直尺
教学过程:
一、巧设情境,铺垫导入
师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?
(根据学生的回答,教师适时板书:长方形的面积=长×宽)
师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图
同学们看看,现在变成了什么图形?(平行四边形)
师:这样一拉,形状变了,面积变了吗?
师:(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?
(平行四边形的面积等于相邻两条边的乘积)
师:究竟这个猜想是否正确,下面我们一齐来验证一下就知道了。
师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)
2、探讨联系
师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)
师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积等于底乘高)
(教师根据学生回答板书:平行四边形的面积=底×高)
师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)
(教师根据学生回答板书:S=ah)
4、验证公式
师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)
师:计算出来的结果和我们数方格得出的结果一样吗?(一样)
师:这证明我们所推导出来的平行四边形面积公式是正确的。
5、提问质疑
师:刚才同学们的表现都不错,下面请大家阅读课本80-81页,还有什么疑问,请提出来。(学生阅读课本和质疑)
三、层层递进,拓展深化
1、算一算
师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
2、选一选
师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
3、画一画
师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)
4、想一想
师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的面积计算方法来思考问题。)
师:你发现了什么规律?(引导学生理解等底等高的平行四边形面积相等。)
四、总结全课,提高认识
反思一下刚才我们的学习过程,你有什么收获?
板书设计: “平行四边形的面积”;
“长方形的面积=长×宽” “平行四边形的面积=底×高” “S=ah”;
“平行四边形的面积=相邻两边的乘积”
《折线统计图》教学设计
瓯北五小 陈安娜 学号:7024
教学内容:人教版四年级数学下册第108、109页。
教学目标:
1. 联系生活实际,感受统计在日常生活中的运用,认识折线统计图,了解折线统计
的特点。
2. 学生能根据实际,选择合适的统计图,能利用方格纸画出折线统计图。
3. 能根据折线统计图所提供的数据进行分析、比较,进而做出一定的推测和判断。
教学过程:
一 创设情境,揭示课题
师:现在到我们温州来旅游的游客越来越多了,很多外地的游客在出发前总是想了解我们温州的交通、天气、特产等信息。为了方便游客了解温州一年的气温情况,旅游网站上公布了温州一年12个月的平均气温数据。老师将这些数据整理成了一个统计表。
展示统计表:温州市平均气温变化统计表 -5
月份 一月 二月 三月 四月 五月 六月 七月 八月 九月 十月 十一月 十二月
平均气温(℃) 3 6 10 15 18 25 28.5 28 27 21 11 5
师:这个统计表还可以用什么形式来表示?
生:统计图。展示统计图:
师:我们以前学习过条形统计图,那这个是什么统计图呢?(学生自由说一说)
这就是我们今天要学习的折线统计图。
二 新课学习
1. 认识折线统计图
师:仔细观察这个统计图,说说它是由哪几部分组成的?
生:标题、时间、横轴、纵轴、点和连接的线段。
师:你能读懂这个统计图吗?同桌互相读一读。
师:这张统计图给我们提供了哪些信息?
生:每个月份的平均气温数据。
生:1~7月气温逐渐上升,7~12月气温逐渐下降。
师:你是怎么看出来的?
生:折线从下往上的就是上升,从上往下就是下降。
生:我知道了1月气温最低,7月气温最高。
生:我发现五、六月份温差大,还有十、十一月份温差最大。
师:温差大是什么意思?
生:在这段时间里,气温的变化很大,如十月是21摄氏度,而十一月只有11摄氏度了。
师:你又是怎么看的呢?
生:可以从具体的数据看,还可以从线段的斜度上看。斜度大,就是变化大。
(请学生上来指一指)
师:你们真善于发现,从这张气温统计图上不仅知道了每个月的平均气温,还看出了气温的变化情况。你觉得折线统计图和我们以前学习的条形统计图相比,最大的特点是什么?
2. 联系实际,绘制折线统计图
师:其实一年的气温的变化会影响我们生活的方方面面,比如说用电量、用水量,羽绒
衣的销售量、空调的销售量等等。去年我们温州苏宁电器空调销售最多的月是700台,最少
的月份是40台。结合我们的气温变化统计图,请你制作出一个大概的折线统计图。
交流展示:
师:你是怎么画的,阐述你这样画的理由。(你把700台的月份定在哪个月,40台定
哪个月,为什么?)
生:我是根据气温的高低来画折线统计图的,1月气温最低,空调销售最少,7月气
最高,所以空调销售最多。
生:我也是按照气温的变化来画折线统计图的,1月和12月气温很低,很冷的,空
销售应该比较好,7、8月份很热,销售也是很好的。最低的是4、5月和10、11月。
生:我最高的月是12月,接下来的1月很冷,人们早做准备,而且12月要年底了,
新家的人也比较多。最低的是1月,因为上个月12月已经买过了。
师:刚才同学们说的都很有道理,联系生活实际,我们可以做出大概的判断。
老师收集了20苏宁电器1~12月的销售统计表,请你再根据这个统计表画出真正的
线统计表。
温州苏宁电器年1~12空调销售情况统计表 2007-5
月份 一月 二月 三月 四月 五月 六月 七月 八月 九月 十月 十一月 十二月
数量(台) 440 280 60 40 200 320 700 600 350 250 110 475
交流画统计图的步骤,结合所画的统计图,你给销售经理提点意见。
三 运用中感知特点
师:我们以前学习了条形统计图,今天认识了折线统计图。那什么情况下选择条形统
图,什么情况下选择折线统计图呢?我们来看两个统计表:
2班5位同学的身高统计表
姓名 张伟 王东 方林 俞凯 李明
身高/厘米 135 138 140 136 145
某同学一~五年级身高统计表
年级 一 二 三 四 五
身高/厘米 128 134 139 143 150
生:第一个统计表选择条形统计图,因为几个人比身高,用条形一下子可以看出谁高
矮了。
生:第二个统计表用折线统计图,因为这是一个人的身高变化,折线可以很明显地显
他的身高变化。
师:所以要反映一个事物的发展变化的话,最好选择折线统计图。因为折线统计图的最
大优势就是清晰地显示数据的增减变化。想象一下,第二张统计表画成折线统计图的话,
个折线是怎样的?如果他以后每年的身高一直统计下去的话,又是怎样的呢?
生:几年之后,这个折线就平了,因为他成年之后,身高不变了。
生:老师,有可能他老了身高会变矮。这样折线还会下降的。同学们都笑了。
四 小结并延伸
师:通过今天这节课的学习,你了解了什么?
师:其实统计图有很多种,除了条形和折线统计图,还有扇形、复式条形等(老师一一
展示常见的几种统计图)。Excel表格中有很多种统计图,有兴趣的同学课后可以去看一看。
清溪一小 杨嫦芳
教学内容:九年义务教育课程标准实验教科书,第九册P80~P81的内容。
教学目标:1、使学生通过数、剪、拼、算等实际操作,推导平行四边形的面积计算公式。
2、能应用平行四边形的面积计算公式解决实际问题。
3、在割补、观察与比较中,初步感知与转化,变换的数学思想方法,发展学生的空间观念。
教学重点:平行四边形的面积计算公式的推导与应用
教学难点:理解和掌握用割补法推推导平行四边形的面积计算公式
教具准备:平行四边形纸、长方形纸、多媒体
学具准备:平行四边形纸、剪刀、尺子
教学过程:
一、创设情景,引出课题
1、创设情景
同学们,这几年我们东莞市许多学校都在创建绿色学校,校园绿化得越来越漂亮。现在跟着镜头一起去看看吧!(播放校园绿化情况)
2、引出课题
提问:他们在讨论什么?(长方形的花坛大还是平行四边形花坛大?)要判断哪个花坛大必须知道什么?(长方形的花坛的面积和平行四边形花坛的面积)我们已经知道长方形的面积是怎样计算的,可是平行四边形的面积又是怎样计算的呢?这节课我们就来共同研究,并板出课题。
二、新课
1、自学,用数方格的方法计算平行四边形的面积。
(1)多媒体出示P80图和表格
平行四边形 底 高 面积
m m m 2
长 方 形 长 宽 面积
m m m 2
(2)读一读数方格时要注意的地方
(一个方格代表1平方米,不满一格都按半格计算)
(3)让学生在电脑上填写表格
(4)提问:观察表格的数据,你发现了什么?
(5)学生汇报。
(6)小结:通过数方格我们发现这两个花坛的面积是同样大的。
2、推导平行四边形的面积计算公式
(1)猜想
如果都用数方格的方法去计算平行四边形的面积的话,大家感觉怎么样?(比较麻烦)那不数方格能不能计算出平行四边形的面积呢?(能)你有什么好办法?(推导出平行四边形的面积公式)好主意。刚才在数方格的时候已经有同学发现平行四边形的面积=底高,那是不是所有的平行四边形的面积都是这样计算的?下面我们一起合作验证。
(2)验证
a.动手操作
剪--平移--拼,把一个平行四边形变成一个长方形。
b.讨论:
1.剪拼出的长方形的长和宽与平行四边形的底和高有什么关系?
2.剪拼出的长方形的面积和原来的平行四边形的面积有什么关系?
3.平行四边形的面积=?
(3)汇报并点拨(在投影上展示)
a.把平行四边形分成一个三角形和一个梯形
b.把平行四边形分成两个梯形
(4)小结:平行四边形的面积=底×高(并板书)
(5)提问:用字母怎样表示这个公式?S、a、h各表示什么?
(6)齐读公式,加深印象。
3、教学例题
(1)出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?
(2)读题,分析已知条件和问题。
(3)独立完成。
(4)在黑板上展示并评析。
三、巩固练习
1、填空
(1)我们可以把一个平行四边形通过分割和平移转化一个( ),这个( )的( )和平行四边形的底相等,( )的( )和平行四边形的高相等。所以平行四边形的面积=( )×( ),用字母表示S=( )×( )
(2)要求平行四边形的面积,必须知道( )和( )
2、一个平行四边形的停车位的底长5m,高2.5m,它的面积是多少?(由学生在多媒体课件上输入答案)
3、选择题
求这个平行四边形的面积( )
(a)6×8(cm2)
(b)6×4.8(cm2)
4、提高练习
(1)如图所示这个平行四边形的高是多少?
(2)这两个平行四边形的面积相等吗?(P83第5题)
5、拓展练习
清溪镇碧月湾地产将以165万元人民币价格出售如图所示的一块地。现市场价是0.4万元。
(1)这块地值得买吗?
(2)如果“我”要购买,你有什么建议?
四、质疑
五、这节课你有什么收获?
板书设计:平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
S=ah
=6×4
=24(cm2)
答:(略)
茶山中心小学 袁敏茹
教学内容:义务教育课程标准实验教科书《数学》五年级上册第79~81页教学内容。
教学目标:
1、知识与技能:
(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能应用公式正确计算平行四边形的面积。
(2)以应用平行四边形的面积计算公式解决相应的实际问题。
2、过程与方法:
使学生经历观察、操作、测量、填表、讨论、分析、比较、归纳等数学活动过程、体会“等积变形”的思想方法,培养空间观念,发展初步的推理能力。
3、情感态度与价值观:
(1)渗透转化的数学思想方法。
(2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
教学重点、难点和关键:
重点:探索并掌握平行四边行面积的计算公式。
难点:理解平行四边形面积计算公式的推导过程,并能正确应用平行四边形的面积计算公式解决相应的实际问题。
关键:让学生在动手实践与合作交流中引导学生从不同的途径和方法去探索平行四边形面积的计算方法。
教学准备:多媒体课件、实物投影仪、小剪刀、平行四边行纸片。
教学过程:
一、创设情境,引入课题。
1、设问:
(1)多媒体课件出示主题图。
(2)学生观察主题图,从中找出学过的图形。(随着学生的回答,电脑逐一显示图形)。翻书79页。
(3)引导学生说出长方形式正方形的计算公式:s=ab . s=a2
(4)引导学生再次观察图中校门前的两个花坛。
(5)设问:这两个花坛分别是什么形状?如果我要比一比它们的大小怎么办呢?引起知识的冲突,长方形的面积会算了,平行四边形的面积不会算。
2、导入:
长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。(板书课题:平行四边形的面积)
二、合作交流、推导公式。
1、猜想:
同桌答作,用数方格的方法计算面积。
(1)电脑课件出示教材P80方格图。师:我们已经知道,用数方格的方法可以知道一个图形的面积,下面请同学们用数方格的方法算出这个长方形和这个平行四边形的面积。
(2)说明要求:一个方格表示1m2,不满一格的当半格计算。数完后把结果填入P80下面的表中。
(3)同桌合作完成并汇报。实物投影展示学生填好的表格。
(4)观察表格上的数据,你发现了什么?把你的发现告诉你的同伴。
(5)学生汇报讨论结果:平行四边形的底与长方形的长相等;
平行四边形的高与长方形的宽相等;
平行四边形的面积与长方形的面积相等;
(6)引导猜想平行四边形的计算公式;
师:这个长方形的面积等于什么?
生:这个长方形的面积等于长乘宽。
师:试想一下,这个平行四边形的面积怎么计算?
生1:等于6×4=24。
生2:也就是底乘高。
师:也就是说这个平行四边形的面积可以怎样计算?
生:这个平行四边形的面积等于底乘高。
2、验证:
(1)师:刚才我们通过数方格的方法数出了这个平行四边形的面积,发现了这个平行四边形的面积等于底乘高,是不是所有的平行四边形都能用这个方法来计算呢?我们一起来验证一下好吗?
(2)学生动手操作,用课前准备好的平行四边形和剪刀进行剪拼,教师巡视。把平行四边形剪拼成一个长方形。
(3)学生在实物投影上演示剪拼的方法。
(4)电脑课件演示剪--平移--拼的过程。
(5)学生四人小组讨论:
①拼出来的长方形与原来的平行四边形比,面积变了吗?
②拼出长方形的长和宽与原来的平行四边形的底和高有什么关系?
③能根据长方形的面和计算公式推导出平行四边形的面积计算公式吗?
(6)汇报:
①拼出来的长方形与原来的平行四边形面积相等。
②这个长方形的长与这个平行四边形的底相等。
③这个长方形的宽与平行四边形的高相等。
3、归纳
(1)师生共同归纳得出平行四边行的面积计算公式。
刚才我们通过剪拼把一个平行四边形转化成为一个长方形,它们的面积相等。
长方形的长等于平行四边形的底。
长方形的宽等于平行四边形的高。
长方形的面积=长×宽 可得 平行四边行的面积=底×高。
(2)用字母表示平行四边形的面积计算公式。
在数学中一般用S来代表图形的面积,用a表示图形的底,h表示图形的高,请同学们用字母把平行四边形的面积公式表示出来。(s=ah)
4、应用
(1)出示教材81页例题1:平行四边形花坛的底是6m,高是4m,它的面积是多少?
(2)指导学生理解题意。
(3)学生独立解决问题。
(4)交流汇报作法和结果。
5、质疑
学生看书80~81页,质疑
三、联系实际,应用新知。
1、完成课本82页练习十五第2题。
学生读题,理解题意,独立完成后汇报结果,鼓励多种方法。
2、小小判官。
(1)一个平行四边形的面积是8m2,它的高是4m,它的面积是8×4=32(m)。
(2)一个平行四边形的底长3cm,高7cm,它的面积是3×7=21(cm2)。
(3)一个平行四边形菜地的面积是40m2,它的高是5m,它的底长40×5=200(m)
4、完成课本83页练习十五第5题。
分析题意,学生试做,汇报讨论方法,说明:等底等高的两个平行四边形面积相等。
四、全课总结,知识升华。
1、这节课你有什么收获?学会了什么?
2、有何感想?
教案:平行四边形的面积
任课教师:缪志强
课 时 计 划
课 题 沿海版六年制小学《数学》第九册P69-72《平行四边形的面积》
教 学
目 标 1.知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
2.能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。
3.过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。
4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
教材分析 重点 使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。
难点平行四边形面积公式的推导过程。
教具 1、多媒体计算机及课件;
2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。
教
学
过
程 一、 质疑引新:
1、 (电脑出示长方形)这图形你认识吗?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]
(出示平行四边形)这又是什么图形?指出平行四边形的底和高?
2、谈话引入:你想知道你所做的平行四边形面积有多大吗?[板书课题:平行四边形的面积]----------请同学们打开课本69页。
二、引导探求:
㈠、提出问题:
1、用数方格法求平行四边形的面积
⑴、谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。
⑵、数出方格图中平行四边形的面积。提问:
A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)
B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?
⑶、若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?
2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。
1平方厘米
3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?
电脑逐步显示:平行四边形的面积=长方形的面积。
平行四边形的底=长方形的长;
平行四边形的高=长方形的宽;
引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!
电脑展示:(1)底、高、不变,面积不变。
(2)底、高改变,面积变化。
你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?
㈡、推导公式:
1、小组合作研究:
长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)
⑴、怎样剪拼才能将平行四边形转化成长方形?
⑵、转化后的图形与原平行四边形有什么关系?
(要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)
2、各小组实验操作,教师巡视指导。
3、各小组交流实验情况:
⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!
⑵、有没有不同的剪拼方法?(继续请同学演示)。
⑶、电脑演示各种转化方法。
4、小组合作讨论归纳总结规律:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、 剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶、 剪样成的图形面积怎样计算?
⑷、 小组上台汇报,指着图形说一次得出:
因为:长方形的面积 =长×宽
所以:平行四边形的面积=底×高(同位指着图形说)
7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“.”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
㈢、巩固公式:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)
㈣、应用解决:
1、自学教材P70例题
下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)
板书:32.6×8.4≈274(平方米)
答:它的面积约是274平方米.
(挑一学生的作业投影评讲)
(五)质疑问难。(略)
你对今天学习的知识有不懂的地方吗?
三、巩固练习:
1、 口答教材P71练一练第1题。
对应练习。
(1) 求下面的平行四边形面积。
刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)
(2) 对应练习:
(3) 生活中的数学:
出示一些生活中看到的平行四边形建筑、工具、楼梯等图片,最后找一个平行四边形的停车位,让学生求面积。
(4)、请同学们拿出刚才的平行四边形,测量你需要的数据并利用公式求出它的面积。(测量、计算、交流。)
四、教师总结:
1、①回顾目标1,你是怎样理解平行四边形面积公式的?
②运用公式计算平行四边形的面积时,必须知道什么条件?应注意什么问题?③对照学习目标,你掌握了没有?
你还有不明白的问题吗?
2、 教师指出:计算平行四边形的面积有多种方法,其中数方格的方法使用起来比较麻烦,不实用。人们通常采用量出平行四边形的底与相应的高,运用“底×高”这个公式来计算平行四边形的面积。。
3、 布置作业。
设计意图
由已知到未知,即由旧知识引入新知识,引导学生进行类推,掌握新概念。这是教学抽象的数学知识的一种重要途径。“平行四边形面积的计算”这一内容,与长方形面积的计算有着密切的联系,适合用这一途径进行
多媒体显示步骤:
(1)、出示方格,显示左下角的面积单位;
(2)、学生汇报结果,屏幕分别显示相应的数量。教学。
使学生容易理解当平行四边形的高不变,它的面积随着底边的缩小而缩小,说明平行四边形的面积与底有关;当平行四边形的底不变,它的面积随着高的缩小而缩小,也说明了平行四边形的面积与高有关。
在这个环节中主要采用了动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。
①先沿着平行四边形的高剪下左边的直角三角形.
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动.
③移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止.
平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。
公式用字母表示。这一步骤需要使学生清楚每个字母的含义,并且知道s=ah也可以写s=ah
首先让学生看着平行四边形的面积公式回答:若想求平行四边形的面积,应该知道哪些条件?然后让学生比较新课开始前平行四边形的面积与长方形面积的大小,解除悬念。再让学生独立思考书中的例题,在教师的扶持下,让学生在黑板前和黑板下齐做,教师巡视指导,共同订正。
平行四边形的底和相对应的高
布置作业 练习十六的第2、3题. 板书设计平行四边形的面积
长方形的面积=长×宽
‖ ‖ ‖
平行四边形的面积=底×高
教学后记 在本节课中,我力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己通过剪拼讨论,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。
蔡素云
教学内容:义务教育课程标准实验教科书第70-74页。
教学目标:
1、理解面积的含义。
2、使学生通过观察、重叠、数格子比较面积的大小。
3、认识面积单位平方厘米、平方分米、平方米,并正确建立1平方厘米、1平方分米、1平方米的面积单位概念。
教学重点:帮助学生理解面积的含义,初步建立面积单位的表象.
教学难点:建立1平方米、1平方分米、1平方厘米的面积单位概念。
教学过程:
一、 创设情景,激趣引新。
小红和小丽在一次旅游中照了很多漂亮的相片,她们去到玻璃店想给自已心爱的相框加上玻璃,以便保存.课件展示两块面积相等,但是形状不同的玻璃,店长安装好了,却让她们付同样多的钱,可小红和小丽认为:两块大小不一样的玻璃收同样多的钱不合理,你想知道为什么吗?
一、探索面积的含义。
1、认识物体的面积:
师:同学们我们观察物体的时候,你首先会看到它的什么呢?
生:回答。
让学生动手摸一摸数学书的表面、课桌的表面、练习本的表面。
问:你知道这些物体的表面就是它们的什么吗?
生:回答。
板书:物体的表面。
问:你发现这些物本的表面有什么不同吗?
生:回答。
2、认识封闭图形的面积:
出示:
问:你知道它们的面积在那里吗?(课件展示)
面积周长呢?(课件展示)并比较大小。
师:像这样封闭图形的大小就是它们的面积。
师生一齐归纳面积的含义。
板书:物体的表面或封闭图形的大小,就是它们的面积。
二、 比较面积的大小。
问:1、学生摸一摸数学书和课桌的表面,并比较它们的大小。
2、让学生比较电视和黑板的频幕哪个大?
生:回答。
师:像这样用眼睛观察就能比较面积的大小的,我们叫什么方法呢?师生归纳。
板书:观察法。
第一关:出示两个大小不同的图形,让学生比较它们的大小。
师生归纳重叠法。
板书:重叠法。
第二关:
师生归纳数格子法。
板书:数格子法。
师生一齐归纳比较面积大小的三种方法:观察法、重叠法、数格子法。
认识常用的面积单位。
师:出示两个图形,让学生通过刚才学习的方法比较两个长方形面积的大小?
四人小组合作,共同完成。
让学生利用手上的学具拼一拼、摆一摆。
展示几个小组不同的摆法,并师生共同归纳:
比较两个图形面积的大小,要用统一的面积单位来测量。而用□表示面积单位最合适。
三、认识常用的面积单位。
让学生看书质疑,并把自已认为重要的句子画出来。
1、 认识平方厘米。
问:1平方厘米有多大呢?
引导学生说出:边长是1厘米的正方形,面积是1平方厘米。并举例说明,哪些物体的表面面积大约是1平方厘米?
板书并出示1平方厘米的图形。
问:测量什么物体的时候用平方厘米作单位比较合适呢?
生:回答。
2、 认识平方分米。
让学生说出:边长是1分米的正方形,面积是1平方分米。
师板书并出示1平方分米的图形。
让学生用手势来表示1平方分米的大小。并举例说明,哪些物体的表面积大约是1平方分米。
问:测量什么物体的时候用平方分米作单位比较合适呢?
生:回答。
3、 认识平方米。
让学生说出:边长是1米的正方形,面积是1平方米。
师板书。
师:你们能用手势做一个1平方米的大小吗?
让学生4人双手围成一个面积大约是1平方米的图形。
即时提出问题:让学生估一估黑板的面积大约是多少平方米?教室地板的面积大约是多少平方米?
4、加强常用面积单位大小的印象。
让学生闭上眼睛想象1平方厘米、1平方分米、1平方米的大小。
四、巩固概念。
1.完成课本第75页“做一做”。
2.完成课本练习十八第1、2题。
3、在横线上填上适当的单位名称。
一块黑板的面积是3 一枚邮票的面积是4
一块手帕的面积是4 教室的面积是54
五、本课小结(略)
板书设计:
面积和面积单位
物体的表面或封闭图形的大小,就是它们的面积。
常用的面积单位:平方厘米、平方分米、平方米。
1、 边长1厘米的正方形,面积是1平方厘米。
2、 边长1分米的正方形,面积是1平方分米。
3、 边长1米的正方形,面积是1平方米。
三(2)班数学
蔡素云
1. 教材把握准确,处理得当.
2. 过度自然,容量恰当.
3. “三动紧密配合,练习形式多样,学习积极较高.语句速度偏快,照中下先意识弱.
三(2)班数学
蔡素云
1. 老师表情亲切,语调柔和,自信从容,和学生的互动较好,课堂 气氛轻松融洽,学生的学习热情较高.
2. 思路清晰,结构严谨,教法得当,面向全体,能体现教师的主导作用和学生的主体作用.
3. 讲练结合,有适量的练习,以巩固学生的知识.
三(2)班
蔡素云
蔡老师注重调动学生的积极性激活课堂确有办法,每次听她的谭,都感到课堂响亮,活跃.如果靓女的特长我无法仿效,如是方法方面,有必要找她请教.把自己调动学生积极性的水平提高一点.
三(2)班数学
蔡素云
1. 教者善于用教态和语音调动学生的学习热情活跃课的气氛.
2. 准确把握教材,抓住重点,突破难点.
3. 体现教师的主导作用和学生的主体作用.
4. 学生的热情高,回答声音响亮.
三(2)班数学
蔡素云
本节课教学目标明确,重点和难点也抓得比较好.教师面向学生全体,培养学生自主探究学习的能力.
教师教态自然亲切,课堂气氛融洽,学生学习热情较高,教学环节中教师能精心设计教学环节,也很注重生与教学的联系,教法得当,教学过程中能充分体现学生的主体性和教师作为组织都不得积极,引导者的角色.
教学目标:
1. 通过指一指、摸一摸、比一比等活动,使学生理解面积的意义。
2. 在解决问题的过程中,使学生体验建立面积单位的必要性,初步理解面积单位的建立规则。
3. 认识常用的面积单位:平方厘米、平方分米和平方米。在活动中获得关于它们实际大小的空间观念,形成正确的表象。
4. 培养学生观察、操作、概括能力,使学生体验到数学来源于生活并服务于生活。
教学重难、点:
教学重点:使学生理解面积的意义,掌握常用的面积单位,建立面积单位的表象。
教学难点:1. 使学生建立面积的概念,建立面积单位的表象。
2. 在操作中体会引进统一面积单位的必要性。
教具、学具:
教具:多媒体课件;米尺、平方厘米、平方分米、平方米的教具。
学具:两生一份面积相近但形状不同的长方形,大小不同的正方形、长方形、圆形、正三角形纸片若干,平方厘米、平方分米的学具。
教学程序:
自学要求:1. 要求自学p73、p74的内容并思考下面问题:
①常用的面积单位有哪些?
②边长是多少的正方形面积是1平方厘米、1平方分米、1平方米?
③要求:把重要的语句用笔勾画出来。
2、思考:用什么方法可以比出哪块面积小一些?为什么?
学生经过观察、重叠、割补都无法比较,激发认知冲突,怎么办?
(一)创设情景,初步感知。
(1) 出示一张大纸和一张小点的纸。
师:老师这有两张纸,如果要在这两张纸的面上进行涂色比赛,看看谁先涂完谁就是冠军,你想选择哪一张纸?为什么?
生:选小的,因为它小一点涂得快。
师:看来同学们都认为这张纸的面小,这张纸的面大,要想很快的涂完,理所当然要选择这一张面小的。每个物体都有自己的面,有的物体的面大一些,有的物体的面小一些。
(2) 小结:今天我们一起研究有关物体表面的知识。(板书:物体表面)
(二)充分感知,引导建构。
(1)通过物体的表面感知面积。
师:现在请你摸一摸数学书的表面,再摸摸课桌的面。
1. 摸一摸:摸一摸这些物体的表面,你发现了什么?
2. 看一看:再看看黑板面,和我们课桌的面相比,怎么样?
师:刚才通过摸、看知道物体表面有大有小
我们就把物体表面的大小叫做它们的面积。(板书:物体表面的大小叫做它们的面积。)
3. 运用“面积”说一说:黑板的表面比课桌的表面大,现在还可以怎么说?
(2)通过封闭图形认识面积。
师:现在我们知道了什么是物体的面积,以前我们也学过了不少的图形,像正方形,长方形,三角形,那这些图形也有大小吗?你能看出这个正方形和长方形谁大谁小?
(3)归纳面积的概念:物体表面的大小叫做面积;封闭图形的大小也叫做面积。谁能把这两方面概括起来,说说什么是面积?
小结:物体表面或封闭图形的大小叫做它们的面积。(板书)
生动手比一比,数学书和作业本谁大谁小?并说一说你是怎么比较的?
(4)体验统一面积单位的必要性。
1. 课件出示:两个面积接近但形状不同的长方形。
思考:用什么方法可以比出哪块面积小一些?为什么?
学生经过观察、重叠、割补都无法比较,激发认知冲突,怎么办?
2. 汇报:选择的图形不同,拼摆的结果也不相同;圆片有缝隙,不准确;长方形长宽不同,不方便;正方形和正三角形能测量出结果,比较起来,正方形更简便。
3. 小结:比较两个图形的面积大小,要用统一的面积单位,正方形表示面积单位最合适。
(5)认识常用的面积单位。
1. 检查自学情况。
①常用的面积单位有哪些?(板书:常见的面积单位:平方厘米、平方分米、平方米)
②拿一拿:从学具中分别拿出1平方厘米的正方形,1平方分米的正方形。(出示面积单位教具)
③画一画:在草稿本上画一个1平方厘米、1平方分米的正方形。你能画出1平方米吗?为什么?
④找一找:我们身边哪些物体的面积接近1平方厘米?1平方分米?1平方米?
⑤试一试:1平方米的地面上能站多少个同学?
(三)、实践运用。
(1) p74页做一做第1题。
(2) p76页第2题。说一说测量邮票、课桌面、黑板和操场的面积,分别选用什么面积单位比较合适?
(3) 估计:教室的面积大约有多少平方米?
(4) 小资料:
① 有关美国首都和我国首都北京的人均绿化面积资料,加拿大人均森林面积和中国人均森林面积的资料。
② 广州市十年前人均绿化面积资料,和广州市十年后人均绿化资料。
说一说,你有什么感想?
(四)、全课小结:
今天这节课你学到了什么?有什么收获?
教后反思:
整节课自始至终,力求从学生熟悉的生活情境出发,请学生摸一摸自己的课桌面,数学课本的封面,铅笔盒盖的面,黑板的面等让学生体会“物体的表面”。说一说你的发现,进而提出有关“面积”概念的问题,以激发学生学习的兴趣与动机。让学生通过观察发现当面积相差不大是我们无法用眼睛直接比较大小,很自然的让学生动手实践,拼一拼、摆一摆。第二组图形由于标准不统一也无法真正比较大小,引出了面积和面积单位。
为了使学生真正感知1平方厘米、1平方分米、1平方米到底有多大,除了让学生看到实际物体的表面,还让学生围一围一平方米。学生知道了1平方厘米、1平方分米、1平方米的大小后,让学生联系生活实际,说一说生活中那些物体的表面面积是1平方厘米、1平方分米、1平方米。培养学生善于发现生活中的数学问题,让学生做生活中的有心人。不管成功与失败,我想这节课都值得我深思
长度单位和面积单位的比较
教学内容:三年级下册第74页例1及练习十八
教学目标:
1、 通过长度单位与面积单位的比较,进一步加深对面积的意义及面积单位的理解。
2、 经历数学系列活动,培养动手操作及想像的能力。
3、 体会数学来自生活实际的需要,感受数学与生活的密切的联系。
教学重点:
明确分清长度单位和面积单位。
课前自学内容:
思考:
1、我们学过的长度单位有哪些?1厘米多长?1分米多长?1米多长?
2、请分别画出边长为1厘米、1分米的正方形。
3、想一想,长度单位和面积单位之间有什么联系?
教学过程
一、自学反馈,比较异同
1、比较1厘米和1平方厘米
(1)学生估计1厘米有多长?1平方厘米的面积多大?
(2)教师出示:长是1厘米的线段图,面积是1平方厘米的平面图形。看它们图形有什么异同?
(3)教师出示:学生用和铅芯和面积是6平方厘米的正方形纸片,要知道它们的大小分别用什么单位来测量?
(4)学生动手测出铅芯的长度和纸片的大小。(在这个过程中教师及时进行指导。)
2、比较1分米和1平方分米
(1)估计1分米的长度,1平方分米的大小。(学生交流时,教师要及时进行指导,使学生的估计接近正确。)
(2)估计铅笔盒的面有多大?长、宽各是多少?
(3)学生动手进行测量铅笔盒的面有多大,长、宽各是多少?看自己的估计情况。(教师进行指导怎样才能减少误差。)
3、比较1米和1平方米
(1)前面我们学习了1厘米和1平方厘米、1分米和1平方分米。那么,我们可以用1米和1平方米来干什么呢?(学生可能回答用1米来测量黑板的长,教室地面的长、宽各是多少?用1平方米来测量黑板的面积是多少?教室地面的面积是多少?……)
(2)教师根据学生的回答,让学生估计黑板的长、宽、面积各是多少?并向学生说明教室的地面的面积大约是60平方米……。
二、教师点拨,小结知识
1、通过讨论,解决问题
通过以上学习,同学们讨论1厘米、1分米、1米和1平方厘米、1平方分米、1平方米有什么异同?学生交流讨论情况,教师及时进行指导。
2、教师总结
1厘米、1分米、1米是长度单位,都可以用来度量物体的长度。1平方厘米、1平方分米、1平方米都是面积单位,都可以用来度量物体的面积。这就是我们今天学习的主要内容--长度单位和面积单位的比较(板书课题)。
三、巩固反馈,深化认识
1、书P75 1 、2 小组合作完成 汇报
2、书P75 3 先自由说,再指名回答。
四、拓展练习
数学游戏:
请你参加图案设计大赛,每个图案是5平方厘米。
长方形和正方形的面积计算
教学内容:三年级下册第77、78页
教学目标:www.xkb1.com
1、引导学生自己去发现长方形面积计算的公式,使学生初步理解长方形面积的计算方法,会运用公式正确的进行计算。
2、通过长方形的面积计算引导学生推导出正方形的面积计算公式。
3、初步培养学生提出问题、分析问题、解决问题的能力。
4、交给学习方法,发挥学生的主体性。
教学重点:会计算长方形和正方形的面积
教学难点:理解和探究面积公式
自学要求:
预习数学书77页的例2
想一想,长方形的面积公式是怎么得来的?
教学过程:
一、复习引入,自学反馈
同学们,上节课我们学习了有关面积的知识,常用的面积单位有哪些?
二、教师点拨,领悟方法
1、巧设问题,激发兴趣
我们教室地面的面积大约是多少呢?学生可能进行猜测,用面积单位来测量,教师指出:这么大的地面用面积单位来测量太麻烦,所以,我们就要研究长方形的面积怎样计算。(板书课题)
2、动手操作,研究方法
(教师准备三种不同的长方形,每组只选择一种进行研究。
一种:一个长3厘米、宽4厘米的长方形
二种:一个长4厘米、宽2厘米的长方形
三种:一个长5厘米、宽3厘米的长方形
(1)学生以组为单位进行研究,想办法求出各自图形的面积。
(2)学生以组为单位进行汇报交流,说出自己的方法。(可能出现的情况:用1平方厘米来测量或只测量长和宽,相乘即是面积。在这个过程中
教师适时地进行点拨、指导,后一种方法比较简单。
(3)师生交流,提炼方法。长方形的面积与它的什么有关系呢?独立思考后交流。(教师指导:长方形的长摆了5排,说明是5厘米;宽摆了3排,说明是3厘米,那么,面积15平方厘米等于什么?长方形的面积=长×宽。)
(4)学生思考:求长方形的面积事实上是求什么呢? 3、那么同学们想一想我们教室地面的面积怎样计算呢?(例题)
学生独立完成,校对
三、知识的迁移
1、教师借此机会教学正方形的面积计算。我们知道正方形是一个特殊的长方形,有长方形的特点,所以正方形的面积计算也可以和长方形的面积计算方法相同。
2、出示例题
学生试做,汇报答案
四、联系生活,解决问题
我们用的数学书的面积大约有多少?先请你估计一下,再算一算。新课标第一网
学生独立完成,汇报
五、小结。
今天你有什么收获?
六、板书设计: 长方形、正方形面积的计算
长方形的面积=长*宽
正方形的面积=边长*4
面积单位间的进率
教学目标:
1、使学生进一步熟悉面积单位的大小。掌握面积单位间的进率。
2、培养学生观察比较分析问题的能力,逐步养成积极思考的学习 习惯。
3、能准确地进行常用面积单位之间的改写。
教学重点:
掌握面积单位间的进率,会进行常用面积单位之间的改写。
教学难点:
面积单位间进率的推导过程。
教具、学具准备:
教师要准备好面积是1平方分米的正方形白纸一张,一面画出边长是1厘米的正方形小格,学生每两人准备一张边长1分米的正方形和边长1厘米的正方形100多个。
自学内容:
自学数学书82-83页
1、边长是( )的正方形,面积是1平方分米
边长是10厘米的正方形,面积是( )
1平方分米=( )平方厘米
2、边长是1米的正方形,面积是( )
边长是10分米的正方形,面积是( )
1平方米=( )平方分米
教学过程
一、猜测引入:
师:我们已经学习了面积单位,常用的面积单位有哪些?
(学生回答,同时依次在屏幕上出现表示1平方厘米、1平方分米、1平方米的正方形)。
师:每相邻两个面积单位间的进率是多少呢?请同学们猜测一下。(分四人小组,猜测,然后反馈)
生1:我们认为每相邻两个面积单位之间的进率是10。
生2:我们认为是100。 ……xkb1.com
师:看来各小组讨论,得出意见难以一致,下面我们就来动手动脑,探究一下“面积单位间的进率”请同学们把学具袋拿出来。
二、自学反馈,教师点拨
(一)推导1平方分米=100平方厘米
师:请同学们拿出红色的正方形,它的边长是1分米,谁来说一说它的面积是多少?
生:边长是1分米的正方形面积是1×1=1(平方分米).
师:如果这个正方形的面积用平方厘米做单位,是多少平方厘米呢?请同学们开动脑筋,发挥四人小组合作的力量,动手做一做实验(学生动手操作,教师巡视)。
师:请各小组汇报实验的结果。
生1:我们用1平方厘米的小正方形摆在红色的正方形上,横排每排摆10个,竖排每排摆10个,一共可以摆10×10=100个,所以这个红色正方形的面积是100平方厘米。
师:你们是用推导长方形面积公式用的“摆”的方法,主意不错!还有别的想法吗?
生2:我觉得这种方法太慢了。
师:有什么好的办法,请你告诉大家。
生2:我们用直尺去量红色正方形的边,边长正好是10厘米,所以它的面积就是10×10=100(平方厘米)。
师:果然方便了不少,你们真聪明,大家同意他们的意见吗?
生3:我们还有更快的。
师:哦?说出来大家听听。
生3:老师告诉了我们这个红色正方形边长是1分米,1分米=10厘米,这个红色正方形面积是10×10=100(平方厘米)。
师:这种方法真妙!
师:刚才大家想的方法都很好,有的用摆,有的用量,还有的直接将分米换算成厘米来计算。同学们真聪明。但不管用什么方法,这个边长是1分米的正方形面积如果用平方厘米做单位都是 ……
生:100平方厘米。
师:同一个正方形,我们用平方分米作单位是1平方分米,用平方厘米作单位是100平方厘米,那么1平方分米等于多少平方厘米呢。
生:1平方分米=100平方厘米。
(二)知识迁移
1、1平方米=100平方分米
师:从上面的实验过程中,我们知道了1平方米=100平方分米,那么同学再想一想:边长1米的正方形,它的面积是多少平方米?如果以分米作单位,它的面积又是多少平方分米?教师出示边长1米的正方形,并按照例题的要求提问两个问题:
(1)边长1米的正方形纸,它的面积是多少平方米?
(2)如果把它划分成边长是1分米的小正方形,可以划分多少个?它的面积是多少平方分米?你们知道了什么?引导学生讨论,自行解决,进行汇报。
通过讨论使学生知道了1平方米=100平方分米。(板书)
那么每相邻的两个面积单位间的进率是多少呢?
1平方分米=100平方厘米; 1平方米=100平方分米。
每相邻的两个面积单位间的进率是100。
2、区分面积单位与长度单位间的进率,进一步强化面积单位间的进率。
长度单位:两个长度单位间进率是10。
面积单位:两个面积单位间进率是100。
3、反馈练习:
(1)练习填空:(出示投影片)
1米=( )分米 1分米=( )厘米
1平方米=( )平方分米 1平方分米=( )平方厘米
(2)83页做一做题目。
8平方分米=( )平方厘米 5平方米=( )平方分米
300平方厘米=( )平方分米
订正时请学生说出想法。
(3)改错:7平方分米=70平方厘米 1800平方米=18平方分米
三、全课小结
公顷、平方千米
教学目标:
1、 结合实例体会常用的土地面积单位:平方千米和公顷,建立1平方千米、1公顷的表象
2、 知道平方米与公顷之间、平方千米与公顷之间的进率,并利用进率进行简单的换算。
3、 经历观察、想象、发现、交流等数学活动的过程,并在这一过程中加深入对公顷、平方千米的认识,发展学生的空间观念和数学思考。
教学重点:
建立平方千米、公顷的概念
自学要求:
预习数学书第84页
1、 测量土地的面积时,常常要用到更大的面积单位,是哪些?
2、 边长是( )的正方形,面积是10000平方米
3、 边长是1千米的正方形面积是( )。
教学过程:
一、激发学生学习兴趣,引出课题
同学们,我们一起来看看体育场的图片,你们有什么感想?
(体育场太大了)
那还能用我们前面学过的面积单位进行测量了?
这就是我们今天要学的比平方米更大的面积单位:公顷和平方千米。(出示课题)
二、自学反馈,教师点拨
1、通常我们在测量土地面积时,要用到更大的面积单位,公顷和平方千米。
它们到底有多大呢?新 课标 第一网
这节课我们就来了解一下。
2、带领学生到操场进行实际测量,量出边长是10米的正方形土地,用标杆及绳子把这100平方米围起来,或让学生手拉手,围站在正方形土地的四周看一看。教师向学生说明,100块这样大的土地就是1公顷。
3、边长是100米的正方形的面积是10000平方米,就等于1公顷。
打个比方,我们的教师面积大约是50平方米,那200个教室的面积就是1公顷。
10000平方米=1公顷
3、边长是1千米的正方形的面积是1平方千米。相当于100公顷。
也就是说如果一个足球场的面积是7000平方米,那就有140个足球场。
1平方千米=100公顷
三、练习
练习二十 2
四、小结
教学目标:
(1) 使学生懂得面积的单位有什么?
(2) 学会面积的单位换算。
教学重难点:理解面积的含义。
教具:一张黄色长方形纸(18×6)、红色长方形纸(12×9)、蓝色长方形纸(12×6)、一个小正方形纸片(1×1)、一个正方形纸片(10×10)、一张正方形纸(100×100)、小正方形纸片(4×4)、小长方形纸片(4×3)若干
学具:每组一张黄色长方形纸(18×6)、红色长方形纸(12×9)、蓝色长方形纸(12×6)、小正方形纸片(4×4)10个、小长方形纸片(4×3)10个。小正方形纸片(1×1)若干、一个正方形纸片(10×10)、尺子
教学过程
一、创设情景,导入新课。
1、理解物体表面的面积。
同桌两人比一比谁的手掌面大?
谁想跟老师的手掌面比一比?
像这样用你们的小手摸一摸数学书的表面,再和你们的手掌面比一比,谁大谁小?
再摸摸桌面,比你们的手掌面怎样?(大得多)
像手掌面、数学书的表面、桌面等物体的表面有大有小,它们的大小分别叫它们的面积。板书:物体表面的大小,就是它们的面积。
提问:书面、桌面、黑板面,谁的面积最大?谁的面积最小?(引导学生说完整的话:黑板面的面积最大。)
2、理解封闭图形的面积。
看来物体的表面是有大小的,下面请同学们看看这四个图形,有一个和其他三个不同,你能找出来吗?(角)
说得好,你观察得真仔细。那我们来看看这三个封闭图形,他们有大有小吗?谁最大?谁最小?
看来,不仅物体的表面有大小,封闭图形也有大小,现在老师告诉大家,封闭图形的大小就是它们的面积。
用一句话来说就是:物体表面的大小或封闭图形的大小,就是它们的面积。(生齐读)
二、比较面积大小,探索面积单位
刚才,我们知道了什么是面积,现在,每个小组都有三张不同颜色的长方形彩纸,这三张彩纸的面积谁大谁小呢?以小组为单位想办法比较一下。
重叠法比较蓝色纸和黄色纸,蓝色纸和红色纸的大小。
黄色和红色纸,能一眼看出谁的面积大吗?我们把这两张纸重叠,能很快看出谁的面积大吗?
也不能,那怎么办呢?能不能用别的办法试一试?为了方便大家探究,老师给大家一点提示,请看屏幕。(电脑演示素材:地板砖、手帕、豆腐),想到办法了吗?
真不错,老师给了小小的提示你就能想出办法,老师为你们准备了小纸片,想不想动手来摆一摆?有的同学手已经很痒痒了,好,请同学们从学具袋中拿出小正方形纸片,小组合作摆一摆黄色纸有几个小正方形纸片大。
板书:黄色=8个小正方形
同学们摆得真快,下面请大家自己从学具袋中拿出小长方形纸片作标准来摆一摆红色纸,看看红色纸上能摆多少个小长方形纸片。
板书:红色=9个小长方形
我知道了!是红色纸的面积大!因为红色纸有9个小长方形,黄色纸只有8个小正方形,9比8大,所以红色纸大。有同学不同意,能说说你的理由吗?(小长方形和小正方形不一样大,所以没法比较。)
你的意思是说要用同一种小纸片作标准对吗?好,那咱们就用小正方形做标准吧,试试也用小正方形摆一摆红色纸。
板书:红色纸=8个小正方形
现在能比较了吗?红色纸和黄色纸的面积一样大!
这也告诉我们,在比较和测量面积时标准要怎样呢?(统一)
是的,就像测量物体的长度时要用统一的长度单位一样,测量面积时就要用统一的什么单位?(面积单位,板书课题)(提醒学生收好学具)
人们经过不断的探索,创造了一些常用的面积单位,有平方厘米,平方分米,平方米,你们想不想知道1平方厘米,1平方分米,1平方米有多大? 请同学们拿出学具里最小的正方形,这就是1平方厘米,量一量它的每条边有多长?(贴在黑板上)
也就是说边长1厘米的正方形,面积是1平方厘米。谁愿意再说一说?(指两名同学说,全班说)
板书:边长1厘米的正方形,面积是1平方厘米。
现在请你用1平方厘米量一量,看哪个指甲盖的面积接近1平方厘米?
生活中还有哪些物体表面的面积大约是1平方厘米?(纽扣、开关按纽、电脑键盘上的一个键、电话上的按键)
我们的周围和生活中有这么多物体的面积大约是1平方厘米,现在请大家闭上眼睛想一想,1平方厘米有多大。睁开眼睛,你记住1平方厘米这个朋友了吗?有了1平方厘米这个朋友的帮助,我们就可以测量一些物体的面积了,请同学们拿出小长方形纸片,用1平方厘米摆一摆,看看它的面积是多少?(12平方厘米)
你不但很快测出了这张纸的面积大小,而且还用了巧妙的方法,真是了不起啊!
1平方厘米已经跟大家成好朋友了,下面我们来跟1平方分米交朋友。请大家试着从学具袋里找到1平方分米,举起来,仔细看看,再量一量它的边长。是1分米吗?也就是说,边长是1分米的正方形面积是1平方分米。
记住1平方分米这个朋友了吗?让我们用手来比划一下。
生活有很多物体的表面面积大约是1平方分米,你能在教室里找到吗?(数学书的一半,开关盖)
1平方厘米,1平方分米都和大家见面了,现在咱们再来认识1平方米这个朋友,大家可不要被它吓到哦。感觉怎样?你猜猜它的边长是多少?你能像这样说说1平方米有多大吗?
板书:边长1米的正方形,面积是1平方米。
估计一下这块黑板的面积大约多少平方米。
三、小结,揭示课题。
刚才,通过学习我们知道了什么是面积,还认识了三个常用的面积单位,下面就让我们利用这节课学习的知识解决一些问题好吗?
四、巩固练习。
1、物体( )的大小或( )的大小叫做它们的面积。
测量或计算面积时,要用( )单位,常用的面积单位有( )、( )、( )。
用边长1分米的正方形去量一块地砖,正好放9个,这块地砖的面积是( )。
2、我能行,请你试着填一填。
一枚邮票的面积是4( )
一块手帕的面积是4( )
小红家的卫生间大约有4( )
3、请你当回小法官。(区别长度单位和面积单位)
小明身高140平方厘米。( )
教室的门高2平方米( )
课桌大约长6平方分米( )
4、光明小学三(2)班被评为“优秀班集体”,学校颁发了一张奖状给三(2)班,同学们用边长1分米的正方形量了量这张奖状,发现它横着能摆5个正方形,竖着能摆4个正方形。
你能帮三(2)班的同学们算一算,做镜框的铝条大约要多长?做镜面的玻璃大约要多大吗?(拓展练习)
五、总结全课。
1、总结。
今天我们学习了:面积和面积单位
我们知道了:物体表面的大小或封闭图形的大小,就是它们的面积。
还知道了:边长1厘米的正方形,面积是1平方厘米。
边长1分米的正方形,面积是1平方分米。
边长1米的正方形,面积是1平方米。
你还有什么问题吗?还想知道什么?
除了平方厘米、平方分米、平方米这三个面积单位,还有没有其他的面积单位?
还有平方公里,我们中国的国土面积就大约是960万平方公里。
2、评价。
你对自己在课堂上的表现满意吗?
3、课后延伸。
请同学们回家后调查你家的居住面积、小区的面积、或是你喜欢的风景区的面积。
教学后记:
一、创设生活情景,积极为学生搭建学习的平台。
二、让学生自己来“做数学”
三、重视空间表象的建立
四、渗透人文关怀,营造宽松、平等、民主的教学氛围。
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
S=ah或S=ah
课后记:
第二课时
教学内容:平行四边形面积计算的练习 (P82~83页练习十五第4~8题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:运用所学知识解答有关平行四边形面积的应用题。
教具准备:展示台
教学过程:
一、基本练习
1、平行四边形的面积是什么?它是怎样推导出来的?
2、.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.(1)练习十五第5题:
1.4厘米
2.5厘米
a、你能找出图中的两个平行四边形吗?
b、他们的面积相等吗?为什么?
c、生计算每个平行四边形的面积。
d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
(2)练习十五6题
让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。
7m
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十五第7题。
四、作业
练习十五第4题。
课后记:
第三课 三角形面积的计算
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
理解三角形面积公式的推导过程.
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程
一、激发
1.出示平行四边形
1.5厘米
2厘米
提问:
(1)这是什么图形?计算平行四边形的面积。 (板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?
4.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
5.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:拼摆图形
6.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
7、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
(二)教学例1
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1.由学生独立解答.
2.订正答案(教师板书)
三、质疑调节
(一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:
(1)要求三角形面积需要知道哪两个已知条件?
(2)求三角形面积为什么要除以2?
四、反馈练习
(一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积.
(二)计算下面每个三角形的面积.
1.底是4.2米,高是2米;
2.底是3分米,高是1.3分米;
3.底是1.8米,高是.1.2米;
(三) 判断
1、 一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
2、等底等高的两个三角形,面积一定相等。 ( )
3、两个三角形一定可以拼成一个平行四边形。 ( )
4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )
五、作业:85页做一做和练习十六1题
板书设计
东莞市常平第一小学:陈琴兰
【教学内容】
义务教育课程标准实验教科书(人教版)小学《数学(第九册)》第92-93页。
【教学目标】
1、在熟悉所学图形面积计算公式的基础上,通过拼一拼、找一找、分一分,并结合生活实际,会把组合图形分解成学过的的基本图形,计算出面积。
2、能运用所学的知识解决生活中的组合图形的实际问题。
3、培养学生动手操作能力,合作交流能力和空间想象能力。
【教学重点】
初步掌握组合图形面积的计算方法。
【教学难点】
正确、灵活地把组合图形转化为所学过的基本图形。
【教学准备】
多媒体课件、学生准备各种图形的卡片。
教学过程 设计说明
(一)拼图游戏,初步感知组合图形。
师: 师:课前老师发给了同学们一些图形,请你说说老师发给你的是什么图形,你能说出计算这个图形的面积公式吗?
生:自由汇报。
师:你们同桌商量下,利用这些图形拼成最美丽的图案,并说 在复习所学的基本图形面积计算的基础上,通过学生拼一拼,说一说的活动,使学在头脑中对组合图
教学过程 设计说明
一、
展
示
汇
报
,
建
立
概
念
。 说它们分别是由哪几个简单图形组合而成的。
结合学生拼出图形有针对性的展示几组组合图形,预设下图:
师:四人小组互相看一看、说一说,你们拼的这个图形分别是由哪些图形拼成的?
师总结:像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)
(二)找一找,说一说。
师:其实生活中处处都有组合图形,现在你能说出课本P92页的组合图形是由哪些简单图形组合而成的吗?
同桌互相说一说。
师:老师还搜集了一幅生活情境中的图片,(课件出示主题图)请同学们找一找,在这幅图什么地方有组合图形?
生认真观察后并指名回答。
师:我们认识了组合图形,那么你们还想学习有关组合图形的哪些知识?
学生畅所欲言……
师:这节课我们重点学习组合图形的面积。(板书:面积)
(一)小组活动,自主探索。
师:请同学们观察下刚才拼得图形中哪个组合图形最像我们 形产生感性的认识。为下面学习求组合图形的面积打下基础。
学生在对组合图形的概念初步了解的基础上,引导学生找生活情境中的组合图形,由具体的实物抽象出几何图形,学生不但加深了对组合图形概念的理解,而且对数学知识与生活的紧密联系有了一定的认识。
教学过程 设计说明
二、
在
探
索
过
程
中
,
寻
求
计
算
方
法
。 主题图中房子的侧面墙的图?(课件出示例题)
师:如何求这个组合图形的面积呢?先独立想想再小组交流。
小组讨论:①这个图形有哪些简单图形组合而成的?
②求这个组合图形的面积就是求哪几个图形的面积?
③怎样求?
小组讨论,教师巡视并指导。
小组汇报:
小组1:把组合图形分成一个三角形和一个正方形。(教师在课件中演示分的过程)先分别算出三角形的面积和正方形的面积,再相加。(板书如下)
=S三+S正
小组2:把这个组合图形分成两个完全一样的梯形。(教师在课件中演示分的过程)先算一个梯形的面积,再乘以2。(板书如下)
=S梯×2
(二)引导学生总结方法。
师:想想我们刚才是怎么求这个组合图形的面积的?
学生自由回答。
师:你认为哪种方法简单呢?
学生说自己的想法。 对于例题的教学,由于学生有了新课伊始的拼组基础,每个学生对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。
引导学生根据自己小组讨论的结果,总结求组合图形的方法,让每个学生都参与数学活动。
教学过程 设计说明
三、
利
用新
知
,
解
决
生
问
题
。 师总结:在计算组合图形面积时,先把组合图形分解成已学过的图形,然后分别求它们的面积再相加。但是,方法多种多样,同学们要认真观察,多动脑筋,选择自己喜欢而又简单的方法。
师:请同学们打开数学书把例题补充完整。
(三)质疑
师:对于今天所学的新课你有什么疑难地方?计算面积时,还要注意些什么?
学生根据自己的想法回答。
以“你想利用今天所学的知识 ,做个( )学生。”为主线完成以下练习。
A、助人为乐的学生。现在你能帮工人叔叔算算这个指示路牌的面积吗?(课件出示,即课本P95页6)
B、爱动脑筋的学生。要做一面这样的队旗需要多少布?你能想出几种方法?(课本P94页第2题)
(先独立思考,再小组合作交流,最后师生共同分析,提升较简
单的方法。)
C、学会欣赏的学生。欣赏利用组合图形拼成的图案及其在生活中的应用。(课件出示)
D、有创新精神的学生。利用所学过的简单图形,设计一幅美丽的图案,量出有用数据,并求出它的面积。 鼓励学生用不同的方法进行计算,并引导学生寻找最简的方法,实现方法的最优化。
以“你想利用今天所学的知识做个什么样的学生。”为主线出现不同层次的练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。
[教学内容]
人教版《义务教育课程标准实验教科书数学》五年级上册第79-83页的内容。
[教学目标]
1、知识目标
使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标
通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标
①通过自评、互评,引导学生学会欣赏别人,认识自己;
②通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
[教学重点]
推导平行四边形的面积公式及运用公式解决各种各样的问题。
[教学难点]
运用平行四边形的面积公式解决各种各样的问题。
[突破重、难点的方法]
动手操作,细心观察,合作交流。
[教具准备]
多媒体课件、木框架、长方形图片、平行四边形图片、剪刀、表格。
[学具准备]
长方形图片、平行四边形图片、剪刀。
[设计思路]
设置疑问-引发猜想-探究感悟-再探究深化-生成知识-应用和解决问题。
[教学过程]
教学过程 设计思路
一、
以
景
置
疑
,
引
出
课
题 1、观察主题图,提出问题
①出示第79页的主题图,问:在这美丽的学校或学校的周围,你能看到我们所学过的图形吗?
②谁能说说长方形的面积是怎样计算的?正方形呢?
③在这美丽的校园里,我最喜欢看的是学校中间的两个花坛,你们知道长方形的花坛大还是平行四边形的花坛大吗?是怎样知道的?(估计学生会说我会算出长方形的面积,而平行四边形的面积看上去跟长方形的面积差不多)
教师引出今天我们就来学习习近平行四边形的面积,板书课题。 以学生熟悉的学校作为情景,让学生倍感亲切地投入到学习中,通过观察让学生重温学过的旧几何图形知识,然后再设置疑问,起到了一种温故而入新的效果。
、
探
求
新
知
,
获
取
知
识 1、数方格,比较平行四边形的面积与长方形的面积。
①拿出老师预先准备的方格纸图,即第80页平行四边形图和长方形图,然后叫学生用数的方法数出两个图形的面积各是多少。
②再认真观察方格纸上的两个图形,并完成以下的表格。
平行四边形 底 高 面积
长方形 长 宽 面积
③仔细观察,你能发现什么?
学生可能会说出平行四边形的面积与长方形的面积是一样的,也有的可能会说出平行四边形的面积应等于它的底×高,对于任何一种发现,教师都要表扬,对于一些有价值的发现更要大力表扬。 通过猜测,数方格,填表格,仔细观察,不数兑现以学生为主体的教学思想,同时也使学生感悟到平行四边形的面积与长方形的面积有着密切的关系,为再探究平行四边形的面积公式储备了澎湃的动力。
2、剪图形,进一步探究平行四边形的面积。
①出示图形,问谁有方法可以求出它的面积。
指出:要求这个图形的面积要用剪或拼的方法,那给你这两个图形,你能用类似的方法或其它方法来求它的面积吗?
②学生以小组为单位用剪或其它方法共同探究平行四边形的面积的计算方法。
3、小组汇报探究的过程和结果。
汇报完后,教师再通过电脑课件把平行四边形转化成长方形的过程演示给学生看,让学生进一步理解平行四边形的面积公式的形成过程。
4、小结平行四边形的面积。
平行四边形的底相当于长方形的长,高相当于宽,由此得出:平行四边形的面积=底×高
5、阅读课本,捕捉新知。
让学生自己看书本第81页的内容,看完后谈自己还发现了什么?
通过剪的小组活动,进一步培养学生动手操作能力、观察能力、思维能力。通过合作、观察、思考、交流、概括等活动得出平行四边形的面积公式,这正好符合当前的教学理念,即让学生参与 知识的形成过程,同时也验证了学生之前的猜想。
通过自主探索,让学生学会从书中获取知识,养成爱看书的好习惯。
三、练习巩固,知识升华。
(一)基本练习
1、平行四边形花坛的底是6m,高是4m,它的面积是多少?
强调学生在计算平行四边形的面积时应先写出它的字母公式,然后根据公式直接计出它的面积。
2、完成书本第82页的第1题。
此题先让学生独立解答,教师只作简单的讲评。
(二)综合练习
1、游戏式练习。
用一个文件袋装着两个没有给出底边、高的长度的平行四边形,叫学生出来抽其中一个,抽到面积大的哪位同学赢。
学生在确定哪个图形的面积大时,渗透要求平行四边形的面积需要知道平行四边形的底和高分别是多少的知识。
2、完成第82页的第3题。
3、选择题。
(1)如右图,( )的面积大。
A、甲 B、乙 C、相等
(2)将一个长方形拉成一个平行四边形后,它的周长( ),面积( )。
A、变大 B、变小 C、不变
4、完成书本第82页的第4题。
要求学生说出解题思路。 分层次、有梯度地进行练习,目的是遵循学生的认知规律,从而更好使学生掌握知识和提升能力。
四、课堂小结,拓展延伸。
这节课,你学习了什么,学会了什么?觉得自己的表现怎么样,同学的表现呢?老师呢? 自评、互评更能让学生认识自己,在评价中更能反思自己的行为或表现,促使共同进步。
★ 计算平行四边形的面积 教案教学设计(人教新课标五年级上册)
★ 第一课平行四边形面积的计算 教案教学设计(人教新课标五年级上册)