比例的应用教学课件

| 收藏本文 下载本文 作者:热水禁止

下面是小编整理的比例的应用教学课件(共含19篇),欢迎您能喜欢,也请多多分享。同时,但愿您也能像本文投稿人“热水禁止”一样,积极向本站投稿分享好文章。

比例的应用教学课件

篇1:比例的应用教学课件

教 具:多媒体课件

教 时:一课时

教学过程

一、导入新课

1、下面每题中的两种量成什么比例关系?

速度一定,路程和时间。

总价一定,每件物品的价格和所买的数量。

小朋友的年龄与身高。

正方体每一个面的面积和正方体的表面积。

被减数一定,减数和差。

2、导入课题:

同学们我们学习了正反比例的意义,还学过解比例,今天我们就应用这些知识解决一些实际问题。板书:比例的应用

二、新授。

1、教学例1。

出示例1:

一辆汽车2小时行驶140千米,照这样的速度,从甲地开往乙地共行驶5小时,甲乙两地之间的公路长多少千米?

教师:先独立思考,再小组讨论交流,看能想出哪些方法解决这个问题。

2、全班交流解答方法:

生1:先算出每小时汽车行驶的千米数,再算5小时汽车行驶的千米数。列成算式是:14025。

生2:先算出5小时是2小时的多少倍,再把140千米扩大相同的倍数。列式是:140(52)

如果学生想出用比例解的方法,教师可以直接问学生:你为什么要这样解?让学生说出解题的理由后再归纳其方法;如果学生没想到用比例解,教师可作如下引导。

教师:除了以上的解题方法以外,我们还可以研究一种新的方法来解决这个问题。请同学们用学过的比例知识思考,题中有用种量?是哪几种量?这几种量间有什么样的比例关系?题中的照这样的速度是什么意思?

随学生的回答,教师作如下的板书:因为速度一定,所以路和程和时间成正比例。

解:设甲乙两地之间的公路长X千米。

140:2 = X:5(依据:速度一定)

注意:① 灵活选择解法。

② 比例解时要正确判断成什么比例。

③ 解完后注意检验。

3、想一想:如果把第三个条件和问题改成:已知公路长350千米,需要行驶多少小时?该怎样解答?

4、教学例2:跟例1相似的方法进行教学,放手让学生去尝试,重在培养学生独立解题的能力。

5、比较例1和例2的相同点与不同点。6、如果把例2改为:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行87.5千米需要多少小时?

三、巩固练习

1、做一做:

⑴食堂买3桶油用780元,照这样计算,买8桶油要用多少钱?(用比例知识解答)

⑵2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

2、对比练习:

① 用同样的方砖铺地,铺张18平方米要用618块砖。如果铺24平方米,要用多少块砖?

② 一间房子要用方砖铺地。用面积是9平方米的方砖,需要96块。如果必用面积是4平方米的方砖,需要多少块?

四、布置作业。

练习五第1~4题。

板书设计

比例的应用

例1 例2

解:设甲乙两地之间的公路长x千米。 解:设每小时需要行驶x千米。

140:2=x:5 4x=705

2x=1405 x=7054

x=350 x=87.5

答:甲乙两地之间的公路长350千米。答:每小时需行驶87.5千米

教学内容:比例的应用P23-24例1-例2

教学要求:1、让学生掌握用比例解应用题的方法。

2、让学生感受生活中的数学,体验数学的应用价值,培养学生运用所学知识解决实际问题的能力。

教学重点:让学生掌握用比例解应用题的方法。

教学难点:培养学生运用所学知识解决实际问题的能力。

教学关键:学生先要正确判断题中的量成什么比例关系。

篇2:比例的应用教学课件

1.使学生能正确判断应用题中涉及的量成什么比例关系.

2.使学生能利用正、反比例的意义正确解答应用题.

3.培养学生的判断推理能力和分析能力.

教学重点

使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.

教学难点

利用正反比例的意义正确列出等式.

教学过程

一、复习准备.(课件演示:比例的'应用)

(一)判断下面每题中的两种量成什么比例关系?

1.速度一定,路程和时间.

2.路程一定,速度和时间.

3.单价一定,总价和数量.

4.每小时耕地的公顷数一定,耕地的总公顷数和时间.

5.全校学生做操,每行站的人数和站的行数.

(二)引入新课

我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.

教师板书:比例的应用

二、新授教学.

(一)教学例1(课件演示:比例的应用)

例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?

1.学生利用以前的方法独立解答.

14025

=705

=350(千米)

2.利用比例的知识解答.

(1)思考:这道题中涉及哪三种量?

哪种量是一定的?你是怎样知道的?

行驶的路程和时间成什么比例关系?

教师板书:速度一定,路程和时间成正比例

教师追问:两次行驶的路程和时间的什么相等?

怎么列出等式?

=350

答:两地之间的公路长350千米.

3.怎样检验这道题做得是否正确?

◆您现在正在阅读的《比例的应用》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《比例的应用》教学设计4.变式练习

一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

(二)教学例2(课件演示:比例的应用)

例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?

1.学生利用以前的方法独立解答.

7054

=3504

=87.5(千米)

2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的路程是一定的,_________和_________成_________比例.

所以两次行驶的_________和_________的_________是相等的.

3.如果设每小时需要行驶

4.变式练习

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果每小时行87.5千米,需要几小时到达?

三、课堂小结.

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.

四、课堂练习.(课件演示:比例的应用)

(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

(二)同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.

1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?

2.王师傅4小时生产了200个零件,照这样计算,_______?

五、课后作业.

1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?

◆您现在正在阅读的《比例的应用》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《比例的应用》教学设计3.某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?

六、板书设计.

教案点评:

本节课通过对正、反比例意义的全面应用,使学生加深了正、反比例意义的认识。

在学生对正、反比例意义理解的基础上,把所获得的理性认识返回到实践中去,从而拉近了数学知识与学生生活实际的距离,减少了学生的陌生感、降低了难度,使学生感到正、反比例关系就在自己的身边。

探究活动

鱼池有多少条鱼?

活动目的

1.培养学生应用所学知识解决实际问题的能力.

2.培养学生的判断推理能力和分析能力.

活动形式

以小组为单位讨论.

篇3:比例的教学课件

比例的教学课件

比例的教学课件

教学内容:

比例尺(课本48-49页例1,“做一做”,练习八第1、2、3题) 教学目标:

1、理解比例尺的意义,能正确说明比例尺所表示的具体意义。

2、认识数值比例尺和线段比例尺,能将二者进行互化。

3、会求一幅图的比例尺。

教学重难点:

重点:比例尺的意义。

难点:将线段比例尺改写成数值比例尺。

教具准备:

多媒体课件或小黑板

教学方法:

先学后教,当堂训练,目标教学法和小组合作学习融合

学习过程:

一、板书课题:

同学们,今天我们来学习“比例尺”(板书课题)一起来看学习目标。

二、出示学习目标:

本节课我们的目标是:

1、理解比例尺的意义,能正确说明比例尺所表示的具体意义。

2、认识数值比例尺和线段比例尺,能将二者进行互化。

3、会求一幅图的比例尺。

同学们,有信心完成本节课的学习目标吗?为了能更好的完成学习目标,请看学习指导。

三、自研共探

1、看一看(自学探究)

认真看课本第48和第49页的内容,看图,看文字,重点看各色方框里的内容并思考:

(1)、什么是比例尺?求比例尺的方法是什么?

(2)、看课本48页右图下面的线段比例尺,想:怎样把它转化成数值比例尺?

(3)、比例尺一般写成什么形式?

师:生认真看书自学,师巡视,督促人人认真看书。

2、议一议(合作交流)

主要交流自学探究中的问题,先对子之间互说,最后小组内交流,统一答案或记录下没有解决的问题,以备下一步的展示。

3、说一说(汇报展示)

以小组为单位进行自学成果的汇报。针对自学探究中的问题,可以口答、板演、或提出问题。组间可以补充或质疑,教师尽可能的引导或解疑。

4、小结归纳

图上距离和实际距离的比叫做比例尺。

图上距离︰实际距离=比例尺 图上距离?比例尺实际距离

求比例尺时,需要注意单位的统一,同时,比例尺是一个比,不能带单位名称。为了计算方便,通常把比例尺写成前项或后项是1的比。 师:通过刚才的展示,老师发现各个小组的自学效果的确很好。到底同学们运用知识解决实际问题的能力怎么样呢?下面请看检测题,比一比谁发言最积极,谁解决问题的能力最强!

四、巩固提升

1、填空。

(1)一幅图的和( )的比,叫做这幅图的比例尺。 1︰1000000表示图上1厘米的线段相当于实际距离( )厘米,也可以写成1

(2)为了计算简便,通常把比例尺写成前项或后项为( )的比。

(3)( ):( )=比例尺,实际距离=( ),图上距离=( )

(4)┗─┻─┻─┻─┛ 是()比例尺,表示 0 40 80 120 160千米

图上( )的距离相当于地面上( )的实际距离。如果甲、乙两地的图上距离5厘米,那么甲、乙两地的实际距离是( )千米;如果甲、乙两地的实际距离是1200千米,从图上量得甲、乙两地的距离是( )厘米。

2、北京到南京的实际距离是880千米,若在地图上量是8厘米。你知道这幅地图的比例尺是多少吗?

要求:

1、独立完成,对子讨论。

学法指导:先自己独立完成题目,然后举手示意对子,待对子完成后小声讨论。

2、组内交流,整合答案。

学法指导:待组内成员全部完成后交流各自答案和理由,最终形成统一答案。

3、分工合作,板演展示。

学法指导:由组长分工:板演、检查、预展(讲解者)

4、汇报讲解,补充评价。

学法指导:各个小组按抽签顺序讲解展示,讲解时可以组内补充,也可其他组补充或质疑。展示后,其他组或教师给予评价。

操作指导:教师在预展时巡视各小组,指导并帮助小组快速分工,让每个学生尽快参与其中,没有得到展示机会的小组安排课后自改或小组对改。

五、全课总结:

同学们,今天我们学习了比例尺,求比例尺的方法是什么呢? 首先根据比例尺的意义确定比的前项和后项,写出比,图上距离和实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。

下面我们就用今天所学的'知识来做作业,比谁的课堂作业做得又对又快,字体又工整。

六、当堂训练:

(一)填一填

1、图上距离与实际距离的比叫做( )。比例尺=():( )

2、比例尺分为两种,一种是(),另一种是( )

3、为了计算简便,通常把比例尺写成()的比

4、一幅图上用10厘米表示实际距离200千米,这幅图的比例尺是( )

5、一幅地图的比例尺是1:0,它表示实际距离是图上距离的( )倍,图上距离是实际距离的( );它还表示图上1厘米代表实际( )米

6、如上图1厘米表示实际距离( )千米,化为数值比例尺是( ),实际距离是图上距离的( )倍,图上距离是实际距离的( )

(二)判断

1、比例尺是一种测量的工具。( )

2、小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。()

3、某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。 ( )

4、一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 .()

5、一个小型零件长5毫米,画在图上5厘米。这幅图的比例尺为1:10 ( )

篇4:小学数学比例教学课件

教学目标:

1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

2、培养学生应用所学数学知识解决实际问题的能力,使学生真正成为课堂的主人;

3、通过实例使学生感受到数学来源于生活,生活离不开数学。

教学重点:

1、正确理解按比例分配的意义。

2、掌握按比例分配应用题的特征和解题方法。

教学难点:能正确、熟练地解答按比例分配的实际问题。

课前准备:布置学生预习

教学过程:

一、创设情境:

1、回顾以前学习过的平均分,由平均分的“公平”引出今天的题目如果还按照平均分,反而不公平。(两人共同合作劳动,完成份额不同,所得分配问题)

2、小结:刚才两位如果劳动资额相同,所以他们获得的报酬要按1:1来分配,这种分配方式也就叫平均分。如果完成劳动份额不相同,所以他们获得的报酬要按1:1来分配就不公平,怎么办?

(组织交流)

师:这里的报酬要完成份额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)

二、初步感知

1、想一想,两位应该按怎样的比来分配劳动所得?(板书:按完成的比3:2进行分配)

2、谁能用自己的语言说说3:2的具体含义。

3、谁能用算式表示两位各应分得多少元?

4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)

三、自主探究,合作研习:

1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第19页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。

2、 此时用PPT出示“学习内容”“学习目标”和“导学提纲”

学习内容:冀教版小学数学六年级上册第19页。

学习目标:

1、认识按比例分配的实际问题,掌握这类实际问题的解答方法。

2、认识连比,理解三个数量连比的意义。

导学提纲:

1、例1中“紫色与红色方块数的比是3:5”的含义是什么?

2、与同学说说例题中每种方法的解题思路。

3、你能画图理解这两种解题方法与同学交流吗?

4、你怎样理解例2“按照2:3:5配置混凝土”这句话的含义?

5、“练一练”第3题是把1200千克培养料按怎样的比来分配?

学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。

(1)独立思考,尝试解答。

(2)小组交流,说说想法。

(3)组织交流,形成思路。

(4)选好内容,进行预展示。

四、集中展示

1、例1中“紫色与红色块数的比是3:5”的含义是什么?

预设:(1)这里的3:5,也就是在8个方块,紫色占3份,红色占5份,一共有8份,紫色占了方块总数的83,红色占方块总数的85。求紫色(茄子)有多少平方米,就是求984平方米的83是多少,求红色(西红柿)有多少平方米,就是求984的85是多少。

(2)把984平方米平均分成5份,3份是茄子,5份西红柿。总份数3+5=8,

茄子为984÷8×3=369(平方米),西红柿为984÷8×5=615(平方米)。

2、展示例2的解题思路及方法……

3、展示“练一练3”的解题方法

小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?

预设:(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。(2)根据份数先求总份数,再求每份数,最后求几份数。

五、反馈检测

1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4 :3,你知道参加各项比赛的女运动员有多少名吗?

2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4 : 7 : 9的三角形,请你帮低年级老师算算三条边的长度各是多少?

3、六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?

4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。

六、课堂小结:

学了这节课,你有什么收获?

[小学数学比例教学课件]

篇5:比例的意义教学课件

【教学内容】

人教版义务教育课程标准实验教科书数学六年级下册第32—33页的内容。

【教学目标】

(1)知识与技能:使学生理解比例的意义,能应用比例的意义判断两个比能否构成比例。

(2)过程与方法:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

(3)情感、态度与价值观:培养学生在实际生活中发现数学的存在,并在实际生活中能感受到数学的趣味,提高学生学习数学的积极性。

【教学重点】

比例的意义,应用比例的意义判断两个比是否能构成比例。

【教学难点】

应用比例的意义判断两个比是否能构成比例。

【教学准备】

多媒体课件

【教学过程】

一、创设情境,导入新课。

同学们,当你看到这面迎风飘扬的五星红旗时,你会想到什么?(生自由汇报,师相机引出儿歌《国旗国旗真美丽》)一首《国旗国旗真美丽》仿佛让我们回到了一年级刚刚入学的那会儿,而如今,一转眼我们已经是六年级毕业班的学生了,希望你们能好好珍惜和利用小学阶段的最后一个学期加强学习,为进入初中继续学习数学知识打下良好的基础。

五星红旗是庄严而美丽的,并且它与我们的数学也有着密切的联系,今天就让我们一起去研究国旗中的数学知识:比例(板书课题:比例)

从课题中我们不难看出,比例和我们以前学过的哪个知识有一定的关系(比)你们还记得比的意义吗?( 两个数相除又叫做两个数的`比。)如何求比值?(比的前项除以后项所得的商叫做比值。)

好,下面我们就先来用比的知识解决几道国旗中的数学问题。

二、以比值为引线,认识比例。

1、探索组成比例的条件

你在哪些地方看见过国旗?

问题:

1:你能说一说这四幅图中国旗的相同点和不同点吗?

2:你们想知道这些国旗的长和宽各是多少吗?

(发作业纸)作业纸上有四幅不同大小的国旗,请同学们四人一组任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,把你的发现和小组里的同学说一说?

哪个小组研究的是操场上的国旗与教室里的国旗各自长和宽的比?

(请一组学生板演汇报,教师小结板书:两个比相等)

这两面国旗长和宽的比值相等,我们可以用等号将这两个比连接起来。(板书:2.4∶1.6=60∶40)

指着这组相等的比说:像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是“比例的意义”(把课题板书完整)请同学们齐读。

请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答:等式;有两个相等的比)

(教师再强调:一定是比值相等的两个比才能组成比例。)

2、寻找国旗中的其他比例

师:你还能从四面国旗中找出哪些比例?

(学生写在练习本上,然后汇报。教师点击课件)

3、介绍比例的第二种表示方法

师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书:=)

4、强调比例的计算单位要统一

出示课件,提出问题,学生判断。

小结:在比例的计算中,单位要统一。

5、区分比和比例

师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流:你觉得比和比例有哪些区别?)

形式不同:比由两个数组成;比例由四个数组成。

意义不同:比表示两个数相除;比例表示两个比相等的式子。

三、自主尝试,巩固比例。

(一)数的比例

课本33页“做一做”第1题。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)

(二)形的比例

课本33页“做一做”第2题。两个具有放大关系的三角形(图中的四个数据可以组成多少个比例?

(三)生活中的比例

师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!

课本36页第1题(学生独立完成,小组订正交流。)

(四)拓展中的比例

写出比值是5的两个比,并组成比例

五、全课小结

通过这节课的学习,你了解了比例的哪些知识?你还想研究比例的什么知识?

比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

篇6:认识比例课件

认识比例课件

比例这部知识是在学习了比的知识上进行教学的,属于概念教学,为以后解比例,讲解正、反比例做准备的。学好这部分知识,不仅可以初步接触对应函数的思想,而且可以用来解决日常生活中一些具体的问题。

比例是在比的基础上讲解的,组成比例的两个比比值相等,由于比的知识是上学期学的,这么长的时间,学生的知识肯定有了一定的遗忘,所以在教学前,先带领学生回顾比的知识。什么叫比?关于比我们学过哪些知识?什么是比值?怎样求比值?等等,唤醒孩子的旧知,既复习了以前的知识,又为本节课的学习提供了很好的帮助。

根据学生的认知规律,为了体现教师主导,学生主体,训练主线的`指导思想,主要让学生在情境中产生问题“观察——计算——比较——概括——应用”的学习过程中掌握知识。为充分调动学生的学习积极性,促进学生有效学习。本节课力求做到以下几点:

一、创造有效学习情境,激发学习主动性。数学课堂教学需要必要的生活情境,这节课为学生提供学生喜欢的动画片《熊出没》中的主人“光头强”的五个实际情境图,让学生观察发现,找相似,找比,求比值,组成比例。

二、组织小组合作学习,提高学习主动性。在学生充分感知的基础上,揭示比例的意义。在此同时还要使学生在学习过程中,理解比值相等时组成比例的核心,在判断两个比能不能组成比例时,关键看这两个比的比值是否相等。为强化理解在这时我安排了两种形式的练习:首先是判断。其次是组比例。最后通过小组讨论比与比例的联系与区别,并揭示数学知识不是孤立的,而它们之间都存在着密切的联系。让学生通过自己的分析、思考、概括出了较为简洁的数学概念,学生感受到成功的喜悦,参与课堂的主动性被充分调动。

三、拓展学生思路,培养自主探究意识。课题中通过“你能举出两个相等的比,使它们组成比例吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。学生通过迁移比较,小组合作交流,多方验证,大家的思维从先前的不知所问到最后的豁然开朗,个个实实在在地当了一名小小的“数学家”,经历了这个愉快的学习过程,获得了成功的体验。

在这节课中,也还存在一些不足:如学生对概念的理解还不够到位,对比例的认识还欠缺生活中的事例,学生动脑方面还不够。

篇7:《比和比例》课件

《比和比例》课件

知识教学点:

1.理解比和比例的意义和及性质。

2.理解比例尺的含义。

能力训练点:

1.会化简比和求比值,会解比例。

2.能正确地解答有关比例尺的应用题。

德育渗透点:

引导学生探索知识间的联系,激发学生学习兴趣。

教学步骤:

一、基本训练

二、归纳整理

1.比和比例的意义及性质

(1)教师引导学生回忆所学知识并完成下表:

(2)说一说,比和分数、除法有什么联系?根据学生的回答完成下表:

(3)提问:比的基本性质有什么作用?比例的`基本性质呢?

引导学生小结几种比的化简方法:

①整数比化简,比的前项和后项同时除以它们的最大公约数。

②小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简。

③分数比化简,一般先把比的前项、后项同时乘以分母的最小公倍数,使它成为整数比,再用第一种说法化简。

④也可以用求比值的方法化简,求出比值后再写成比的形式。

例2 解比例 12∶x=8∶2

指名学生说出解法,教师板书。

(4)做教材第101页的“做一做”

①李师傅昨天6小时做了72个零件,今天8小时做了96个零件。写出李师傅昨天和今天所做零件个数的比和所用时间的比。这两个比能组成比例吗?为什么?

②甲数除以乙数的商是1.4,甲数和乙数的比是多少?

2.求比值和化简比

学生做完后,组织学生比较求比值和化简比的区别,并整理成下表:

(2)完成教材第102页“做一做”的题目,做完后集体订正。

3.比例尺

(1)教师出示一张中国地图,让学生观察后提问:

②什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

(2)完成教材第103页上面的“做一做”的题目,做完后集体订正。

(3)反馈练习

在一幅地图上,用3厘米长的线段表示实际距离900千米。这幅地图的比例尺是多少?在这幅图上量得A、B两地的距离是

2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

三、巩固发展

1.填空。

(1)根据右面的线段图,写出下面的比。

③甲数与甲乙两数和的比是( )。

④乙数与甲乙两数和的比是( )。

不变,后项应该( )。如果前项和后项都除以2,比值是( )。

(4)把(1吨)∶(250千克)化成最简整数比是( ),它的比值是( )。

(6)如果 a×3=b×5,那么 a∶b=( )∶( )

(7)如果a∶4=0.2∶7,那么a=( )

(9)甲数乙数的比是4∶5,甲数就是乙数的( )

2.选择正确答案的序号填在( )里。

(1)1克药放入100克水中,药与药水的比是( )。①1∶99 ②1∶100 ③1∶101 ④100∶101

篇8:比例的应用教学设计

教学目标:

1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生运用正、反比例的意义正确解答应用题。

3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。

教学重点:

让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。

教学难点:

利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路

教学准备:

课件

教学步骤:

(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)

一、铺垫孕伏,建立表象

1、判断下面每题中的两种量成什么比例关系?

○1速度一定,路程和时间

○2路程一定,速度和时间()

○3单价一定,总价和数量()

○4每小时耕地公顷数一定,耕地的总公顷数和时间

○5全校学生做操,每行站的人数和站的行数

2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。

指名学生口答,老师板书。

二、创设情境,探究新知

从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)

1、教学例1

(1)出示例1(课件演示)让学生读题

一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

师:你用什么方法解答,给大家介绍一下如何?(自由回答)

(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)

学生解答如下几种:

解法一:140÷2×5=70×5=350千米

解法二:140×(5÷2)=140×2.5=350千米

如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:

A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?

B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)

C它们有什么关系?(行驶的路程和时间成正比例关系)

D题中“照这样的速度”就是说XX一定,那么XX和XX成X比例关系?因此XX和XX的X是相等的。

教师板书:速度一定,路程和时间成正比例。

师追问:两次行驶的路程和时间的什么相等(比值相等)

解法三:(用比例方法,怎样列式)

解:设甲乙两地间的总路长X千米

140:2=X:5

2X=140×5

X=350

答:甲乙两地之间公路长350千米。

小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。

2、怎样检验这道题做得是否正确呢?

3、变式练习改编题

出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?

4、教学例2(课件演示)

(1)出示例2,学生读题

例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?

提问:

(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

学生利用以前的方法解答。

70×5÷4=350÷4=87.5(千米)

(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)

这道题里的路程是一定的,XXX和XXX成X比例,所以两次行驶的XX和XX的XX是相等的。

指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。

(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程

4X=70×5

X=70×5/4

X=87.5

答:每小时行驶87.5千米。

师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?

B)题中哪一种是固定不变的?从哪里看出来?

C)它们有什么关系?

D)这道题的XX一定,XX和XX成X比例关系,所以两次行驶的和是相等的。

(5)变式练习(改编题)

出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?

解:设需要x小时到达

87.5x=70×5

x=4

答:需要4小时到达。

三、归纳总结,揭示意义

想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。

指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)

四、巩固练习,考考自己(课件演示)

请你们按照刚才学习例题的方法去分析,只要列出式子就行。

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。

3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成?

(2)王师傅4小时生产了200个零件,照这样计算?

4、四选一,每题只能选一次

(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)

a.150×30=1200x

b.30:150=1200:x

c.150x=30×1200

d.150:30=1200:x

(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)

a.60×8=3x

b.60:8=3:x

c.60×8=(8-3)x

d.3:x=8:60

(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)

a.5×40=480x

b.5:40=x:480

c.40x=5×480

d.40:5=x:480

(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)

a.24×5=6x

b.24:5=6:x

c.(24+6)x=24×5

d.(24+6):x=24:5

(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)

a.3×75%=2x

b.75%:3=2:x

c.75%x=2×3

d.3:75%=2:x

五、分层练习,深化新知

○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x

○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?

12×30=(12+6)×X

○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?

120×28=(120+20)×X

六、全课总结,温故知新

解比例应用题的一般步骤是什么?(学生自己用语言叙述)

一般方法和步骤:

1、判断题目中两种相关联的量是成正比例还是反比例;

2、设未知量为x,注意写明计量单位;

3、列出比例式,并解比例式;

4、检查后写出答案;

5、特别注意所得答案是否符合实际。

七、课后反馈,挑战难题

小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:

“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”

小明需要你的帮助,你会怎样编题?

【比例的应用教学设计(通用10篇)】

篇9:比例的应用的教学反思

比例的应用的教学反思

(一)

比例的应用是学生在前面实际是已经接触过,只是用回一、归总的方法来解答,这部分内容主要是用比例的知识来解答通过解答使学生进一步熟练地断定成正、反比例的量,加深对正、反比例概念的懂得,同时,由于解答时是根据正、反比例的意义来列等式,也可巩固加深对所学的简易方程的认识

在教学本课时,我首先给出一些数量关系让学生断定成什么比例,根据什么断定利用课本主题情境图引渗透例5后,提出:你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法再入一步说明:这样的问题可以应用比例的知识来解答,我们今天就来学惯用比例的知识进行解答同时出示以下问题让学生思考和讨论:

1、问题中有哪两种量?

2、它们成什么比例关系?你是根据什么断定的?

3、根据这样的比例关系,你能列出等式吗?

让学生先独立自学课本的内容,后在小组内讨论交流使学生明确:因为水费和用水的吨数成正比例也就是说,两家的水费和用水的吨数的比值是相等的,从而懂得正比例应用的主要内容而后例6的教学则依照例5让学生完全自学,但最后注重了启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例的关系的问题的方法。

(二)

练习时,运用“做一做”直接让学生运用比例的知识解答,解答后对照两题说一说这两量题数量关系有什么不同,是怎样列式解答的从而加深对正、反比例意义的懂得往返顾本次教学环节,还有很多方面有待改良和提高

一、创设问题情境,激发学生探索的兴趣与空间

生活中处处有数学,在实际生活与应用中学数学,不仅是理念,更应该是我们在实践中不懈的`共同追求本课教学中,课前的画面情境的引渗入渗出,沟通了数学与生活之间的联系,引导学生用数学的眼光去发明生活中的数学问题。

二、给学生充分交流的机会与思考的空间

教学中,我注意培养了学生的实际运用能力,将比例与实际联系起来,懂得比例的意义和作用,让学生感受生活中的数学,体验数学的应用价值培养学生运用所学知识解决实际问题的能力,是贯穿本单元学习目标之一实践教学后,我在思考:“学生的实践能力应该如何在各个课时教学中有序地逐步地渗入渗出,它的度应该怎么掌握?我想这有待于我在今后的教学中不断去摸索、去总结

三、要多让学生用自己的语言来表达,训练学生对数学知识表达的能力

“比例的应用”关键是断定题中不变量,特别是变量的比例关系,如果不充分让学生用数学语言表达,弄清题目的真正题意,虽照本宣科会做题,对于基础思路还是含混的,其义还是不明,达不到较高的教学目标。

篇10:比例的应用教学设计

教具:多媒体课件

教时:一课时

教学过程

一、导入新课

1、下面每题中的两种量成什么比例关系?

速度一定,路程和时间。

总价一定,每件物品的价格和所买的数量。

小朋友的年龄与身高。

正方体每一个面的面积和正方体的表面积。

被减数一定,减数和差。

2、导入课题:

同学们我们学习了正反比例的意义,还学过解比例,今天我们就应用这些知识解决一些实际问题。板书:比例的应用

二、新授。

1、教学例1。

出示例1:

一辆汽车2小时行驶140千米,照这样的速度,从甲地开往乙地共行驶5小时,甲乙两地之间的公路长多少千米?

教师:先独立思考,再小组讨论交流,看能想出哪些方法解决这个问题。

2、全班交流解答方法:

生1:先算出每小时汽车行驶的千米数,再算5小时汽车行驶的千米数。列成算式是:140÷2×5。

生2:先算出5小时是2小时的多少倍,再把140千米扩大相同的倍数。列式是:140×(5÷2)

如果学生想出用比例解的方法,教师可以直接问学生:“你为什么要这样解?”让学生说出解题的理由后再归纳其方法;如果学生没想到用比例解,教师可作如下引导。

教师:除了以上的解题方法以外,我们还可以研究一种新的方法来解决这个问题。请同学们用学过的比例知识思考,题中有用种量?是哪几种量?这几种量间有什么样的比例关系?题中的“照这样的速度”是什么意思?

随学生的回答,教师作如下的板书:因为速度一定,所以路和程和时间成正比例。

解:设甲乙两地之间的公路长X千米。

140:2=X:5(依据:速度一定)

注意:①灵活选择解法。

②比例解时要正确判断成什么比例。

③解完后注意检验。

3、想一想:如果把第三个条件和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?

4、教学例2:跟例1相似的方法进行教学,放手让学生去尝试,重在培养学生独立解题的能力。

5、比较例1和例2的相同点与不同点。

篇11:《比例的应用》教学设计

教学内容:

数学十二册《比例的应用》

教学目标:

1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生能用比例方法正确解答比例应用题。

3、培养学生的推理判断能力及勇于探索的精神。

教学重难点:

正确地判断应用题中的数量之间存在什么样的比例关系,并能根据正、反比例的意义列出含有未知数的等式。

教学过程:

一、 创设情境,导入新课:

同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)

1、判断下面每题中的两种量成什么比例关系?

(1)单价一定,总价和数量、

(2)每小时耕地的公顷数一定,耕地的总公顷数和时间、

(3)全校学生做操,每行站的人数和站的行数、

2、 说说速度、时间和路程这三个量存在怎样的比例关系?

(当速度一定)

二、探究新知:

1、 导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。

板书课题:比例的应用

2、学习例1.(课件出示例题 )

例1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时、甲乙两地之间的公路长多少千米?

(1) 先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。

(2)引导学生探究用比例知识解答。

提问:这道题能不能用比例知识来解答呢?

(课件出示问题,让学生思考)

1、这道题中涉及哪三种量?(路程、时间和速度)

2、哪种量是一定的?你是怎样知道的?(照这样的`速度就是说速度一定)

3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)

(课件出示思考的过程,并齐读)

(3) 提问: 根据正比例的意义可以列出怎样的比例?

(教师根据学生的回答板书)

(4) 解这个比例。 (教师板书解答过程)

(5) 怎样检验所求的答案是否正确?(把求出的未知数代入原方程 ,看等式是否相等)

(6)写出答语。

(7) 练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)

一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

(8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。

(9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。

3、学习例2:

(课件出示例题)

(1)自主探究用比例知识解答

1 合作交流,小组讨论:

题中有哪几种量? 这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?

2、汇报讨论结果。

老师板书方程并提问: 这个方程是比例吗?为什么?

3、师生一起解答。(完成例2的板书)

4、练习:(课件出示练习题)

一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达。如果每小时行驶87.5千米,需要多少小时到达?

(学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。)

4、 比较例1和例2的异同:(相同的是都是用比例解答的,不同的是例1是根据正比例的意义列出的比例式,例2是根据反比例的意义列出的等式。但它们都是方程。) 你能从例1、例2的解答中找出用比例的方法解答应用题的关键是什么吗?

5、教师小结。

(课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)

三、知识应用:(出示课件做一做)

1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?

2、某种型号的钢滚球,3个重22.5克。现有一些这种型号的滚球,共重945克,一共有多少个?

四、作业:练习中的1~4题。

五、课堂小结:

1、这节课我们学会了什么?

(学会了用比例知识解答应用题)

2、结束语:比例知识在日常生活中的应用非常广泛,比如要测量一颗大树的高度,或是一根旗杆的高度,都可以用比例知识来解决。我们以后再去探讨好不好?

篇12:《比例的应用》教学反思

比例的应用是学生在前面实际是已经接触过,只是用回一、归总的方法来解答,这部分内容主要是用比例的知识来解答通过解答使学生进一步熟练地断定成正、反比例的量,加深对正、反比例概念的懂得,同时,由于解答时是根据正、反比例的意义来列等式,也可巩固加深对所学的简易方程的认识

在教学本课时,我首先给出一些数量关系让学生断定成什么比例,根据什么断定利用课本主题情境图引渗透例5后,提出:你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法再入一步说明:这样的问题可以应用比例的知识来解答,我们今天就来学惯用比例的知识进行解答同时出示以下问题让学生思考和讨论:

1、问题中有哪两种量?

2、它们成什么比例关系?你是根据什么断定的?

3、根据这样的比例关系,你能列出等式吗?

让学生先独立自学课本的内容,后在小组内讨论交流使学生明确:因为水费和用水的吨数成正比例也就是说,两家的水费和用水的吨数的比值是相等的,从而懂得正比例应用的主要内容而后例6的教学则依照例5让学生完全自学,但最后注重了启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例的关系的问题的方法。

篇13:《比例的应用》教学反思

比例的应用是同学在前面实际是已经接触过,只是用回一、归总的方法来解答,这局部内容主要是用比例的知识来解答通过解答使同学进一步熟练地断定成正、反比例的量,加深对正、反比例概念的懂得,同时,由于解答时是根据正、反比例的意义来列等式,也可巩固加深对所学的简易方程的认识

在教学本课时,我首先给出一些数量关系让同学断定成什么比例,根据什么断定利用课本主题情境图引渗透例5后,提出:你们学过解答这样的问题吗?能不能解答?让同学自身解答,交流解答的方法再入一步说明:这样的问题可以应用比例的知识来解答,我们今天就来学惯用比例的知识进行解答同时出示以下问题让同学考虑和讨论:

1、问题中有哪两种量?

2、它们成什么比例关系?你是根据什么断定的?

3、根据这样的比例关系,你能列出等式吗?

让同学先独立自学课本的内容,后在小组内讨论交流使同学明确:因为水费和用水的吨数成正比例也就是说,两家的水费和用水的吨数的比值是相等的,从而懂得正比例应用的主要内容而后例6的教学则依照例5让同学完全自学,但最后注重了启发同学根据反比例的意义来列等式,使同学进一步掌握两种量成反比例的特点和解决含反比例的关系的问题的方法。

篇14:比例的应用教学设计

教学内容

第23~24页例1、例2以及相应的“做一做”,练习五第1~4题、

教学目的

1、让学生掌握用比例解应用题的方法、

2、让学生感受生活中的数学,体验数学的应用价值,培养学生运用所学知识解决实际问题的能力、

教学重难点

利用已学的正比例的意义,通过自己探索,掌握解答正比例应用题的方法。

教学过程

一、复习

1、判断下面各题中的两个量成什么比例关系?

1)、速度一定,路程和时间(正)

2)、三角形的面积一定,底和高(反)

3)、一个为0的自然数与它的倒数(反)

4)、Y=3XY与X(正)

5)、每块砖的面积一定,砖的块数和总面积(正)

二、引入

一辆汽车从甲地开往乙地行驶路程和时间表:

路程(千米)70140350……

时间(小时)125……

(1)、观察提问:

1)、表中相关的量是哪两种量,汽车行的路程和时间成什么比例?

为什么?师从表中圈出140350

25

师:将其中一个数当作未知数能编一道就用题吗?

2)、学生试编

如学生编题时没有“照这样速度”或“照这样计算”,师提醒:读题的人怎样知道速度一定?

3)、生汇报所编之题,(选其中一题)师出示例1

师:你们自编的题目会用以前学过的方法解答吗:

学生试做;汇报:(师板书)

生:归一140÷2×5

倍比140÷(5÷2)

分数140÷2/5或140×5/2

方程140÷2=X÷5

师:大家想出了这么多合理的解答方法,真能干,我们已经学过了比例的意义、解比例的知识,能不能利用比例的这些知识来解答这道题呢?

今天我们就探讨如何用比例解答应用题(板书课题)

二、新知

1、学生分组讨论,尝试用所学的比例知识来解答应用题。

2、讨论后,请两组学生上来写写他们的列式。

解:设两地之间的距离有X千米

140/2=X/5

师:请讲讲你们的解题思路

学生:根据“照这样计算”可以看出速度一定,也就是路程/时间=速度(一定)既比值一定。所以,路程和时间成正比,根据比例的意义列出等式。

师:140/2表示什么?X/5表示什么?

3、学生总结一下解比例应用题的步骤:

1)、读题,找出条件和问题。

2)、找准变量和定量,判断两种相关联的量成什么比例。

3)、设未知数。

4)、根据比例意义列出等式并解答。

齐读解题步骤,师:这几步中,最关键的是哪步?

4、出示刚才学生编的另一题:

一辆汽车从甲地开往乙地2小时行驶140千米,已知公路长350千米,需要行驶多少小时。用比例解答该怎样解答。

师:这道题的定量变了吗?路程和时间成什么比例关系?

生试独立完成。集体订正。请学生讲讲解题思路。

三,巩固练习:

1、补充条件,使它成为一道完整的应用题,并用比例解答。

一台织布机织布,4小时织布80千米,照这样式计算一共可以织多少千米?

学生1:补充“3小时”后,全体学生试做。

学生2:补充“再织3小时”学生试做。

请不同做法的学生板书,并说说解题思路。

生1:间接设生2:直接设

解设3小时织布X米解设一共可织布X米

80/4=X/4+380/4=X/3

X=60X=140

60+80=140

篇15:比例的应用教学实录

教学目标:

1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。

3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情感、价值观的发展。

教学重点:

使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。

教学难点:

利用比例的基本性质来解比例。

教学过程

一、旧知铺垫

1. 前面我们学习了比例的基本性质,你能说说它的具体内容吗?

2. 请你用比例的相关知识判断下列哪两个比可以组成比例,并且说明理由。

5:7和8:13

1/2:1/3和1/4:1/6

2、想一想,括号里该填几:

14:=35:5

():5=4:10

二、导入新知

我们知道比例中共有四项,如果知道其中的任何三项,就可以求出比例中的另外一个未知项。求比例中的未知项,叫做解比例。这节课我们就一起来探究解比例的方法,大家对自己有信心吗?

三、探索新知

1.教学例题。

呈现情境图,解决实际问题。

⑴呈现情景图。

⑵你如何理解4个玩具汽车换10本小人书?

⑶尝试解答。

学生尝试解答,教师巡视。

⑷学生交流。

(5)尝试用比例的方法解决问题。 尝试解答。 学生交流,形成方法。 解:设14个玩具汽车可以换x本小人书。 4:10=14:x 4x=14×10 4x=140 x=35 答:14个玩具汽车可以换35本小人书。

教师指出:求比例中的未知项,叫做解比例。 板书:解比例。

2、比较、小结。

(1) 提问:解比例的方法和解方程的方法有哪些相同处和不同处?

(2) 方法小结:解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)。其实,比例就是一种特殊的方程,不论在书写格式还是验算方法上他与解方程都是相同的。

三.学以致用,巩固新知。 1.解比例。

5 :8 = X :40 X/9 = 7/3 1/2:X = 1/6:2/5 1.5:0.6=x:0.4 2.按下面的条件组成比例,并求未知数的值。

(1).12和5的比等于3。6和X的比。

(2).X和1/3的比等于4 :3。

3、拓展延伸。

(1)、在一个比例中,两个外项正好互为倒数,已知一个内项是3,另一个内项是多少? (2)、在一个比例中,两个内项的乘积是最小的质数,已知一个外项是2,另一个外项多少?

四、课堂总结:

(1)这节课主要学习了什么内容?什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。) (2)现在你们知道比例的基本性质的另一个作用是什么了吗?(用来解比例)

五、作业。 第20页 练一练。

篇16:比例的应用教学实录

【学习内容】

《义务教育课程标准实验教科书 数学》(人教版)六年级下册第41页。

【教材分析】

“比例的基本性质”是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。

【设计理念】

数学学习是一个学生自发探究的过程,因此,要让学生经历“自主发现问题——自主提出猜想——自主实施验证——自主归纳结论”的过程掌握比例的基本性质;本课的设计旨在为学生的探究学习创设简洁、开放的情境,让学生充分经历探究过程,学会探索方法,体验数学思想,发展数学素养。

【学习目标】

1.进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

4 能根据乘法等式写出正确的比例。

【评价设计】

1.通过练习1检测目标1的达成;

2.通过练习1检测目标2的达成;

3.通过练习1、2、4检测目标3的达成.

4.通过练习3检测目标4的达成.

【学习重点】探索并掌握比例的基本性质。

【学习难点】 能运用比例的基本性质判断两个比能否组成比例。

【教学准备】课件

【学习过程】

一、认识比例各部分的名称

1、复习

(1)什么叫做比例?什么样的两个比才能成比例?

(2)应用比例的意义,判断下面的比能否组成比例。

6:15和8:20 0.5:0.4和2:25

2、介绍比例各部分的名称

4:5=8:10 中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4: 1 = 7 :5

二、探究比例的基本性质

1、猜数

(1)老师这里也有一个比例“12∶□=□∶2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,……)

(2)追问:正确吗?为什么?(求比值判断)

(3)还有不同答案吗?

(4)你能举出项不是整数的例子吗?

(5)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证)

(2)应该怎样举例呢?你有什么好方法?

示范:①任意写一个简单的比;②求出比值;③根据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。

(3)合作要求

①前后4个同学为一个小组;

②每个同学写出一个比例,小组内交换验证。

③通过举例验证,你们能得出什么结论?

4、归纳

我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)

5、完善

(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)

(2)老师这里也有一个比例0:3=0:4,可以吗?3:0=4:0呢?

(3)比例中两个比的后项都不能为0。

6、如果比例写成分数形式,这怎么相乘?(交叉相乘)

三、巩固练习

1、判断下面哪组中的两个比可以组成比例。

示范:6:3和8:5

先让学生尝试判断,再交流,明确思考方法。

应用比例的基本性质判断

(2)还可以用什么方法来判断?用求比值的方法判断能否组成比例可以吗?(将学生分两大组,分别用上述两种方法进行判断)

(3)这两种方法,你更喜欢哪种?为什么?

2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积,你会写比例吗?

某同学根据“2×9=3×6”写出了比例,猜猜他可能是怎么写得?请在练习本上写一写。

追问:你为什么写得那么块?有什么窍门吗?(强调有序思考)

补问:根据这个乘法等式,一共可以写多少个比例?

3、如果a×2=b×4,则a:b=( ):( );

如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?

那么a、b还可能是多少?你发现了什么?

4、猜猜我是谁?

6:( )=5: 4

延伸:如果把 “( )”改为“x”就是我们下节课要学习的知识:解比例。

四、分享收获 畅谈感想

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例?

篇17:《比例的应用》教学反思

《比例的应用》教学反思比例的应用这部分教材包括正、反比例两个例题,它的知识在一定的程度上含有辨证的思想,让学生明白在某个前提不变的情况下,相关联的两个量的变化与这个前提之间因果的关系。在教学本课时,我通过引导学生认真分析,讨论题中不变量、变量中的比例关系,找出等量关系列出方程,从而使学生掌握用比例解答的基本方法。

充分利用学生的知识基本把新旧方法进行对比。同时也让学生充分了解比例在实际问题中的作用和运用。

课堂上我采用了以旧知引路学生自主探索小组合作学习的形式进行。通过设置两个表格,给于学生几个问题作为提示,通过问题带领学生,让学生在形象的数字中寻找成正比例和反比例的量,建立等式,然后去感悟这个比例式成立的依据进行自学,探究新知,而且通过以前学习的方法:旧知与正、反比例解法的联系与区别。

给学生充分交流的机会与思考的空间。

课堂上,我抛砖引玉,引导学生分析出题中有行驶路程和行驶时间的这两种量,关系是:路程时间=速度,题中的照这样的速度就说明速度一定,因此路程和时间成正比例关系.教师:运用前面我们掌握的比例知识,同学们会解答吗?你准备用哪方面的知识解答?学生:准备用正比例解答,因为题中的条件符合正比例的要求。一石激起千层浪,学生的学习是互动的;交流是踊跃的,成功的。

练习题的设计能紧密结合学生生活实际,尽量设计一些引起学生兴趣,对学生有吸引力的题目,来激发学生兴趣,提高练习的积极性,克服老教材中那种对学生没有吸引力的叙述、说法,从而加深了学生对新课的认识。

当然,本课还有不足之处:如不能充分让学生用数学语言表达,弄清题目的真正题意,虽照本宣科会做题,对于基本思路还是模糊的,其义还是不明,达不到较高的教学目标。在以后的教学过程中,会注意对做题思路方面继续努力。

篇18:《比例的应用》教学反思

比例的应用是学生在前面实际是已经接触过,只是用归一、归总的方法来解答,这部分内容主要是用比例的知识来解答。通过解答使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,同时,由于解答时是根据正、反比例的意义来列等式,也可巩固加深对所学的简易方程的认识。

在教学本课时,我首先给出一些数量关系让学生判断成什么比例,依据什么判断。利用课本主题情境图引入例5后,提出:你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。再进一步说明:这样的问题可以应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。同时出示以下问题让学生思考和讨论:

1、问题中有哪两种量?

2、它们成什么比例关系?你是根据什么判断的?

3、根据这样的比例关系,你能列出等式吗?

让学生先独立自学课本的内容,后在小组内讨论交流使学生明确:因为水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的,从而理解正比例应用的主要内容。而后例6的教学则依照例5让学生完全自学,但最后注意了启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例的关系的问题的方法。

练习时,运用“做一做”直接让学生运用比例的知识解答,解答后对照两题说一说这两量题数量关系有什么不同,是怎样列式解答的。从而加深对正、反比例意义的理解。

回顾本次教学环节,还有很多方面有待改进和提高。

篇19:《比例的应用》教学反思

比例的应用这部分教材包括正、反比例两个例题,它的知识在一定的程度上含有辨证的思想,让学生明白在教学本课时,我通过引导学生认真分析,讨论题中不变量、变量中的比例关系,找出等量关系列出方程,充分利用学生的知识基本把新旧方法进行对比。同时也让学生充分了解比例在实际问题中的作用和运用。

课堂上,我抛砖引玉,引导学生分析出题中张奶奶家的用水量和水费的这两种量,关系是总价÷数量=单价,通过生活中的已有知识经验,知道了每吨水的价钱是一定的,所以水费和用水的吨数成正比例,也就是说,两家的水费和用水吨数的比值是相等的。从而提出疑问:“运用前面我们掌握的比例知识,同学们会解答吗?你准备用哪方面的知识解答?”学生:“准备用正比例解答,因为题中的条件符合正比例的要求。”一节课自始至终让学生参与体验解决问题的全过程。学生根据教师的巧妙设问,和富有启发性的引导,通过自主学习和合作交流,很快学生就掌握了新课的内容。这节课既重视比例解应用题的解题方法的教学,又鼓励解决问题策略的多样化,从中发展学生的个性,课堂结构严密,学生练得多,掌握得好。一石激起千层浪,学生的学习是互动的;交流是踊跃的,成功的。

练习题的设计能紧密结合学生生活实际,尽量设计一些引起学生兴趣,对学生有吸引力的题目,来激发学生兴趣,提高练习的积极性,克服老教材中那种对学生没有吸引力的叙述、说法,从而加深了学生对新课的认识。

当然,本课还有不足之处:如不能充分让学生用数学语言表达,弄清题目的真正题意,虽照本宣科会做题,对于基本思路还是模糊的,其义还是不明,达不到较高的教学目标。在以后的教学过程中,会注意对做题思路方面继续努力。

最后有一个疑问,用比例解答应用题,难度降低,正确率比较高,但是为什么学生不喜欢用这种方法,还是喜欢用算术方法解答,是因为嫌设未知数麻烦,还是其它原因呢。

《比例的应用》教学反思

比例的应用优秀教学设计

人教版比例的应用比例尺教学设计

新人教版比例的应用教学设计

六年级数学下册《比例的应用》教学反思

计算机应用基础课件

北师版比例的认识课件

《比例线段》教学反思

解比例教学反思

解比例教学设计

比例的应用教学课件(整理19篇)

欢迎下载DOC格式的比例的应用教学课件,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式

猜你喜欢

NEW
点击下载本文文档