第二课时:一个数乘分数 教案教学设计(人教新课标六年级上册)

| 收藏本文 下载本文 作者:zsfman

下面就是小编给大家带来的第二课时:一个数乘分数 教案教学设计(人教新课标六年级上册)(共含19篇),希望大家喜欢,可以帮助到有需要的朋友!同时,但愿您也能像本文投稿人“zsfman”一样,积极向本站投稿分享好文章。

第二课时:一个数乘分数 教案教学设计(人教新课标六年级上册)

篇1:第二课时:一个数乘分数 教案教学设计(人教新课标六年级上册)

教学目标:

1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:推导算理,总结法则。

教具准备: 多媒体课件

教学过程:

一、复习引入

1、计算下列各题并说出计算方法。

×        ×        ×

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

二、新知探究

1、课件出示教学目标

理解一个数乘分数的意义。

掌握分数乘以分数的计算法则。

学会分数乘分数的简便计算。

2、教学例3

(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×

(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”

(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。

(4)提出问题:  小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

3、小结一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

4、教学例4

(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式:  × 。

教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

教具准备:多媒体课件

教学过程:

一、旧知铺垫

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)36×2+15    (2)5×6+7×3    (3)15×(34-27)

二、新知探究

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(课件出示)

(1) + ×       (2) × -

(3) - ×     (4) × +

2、复习整数乘法的运算定律

(1)乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:25×7×4    0.36×101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?

(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)课件出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)课件出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、课堂检测

练习三的第一题,第三题。

(1) 先让学生观察题目中的已知数的特点,想想怎样做简便?应用

了什么运算定律。再独立完成练习。教师巡回指点,发现存有问题。

(2)小组内评比,解决疑难问题。

(3)教师讲解疑难。

四、课堂自我评价

每个学生对自己这节课的表现进行自我评价,并提出问题。

设计意图

体现学生学习的主动性和自主性。这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。

教学后记

篇2:第二课时一个数除以分数 教案教学设计(人教新课标六年级上册)

【教学过程】:

一、复习巩固上节知识

1、怎样计算分数除以整数?

2、口算下面各题

1/6÷3         4/7÷2       3/5÷2    6/7÷2

二、探究新知

教学例三

1、出示例三  小明2/3小时走了2千米,小红5/12小时走了5/6千米,谁走的快些?

2、指导列式

(1) 谁走得快是比两人的什么?(速度)

(2) 怎样求二人的速度?(自己列出算式,并与你所在的小组的同学交流你的算式及列式依据)

(3) 汇报并板书:小明平均每小时走2÷2/3

小红平均每小时走5/6÷5/12

(4) 你能直接求出这两个算式商的大小吗?(不能)

(5) 你会求出这两个算式的商吗?为什么?(不能,因为除数是分数)

我们这一节就来探究一个数除以分数的计算的方法(板书:一个数除以分数)

3、探究计算法则:

探究计算2÷2/3

(1) 指导学生画线段示意图:

①你能用线段图表示这道题的信息吗?试试看(由于用2/3小时行2千米,求1小时行多少千米,学生在画图时有一定困难,画图前可让学生讨论以下问题

a、2/3小时表示什么?(1小时的2/3)

b、2/3小时行驶的路程和1小时所行路程有什么关系?(2/3小时行的路程=1小时所行路程的2/3即:1小时所行路程的2/3是2千米)

此时学生就可根据乘法应用题画图的方法画出线段图了。

②把你的画图与同组同学交流一下,看是否相同。如果不同,比比谁的画图能更好的反映信息。

③打开教材第30页,看看你们的图与教材的图是否相同。

(2) 探究怎样计算2÷2/3

独立阅读教材第30页,体会教材中的推导过程,并在小组内说一说

(3)师生互动

师生共同探究计算过程,分析算理

① 1小时走多少千米就是求3个1/3小时走多少千米,必须先求1个1/3小时走多少千米

② 由2/3小时行2千米,即2个1/3小时行2千米,可求1个1/3小时走多少千米,也就求2千米的1/2是多少 ?  2×1/2

③ 3个1/3就行2×1/2×3千米

④ 由此推出2÷2/3=2×1/2×3

⑤ 由于1/2中的分母2和第三个因数恰好是原来除法算式中的数,为了便于分析,可用乘法结合律让它先算,即

2÷2/3=2×1/2×3=2×(1/2×3)=2×3/2

⑥ 分析2÷2/3和2×3/2的特征,你们有什么发现?(引导学生得出除以一个不等于0的数,等于乘以这个数的倒数。)

4、你们能用这个规律计算5/6÷5/12吗?试一试,并把你的计算与同组人交流。

三、课堂练习:

1、教材第31页“做一做”

2、练习八第4题

四、板书设计:

一个数除以分数

2÷2/3=2×1/2×3=2×3/2=3(千米)

简写:2÷2/3=2×3/2=3(千米)

5/6÷5/12=5/6×12/5=2(千米)

第三课时    分数四则混合运算

【教学过程】:

一、复习:

1、一个数除以一个不等于0的数应怎样计算?

2、计算:

24÷5/6      2/3÷3/4      5/7÷25/14

二、探究新知:

1、教学例4(1):混合运算应用题

小红用长8米的彩带做了一些花,每朵花用2/3米的彩带。他把其中的4朵送给了同学,小红还剩几朵花?

(1) 讨论问题

① 你从题中获得了哪些信息?

② 要求小红还剩几朵花,先应求什么?

③ 怎样列式?

(2) 讨论要求:

① 先在小组内讨论问题

② 独立列算式,并在小组内交流

(3) 汇报讨论结果并板书

8÷2/3-4

=8×3/2-4

=12-4

=8(朵)

答:小红还剩8朵花。

2、教学例四(2)四则混合运算题

(2)计算1/5÷(2/3+1/5)×15

①先按运算顺序计算出题目的得数

③ 在上面的算式里。如果要先计算(2/3+1/50×15,就要用到中括号“[]”。在用到中括号后,就成了新算式,试一试,写出这个新算式。学生写出后教师板书:

1/5÷[(2/3+1/5)×15]

(1) 先议一议运算顺序,再独立计算,并在小组内交流。

(2) 议一议:一个算式里,如果既有小括号,又有中括号,应怎样计算?

(3) 在学生充分讨论归纳后,教师板书:

先算小括号里面的,再算中括号里面的。

三、课堂练习:

四、教科书第34页“做一做”

五、板书设计:

篇3:第二课时:一个数乘分数/练习课 教案教学设计(人教新课标六年级下册)

分数乘以整数

意义:求几个相同加数 和的简便运算。

法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

2/11 ×3

= 2×3/11

= 6/11

教学后记

教学目标:

1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:推导算理,总结法则。

教具准备: 多媒体课件

教学过程:

一、复习引入

1、计算下列各题并说出计算方法。

×        ×        ×

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

二、新知探究

1、课件出示教学目标

理解一个数乘分数的意义。

掌握分数乘以分数的计算法则。

学会分数乘分数的简便计算。

2、教学例3

(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×

(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”

(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。

(4)提出问题:  小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

3、小结一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

4、教学例4

(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式:  × 。

教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

教具准备:多媒体课件

教学过程:

一、旧知铺垫

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)36×2+15    (2)5×6+7×3    (3)15×(34-27)

二、新知探究

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(课件出示)

(1) + ×       (2) × -

(3) - ×     (4) × +

2、复习整数乘法的运算定律

(1)乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:25×7×4    0.36×101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?

(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)课件出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)课件出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、课堂检测

练习三的第一题,第三题。

(1) 先让学生观察题目中的已知数的特点,想想怎样做简便?应用

了什么运算定律。再独立完成练习。教师巡回指点,发现存有问题。

(2)小组内评比,解决疑难问题。

(3)教师讲解疑难。

四、课堂自我评价

每个学生对自己这节课的表现进行自我评价,并提出问题。

设计意图

体现学生学习的主动性和自主性。这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。

教学后记

第五课时 : 练习课

篇4:第二课时一个数除以分数/第三课时分数四则混合运算 教案教学设计(人教新课标六年级上册)

【教学过程】:

一、复习巩固上节知识

1、怎样计算分数除以整数?

2、口算下面各题

1/6÷3         4/7÷2       3/5÷2    6/7÷2

二、探究新知

教学例三

1、出示例三  小明2/3小时走了2千米,小红5/12小时走了5/6千米,谁走的快些?

2、指导列式

(1) 谁走得快是比两人的什么?(速度)

(2) 怎样求二人的速度?(自己列出算式,并与你所在的小组的同学交流你的算式及列式依据)

(3) 汇报并板书:小明平均每小时走2÷2/3

小红平均每小时走5/6÷5/12

(4) 你能直接求出这两个算式商的大小吗?(不能)

(5) 你会求出这两个算式的商吗?为什么?(不能,因为除数是分数)

我们这一节就来探究一个数除以分数的计算的方法(板书:一个数除以分数)

3、探究计算法则:

探究计算2÷2/3

(1) 指导学生画线段示意图:

①你能用线段图表示这道题的信息吗?试试看(由于用2/3小时行2千米,求1小时行多少千米,学生在画图时有一定困难,画图前可让学生讨论以下问题

a、2/3小时表示什么?(1小时的2/3)

b、2/3小时行驶的路程和1小时所行路程有什么关系?(2/3小时行的路程=1小时所行路程的2/3即:1小时所行路程的2/3是2千米)

此时学生就可根据乘法应用题画图的方法画出线段图了。

②把你的画图与同组同学交流一下,看是否相同。如果不同,比比谁的画图能更好的反映信息。

③打开教材第30页,看看你们的图与教材的图是否相同。

(2) 探究怎样计算2÷2/3

独立阅读教材第30页,体会教材中的推导过程,并在小组内说一说

(3)师生互动

师生共同探究计算过程,分析算理

① 1小时走多少千米就是求3个1/3小时走多少千米,必须先求1个1/3小时走多少千米

② 由2/3小时行2千米,即2个1/3小时行2千米,可求1个1/3小时走多少千米,也就求2千米的1/2是多少 ?  2×1/2

③ 3个1/3就行2×1/2×3千米

④ 由此推出2÷2/3=2×1/2×3

⑤ 由于1/2中的分母2和第三个因数恰好是原来除法算式中的数,为了便于分析,可用乘法结合律让它先算,即

2÷2/3=2×1/2×3=2×(1/2×3)=2×3/2

⑥ 分析2÷2/3和2×3/2的特征,你们有什么发现?(引导学生得出除以一个不等于0的数,等于乘以这个数的倒数。)

4、你们能用这个规律计算5/6÷5/12吗?试一试,并把你的计算与同组人交流。

三、课堂练习:

1、教材第31页“做一做”

2、练习八第4题

四、板书设计:

一个数除以分数

2÷2/3=2×1/2×3=2×3/2=3(千米)

简写:2÷2/3=2×3/2=3(千米)

5/6÷5/12=5/6×12/5=2(千米)

【教学过程】:

一、复习:

1、一个数除以一个不等于0的数应怎样计算?

2、计算:

24÷5/6      2/3÷3/4      5/7÷25/14

二、探究新知:

1、教学例4(1):混合运算应用题

小红用长8米的彩带做了一些花,每朵花用2/3米的彩带。他把其中的4朵送给了同学,小红还剩几朵花?

(1) 讨论问题

① 你从题中获得了哪些信息?

② 要求小红还剩几朵花,先应求什么?

③ 怎样列式?

(2) 讨论要求:

① 先在小组内讨论问题

② 独立列算式,并在小组内交流

(3) 汇报讨论结果并板书

8÷2/3-4

=8×3/2-4

=12-4

=8(朵)

答:小红还剩8朵花。

2、教学例四(2)四则混合运算题

(2)计算1/5÷(2/3+1/5)×15

①先按运算顺序计算出题目的得数

③ 在上面的算式里。如果要先计算(2/3+1/50×15,就要用到中括号“[]”。在用到中括号后,就成了新算式,试一试,写出这个新算式。学生写出后教师板书:

1/5÷[(2/3+1/5)×15]

(1) 先议一议运算顺序,再独立计算,并在小组内交流。

(2) 议一议:一个算式里,如果既有小括号,又有中括号,应怎样计算?

(3) 在学生充分讨论归纳后,教师板书:

先算小括号里面的,再算中括号里面的。

三、课堂练习:

四、教科书第34页“做一做”

五、板书设计:

篇5:第二课时分数连乘应用题 教案教学设计(人教新课标六年级上册)

教学目标:使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题;培养学生解决问题的能力,提高学生的分析能力;进一步提高学生思考问题的逻辑性。

教学重,难点:掌握分数连乘的计算方法,突出一次计算,会解答分数连乘计算的实际问题。

教学过程:

(一)、导入

1、说出下面各题算式所表示的意义,再口算各题

1/2×2=    2/5×3=    2/3× 1/2=     3/4× 5=

2、说出下面各题中的两个量,应该把谁看着单位“1”。然后再给每题补充一个已知条件和一个问题,使它成为一道一步计算的分式乘法应用题。

母牛的头数是公牛的 1/3,  公牛头数的2/3 和母牛相等。

母牛的头数相当于公牛头数的 3/4, 公牛的头数相当于母牛头数的 1/2。

小组完成,集体订正。

(二)、教学实施

1.板书:公牛有30头,母牛的头数相当于公牛的1/3 ,小牛的头数相当于木牛的2/5 ,小牛有多少头?(认真读题,弄清题意)

2.指导学生画线段图:怎样用线段图表示已知条件和问题?要求小牛的头数,就要知道哪个量?(母牛的量)母牛的头数又和哪个数量有关?(公牛的头数)先画一条线段,表示哪个数量?(公牛的头数)崽化一条线段,表示哪个数量?(母牛的头数)画多长?根据什么?表示小牛的头数的线段应该怎样画?板书:

公牛: |   |   |   |   |   |   |   |   |   |   |

30头

母牛: |    |

小牛:

?头

3.分析数量关系:

求小牛有多少头,必须先求什么?(母牛的头数)求母牛的头数应该怎样做?解答这道题需要几步?

4.列式解答:根据以上分析,这道题应该怎样解答?怎样列综合算式解答?板书:

30× 1/3× 2/5=

根据综合算式让学生说说每一步分别求的是什么,每一步分别是把哪个数量看着单位“1”。同时强调:分数连乘不必像整数,小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分之相乘。

(三)巩固练习

完成第18页第4、5、9、10题,学生要说明每一步所表示的意义,每一步是把哪个数量看着单位“1”。

(四)课堂小结:解答两步计算的分数乘法应用题与解答一步计算的分数乘法应用题的相同点都是求一个数的几分之几是多少的应用题,不同点是分数连乘应用题要连续求一个数的几分之几是多少。解题关键是要找准每一步的单位“1”。

教学反思:

第三课时  求比一个数少几分之几的数是多少的实际问题

教学目标:使学生认识“求比一个数少几分之几的数是多少”的应用题的结构特征,学会利用线段图来分析数量关系,掌握解答这类应用题的思路和方法,并能正确列式计算;培养学生分析问题及综合运用所学知识的能力。

教学重、难点:了解“求比一个数少几分之几的数是多少”的应用题的结构特征;正确分析数量关系,比较熟练的画出线段图。

教学过程:(一)导入

板书:超市运来花生油和豆油共600桶,花生油的桶数占总桶数的 2/5。

(二)、教学实施

1.根据以上两个条件,我们可以提出以下数学问题:

花生油有多少桶?豆油有多少桶?豆油不花生油多多少桶?这些问题中哪个问题可以一步解决?明确任务,重点研究第二个问题

2.能用图表示豆油的部分吗?板书:

“1”

花生油占总桶数的

|      |      |      |      |      |

豆油?桶

600桶

3.分析数量关系;看图想想,豆油占总桶数的几分之几?求豆油的桶数就是在求什么?交流讨论得出:豆油的桶数占总桶数的 ,求豆油的桶数也就是在求600的 是多少,用乘法计算。

4.列式:   600×(1 – 2/5 )或 600 - 600× 2/5

后者方法很容易理解,主要是从“总桶数 - 花生油的桶数 = 豆油的桶数”这个数量关系入手分析,也就是“和 - 一个量 = 另一个量”

5.出事例2:  明确题意:降低是指什么意思?(比原来少)减少了哪个量的 ?现在听到的声音分贝是原来噪音的几分之几?请个别学生尝试板演画线段图

“1”

原来:|    |    |    |    |    |    |    |

85分贝

降低了

现在:|    |    |    |    |    |    |    |

?分贝

根据线段图想到了什么?

3.分析数量关系:求现在听到的声音是多少分贝该怎样计算?先求什么,再求什么?(先求降低了多少分贝,再求现在听到的声音分贝是多少;还可以先求现在声音的分贝占原来声音分贝的几分之几,再求现在听到的声音是多少分贝。)

4.列式解答:

方法一:80 - 80× 1/8方法二: 80 ×(1 -1/8 )

=80-10       =80×  7/8

=70(分贝)   =70(分贝)

(三)、深化练习

完成教材20 页的“做一做”;完成练习五的第2、4、5、8、10题

(四)课堂小结

今天我们学习了“求比一个数少几分之几的数是多少”的应用题,这类题需要两步完成,通过今天的学习我们能够准确地分析并计算出这类题。

课后反思:

篇6:第二课时:一个数除以分数/第四课时:分数混合运算 教案教学设计(人教新课标六年级下册)

教学目标:

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。

教具准备:多媒体课件、实物投影。

教学过程:

一、旧知铺垫(课件出示)

1、计算下面,直接写出得数

×4         ×3         ×2         ×6

÷4         ÷3         ÷2          ÷6

2、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?

(速度=路程÷时间)

二、新知探究

(一)、例3,

1、实物投影呈现例题情景图。

理解题意,列出算式:2÷         ÷

2、探索整数除以分数的计算方法

(1)2÷ 如何计算?引导学生结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示 小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是 小时走的路程)

(3)引导学生讨论交流:已知 小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求 小时走了多少千米,也就是求2个 ,算式:2×

再求3个 小时走了多少千米,算式:2× ×3

(5) 综合整个计算过程:2÷ =2× ×3=2×

(二)、小结出计算法则:从上面这个推算过程,我们发现--整数除以分数,等于用整数乘这个分数的倒数。

(三)、计算 ÷ ,探索分数除以分数的计算方法

1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

2、学生用自己的方法来验证结果是否正确。

3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、当堂测评

1、P31“做一做”的第1、2题。

2、练习八第2、4题。

学生独立完成,教师巡回指点,帮助学困生度过难关。

小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

四、课堂总结

1、这节课你们有什么收获呢?

2、在这节课上你觉得自己表现得怎样?

设计意图:

这两节课的教学我从以下着手:

1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

教学后记

第三课时:练习课

第四课时:分数混合运算

教学目标:

1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

教学重点:确定运算顺序再进行计算。

教学难点:明确混合运算的顺序。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×5      (2)1.8+1.5÷4―3×0.4

(3)3.2÷[(1.6+0.7)×2.5]  (4)[7+(5.78-3.12)]×(41.2―39)

3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

二、新知探究

(一)、教学例4(1)

1、教师课件出示例4

2、课件出示自学提纲:

(1)例4中的哪些条件和复习中的3相同?问题相同吗?

(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

(3)尝试说说自己的解题思路并解答。

3、学生根据提纲尝试解题。

4、全班汇报

(1)根据学生的回答,归纳出两种思路:

A、可以从条件出发思考,根据彩带长8m ,每朵花用 m 彩带,可以先算出一共做了多少朵花。

B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

(2)说说运算顺序,再进行计算。

(二)、教学例4(2)

(1)计算1/5÷(2/3+1/5)×15

让个别学生说出运算顺序并计算题目的得数。

教师巡回指点,搜集存在问题。

教师黑板出示问题,学生上台改正,并说明理由。

(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

三、当堂测评

练习九第1、2、3题:

注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

楼楼板到地面的高度实际上只有5层楼的高度。

学生独立完成教师点评,解决疑难。

学生相互得分,评选优胜小组。

四、课堂小结

这节课有什么收获?说一说。

还有什么不懂的?提出来小组内解决。

设计意图

1、在课初始,我便从复习整数及小数的运算顺序入手,

重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

习加强计算的训练。

2、当堂测评题将学生置于提高之处,联系实际生活解决问

题,让学生体会到数学知识的广泛性和严谨性

教学后记

第五课时:练习课

篇7:一个数乘分数 教案教学设计(人教新课标六年级下册)

(至上学期)

六年 级        数学学科                           教 师:高春枝

学习

内容

学习

标 1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

重难

点及

突破

措施  教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:推导算理,总结法则。

课前

准备

导学案设计 个性化设计

案 1.计算下列各题并说出计算方法。

×        ×        ×

2.自学例3、例4,思考一个数乘分数的意义和方法。

流 1.学习例3

小组合作完成

(1)弄清条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,列式:____

(2)动手操作,把一张纸看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示的意义是什么。

(3)根据直观的操作结果,得出 × =__,根据刚才操作的过程和结果推导出计算方法: × =__。

(4)思考:  小时粉刷多少呢?用前面的方法涂色、推导、计算,自主解决问题。

2.练习:练习二第5题

3.根据刚才的学习,小组讨论总结一个数乘分数的意义和方法是什么。

4.学习例4

小组合作完成

(1)分析题意,根据“速度×时间=路程”的数量关系列出算式:____。

(2)先独立计算,再交流计算的方法,明确分数乘分数计算时要注意什么。在小组内展示自己的计算过程,进一步明确约分的书写格式。

(3)独立解答“5分钟飞行多少千米?”,弄清分数乘整数的另一种格式。

5、巩固练习:

(1)P11“做一做”(注意要先观察能否约分,再着手计算)。

(2)练习三第6、9题

馈  一、填空:

1、20× 表示的意义是(                                     )。

×14表示的意义是(                                      )。

× 表示的意义是(                                     )。

2、一个数和分数相乘,可以表示(                             )。

二、计算:

15×               ×56                   ×                  ×                   ×                               ×

的 是多少?       吨的 是多少吨?       时的 是多少时?

三、解决问题:

1、一张纸的面积是 平方米,它的 有多少平方米?

2、一台磨面机,每小时磨面粉 吨, 小时磨面粉多少吨? 小时磨面粉多少吨?

展  作业:练习三第3、7、8、10题

审核人:

篇8:一个数除以分数 教案教学设计(人教新课标六年级上册)

红河镇小学导学案

(2010至2011上学期)

六年 级        数学学科                          教 师:高春枝

学习

内容 一个数除以分数

学习

标 1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

重难

点及

突破

措施 教学重点:总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

教学难点:利用法则正确、迅速地进行计算,并能解决一些实际问题。

课前

准备

导学案设计 个性化设计

案 1、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?(速度=路程÷时间)

2、计算下面,直接写出得数

×4         ×3         ×2      ×6

÷4         ÷3         ÷2       ÷6

流 1、默读例3,理解题意,列出算式:2÷         ÷

2、探索整数除以分数的计算方法

(1)2÷ 如何计算?结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示 小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是 小时走的路程)

(3)小组讨论交流:已知 小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据以上交流,把线段图补充完整,并板书出过程。

先求 小时走了多少千米,也就是求2个 ,算式:2×

再求3个 小时走了多少千米,算式:2× ×3

(1) 综合整个计算过程:2÷ =2× ×3=2×

2、小结出计算法则:从上面这个推算过程,我们发现--整数除以,分数等于用整数乘这个分数的倒数。

3、计算 ÷ ,探索分数除以分数的计算方法

(1)根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

(2)用自己的方法来验证结果是否正确。

4、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、练习

1、P31“做一做”的第1、2题。

2、练习八第5、6题。

馈  一、填空:

1、 ÷ 表示: (                                            )

2、根据 ×6= 写出两道除法算式:                 、

3、(    )千克的 是 千克; 米是 米的(     );

(    )吨的6倍是 吨。

二、判断题:

1、1除以一个不是0的数,得到的是这个数的倒数。 …………………(        )

2、甲数除以乙数,等于甲数乘乙数的倒数。……………………………(        )

3、A不等于0, ÷A与 ÷5结果相同。 ……………………………(        )

4、数A(不等于0)除以假分数,商一定小于A。  ……………………(        )

三、选择:

1、28除以 的商(   )28乘 的积。

A . 大于    B. 小于     C. 等于       D. 无法比较

2、9÷ 可以表示为

A.  9÷4×3   B. 9×3÷4    C.  9÷3×4   D.  9÷3÷4

3、小红的邮票除以 与小明的邮票相等,那么小红的邮票(      )小明的邮票。

A.  多于     B.  少于    C.  等于   D. 无法比较

4、12÷ 与12× 相比(       )

A. 意义相同    B. 结果相同    C. 结果和意义相同

四、计算:

6÷               9÷              32÷                ÷            ÷            ÷               ÷               ÷

作业:练习八第7、8题

审核人:

篇9:课题:《一个数除以分数》 教案教学设计(人教新课标六年级上册)

编制人:蔡 娜       时间: . 08 .25

NO.3-2

班级      姓名        小组       小组评价

学习目标:

1、理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行分数除法的计算。

2、通过独立思考、小组合作、展示质疑,在数学活动中培养分析、推理能力。。

3、极度热情,全力以赴,精彩展示,做最好的自己。

重点:一个数除以分数的计算方法。

难点:一个数除以分数的算理。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行分数除法的计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。

一、自主学习:

1、自学课本P30-P31页xkb1.com

我知道了:一个数除以一个不等于0的数,等于(      )这个数的(       )。

2、连一连(把互为倒数的两个数连起来)。

二、合作探究:

例1、小明   小时走了2千米,小红   小时走了  千米,谁走得快些?

要求:画图理解算式的意义,明确算理。

小结:一个数除以分数,可以转化为一个数乘这个分数的(          ),即被除数不变,除号变(           ),除数变成它的(           )。

例2、通过分数除以整数(0除外)和一个数除以分数的学习,你发现了什么规律?

1)、分数除以整数的计算方法用字母表示:   ÷ n =

2)、整数除以分数的计算方法用字母表示:a ÷   =

3)、分数除以分数的计算方法用字母表示:  ÷   =

观察上面三个字母公式,可以发现分数除法都可以转化为(        )计算。即甲数除以乙数(0除外),等于甲数(       )乙数的(        )。

例3、计算下面算式,你能从中发现什么规律?

小结:一个数(0除外)除以小于1的数,商(         )被除数。除以1,商(        )被除数,除以大于1的数,商(         )被除数。

三、学以致用:

1、想一想,填一填

1)、一个数除以一个不等于0的数,等于(     )这个数的(      )。

2)、填上适当的数。

3)、

4)、     是多少,应把(      )看作单位“1”。

5)、

2、我能辩对错。(对的打“   ” ,错的打“    ” )

1)、两个真分数相除,商大于被除数。                (         )

2)、一个数除以假分数,商一定小于被除数。          (         )

(          )

(         )

3、计算

4、比较大小

五、解决问题:

1)、一台拖拉机5小时耕地   公顷,每小时耕地多少公顷?

2)、一个长方形的面积是   平方米,这个长方形的宽是   米,它的长是多少?

3)、一个制药厂每天可以制造  千克的药品,由于业务需要,现在需制造

千克药品,制造这批药品需要多少天?新课标第一网

篇10:第二单元分数乘分数1 教案教学设计(人教新课标六年级上册)

主备人:王娟娟

第一课时    分数乘以整数

教学内容:第1~2页内容。

教学目标:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。

重点难点:分数乘整数的计算方法

教学过程:

一、展示教学目标:1、理解分数乘以整数的意义2、掌握分数乘以整数的计算法则。

二、自学:计算下面各题:

思考: 有什么特点?应该怎样计算?

出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

1、学生自学,教师巡视指导

2、两名学生用两种不同方法板演

3、用加法算: (块)

用乘法算:  (块)

学生思考:这里为什么用乘法?乘数表示什么意思?

得出:分数乘以整数的意义与整数乘法的意义相同,

都是求几个相同的和的简便运算。学生齐读一遍。

练习:说一说下面式子各表示什么意思?(做一做第3题。)

问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)

三、巩固练习。

1.第2页做一做。

2.练习一

第二课时   分数乘法

教学内容:教材第10页例3,第11页例4以及“做一做”练习二中的第3、4题

教学目标:1.理解一个数乘分数就是求一个数的几分之几是多少。2.掌握分数乘分数的计算方法,并能正确地进行计算。

重难点、关键1.重难点:分数乘分数的计算方法。

2.关键:理解一个数乘分数就是求一个数的几分之几是多少。

教学过程:

一、旧知铺垫

1.计算下面各题。

12×3/4     5/16×32      15×3/5     3/8×12

2.说一说,分数乘法的计算方法、步骤。

(1)整数与分子相乘的乘积作分子,分母不变。

(2)能约分的要先约分,再计算.

3.根据题意列出算式。

(1)一袋大米,每天用去3/4千克,3天用去多少千克?

(2)某修路队,每天修路3/2千米,5天修多少千米?

(3)一辆汽车,每小时行驶全程的3/20,4小时行驶全程的几分之几?

二、探索新知

1.教学例3。

出示题目:(出示课文插图)

问题一:1/4小时粉刷这面墙的几分之几?

(1)你想怎样列式?

学生回答,教师板书。

1/5×1/4

(2)分数乘分数怎样计算?

①1/5×1/4 表示什么?

经过讨论,使学生理解1/5×1/4 ,就是求1/5的1/4是多少,也就是说把1/5平均分成4份,取其中的一份是多少?

②画示意图分析。

③从图上可以看出,这面墙的1/5的1/4,是哪一块?它占整面墙的几分之几?

通过观察得出:这面墙的1/5的1/4,是占整面墙的1/20。

板书:1/5×1/4=1/20

④发现分数乘分数的计算方法。

引导学生观察算式和结果,看一看其中的联系。

板书:1/5×1/4=(   )/(   )=1/20

想一想:应该是怎样的一个计算过程呢?

学生经过思考交流,不难发现其中的计算过程。学生回答,教师板书补充其中的计算过程。

1/5×1/4=(1×1)/(5×4)=1/20

然后,联系以上的算式,让学生说一说计算方法。

学生不难发现:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

教师可不急于作出归纳,再提出问题,继续验证学生自己的发现。

问题二:3/4小时粉刷多少呢?

(1)引导学生列出算式

1/5×3/4

(2)你认为计算结果是多少?

学生回答,教师板书。

1/5×3/4=1×3/5×4=3/20

(3)画示意图加以验证。

注意:画示意图时,要紧密结合1/5×3/4的意义加以分析。

(4)总结分数乘分数的计算方法。

师生共同总结,教师板书:

分数乘分数,应该分子乘分子,分母乘分母。

2.教学例4

出示教材例题,学生简要了解蜂鸟。

(1)2/3分钟能飞行多少千米?

①列出算式

3/10×2/3

②学生尝试计算,教师巡视课堂了解学生计算情况。

完成后,选择两位不同计算过程的学生上台板演。

③强调:能约分的要先约分,再计算。

(2)5分钟能飞行多少千米?

①学生独立列式解答,请一位学生上台板演。

②教师出示算式,学生判断可以不可以。

③说明分数和整数相乘时约分的方法。

强调:整数约分后的结果要写在整数的上面,并与分子相乘。

三、巩固练习

1、完成例题后“做一做”

2、完成练习二第3、4题

篇11:第二单元分数乘分数2 教案教学设计(人教新课标六年级上册)

第三课时  运算定律的应用

教学内容:整数乘法运算定律推广到分数乘法(教材第14页例5、例6,练习三的1、2、4、5题)

教学目标

1、使学生会用整数乘法的运算定律推广运用到分数乘法,并使一些计算简便。

2、培养学生灵活计算的能力,发展学生逻辑思维能力。

重难点、关键:运用运算定律进行简便运算。

教学过程

一、教学例5

1.观察每组的两个算式,看看它们有什么关系。

(1)1/2×1/3○1/3×1/2

①学生计算,发现乘积一样,两个算式相等。

②说一说存在的规律。

③用字母表示。

板书:乘法交换律:a×b=b×a

(2)(1/4×2/3)×3/5○1/4×(2/3×3/5)

①学生计算,发现乘积一样,两个算式相等。

②说一说存在的规律。

③用字母表示。

板书:乘法结合律:(a×b)×c=a×(b×c)

(3) (1/2+1/3)×1/5○1/2×1/5+1/3×1/5

①学生计算,发现乘积一样,两个算式相等。

②说一说存在的规律。

③用字母表示。

板书:乘法分配律:(a+b)×c=ac+bc

2、小结。

整数乘法的运算定律对于分数乘法同样适用。

师:应用这些乘法的运算定律,可以使一些计算简便。

二、教学例6

1.计算3/5×1/6×5

(1)观察算式,说一说你有什么想法。

(2)学生独立列式计算,教师巡视检查。

(3)汇报计算过程。

(4)想一想:不改写算式,直接进行约分行不行?

通过观察、思考、交流,使学生明白像这样连乘的算式,可以直接约分同时计算。

(5)试一试

2/3×1/4×3

学生独立计算,请两位学生上台板演,完成后集体评价,发现问题及时纠正。

2.计算(1/10+1/4)×4

(1)观察算式,说一说你认为怎样计算比较简便。

(2)学生独立列式计算,请两位上台板演。

(3)集体评价,发现问题及时纠正。

板书:

(4)试一试

(8/9+4/27)×27

学生独立计算,教师巡视进行个别指导,发现问题及时纠正。完成后,请一位学生上台板演计算过程。

3.计算:87×3/86

(1)观察算式,说一说算式有什么特征?

(2)你认为应该怎样算比较简便?

(学生先独立思考,然后在小组中交流。

(3)反馈交流结果

板书:

三、巩固练习:完成练习三的1、2、4、5题

第四课时  求一个数的几分之几是多少

教学内容:

解决”求一个数的几分之几是多少”的问题.(课文第17页的例1  “做一做” ,  练习四的第1-4题

教学目标:使学生能根据一个数乘分数的意义,理解"求一个数的几分之几是多少"的问题的数量的关系.

使学生掌握解决"求一个数的几分之几是多少"问题的方法,并能解决有关的问题.

重难点:

掌握"求一个数的几分之几是多少"的解答方法.

教学过程:

一、展示学习目标,学生明确本节课的学习目标

二、展示学习指导:

学生讨论完成下列题目:列式

1、20的2倍是多少?

2、15的2/3是多少?

3、100的1/10是多少?

4、30的3/2倍是多少?

通过交流,使学生明确两点

第一:一个数乘分数,表示求一个数的几分之几是多少

第二:"求一个数的几分之几是多少"与"求一个数的几倍是多少"是一样的道理,用乘法计算.

板书:求一个数的几倍是多少,一个数×几倍

求一个数的几分之几是多少,一个数×几/几

三、教学例1

出示例题:2003年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界的均耕地面积的2/5。

我国人均面积是多少平方米?

1、分析题中数量关系。

2、题中哪一句话告知我们数量关系?

3、题里的“2/5”表示什么?(把世界人均面积平均分成5份,我国人均面积占其中的2份)

4、画线段图表示

1、引导提问:求我国人均面积就是求什么?(世界人均面积的2/5)

板书:    我国人均面积等于世界人均面积的2/5

我国人均面积==世界人均面积×2/5

我国人均面积==2500×2/5

2、列式解答

学生尝试独立列式解答,教师巡视,请一位学生上台板演

2500×2/5=1000(平方米)

答:略

2.做一做

一头鲸长28米,一个人身高是鲸体长的2/35。这个人身高多少米?

过程要求:

1、学生独立思考,列式解答

2、同伴交流思维过程和结果

3、汇报解答过程

4、关系式:人的身高是鲸体长的2/35

5、算式:28×2/35=56/35(米)

四、当堂练习

完成练习四的第1-5题

篇12:(3)一个数乘分数巩固练习教案教学设计(人教新课标六年级下册)

教学目标:

1、通过观察、分析、比较等使学生理解分数乘分数的算理及计算法则也适用于分数和整数相乘,进一步掌握分数乘法的计算法则;并会运用计算法则比较熟练地进行计算。

2、通过练习,培养学生迁移、比较、类推和概括的能力,提高计算水平。

3、激发学生的学习兴趣,培养学生良好的学习习惯,渗透辨证唯物主义的启蒙思想。

教学重点:统一计算法则

教学难点:提高计算的正确率

教学过程

一、基础练习

1.计算下面各题,并说一说计算方法。

2.把下面的整数改写成分数。

2=(    )  5=(    )

14=(    )  25=(    )

二、练习指导

1.统一计算法则。

(1)到目前为止,你学会了哪些分数乘法的知识?分数乘整数以及分数乘以分数的计算法则分别是什么?分数乘分数的法则适用于分数和整数相乘吗?为什么?

(2)请你试算一算:

(学生小组合作学习,教师巡视。)

学生边展示计算过程,边阐述理由。

(3)教师引导学生归纳:因为整数可以看成分母是1的分数,所以分数乘分数的法则也适用于分数和整数相乘。因此分数乘法的计算法则可以统一为一条,即用分子相乘的积作分子,分母相乘作分母。

2.书写形式。

(1)具体计算时,在碰到整数和分数相乘,可以把整数看成分母是1的分数,直接和分数的分子相乘,不必把整数化成分母是1的分数。

(2)计算时,也可以不把相乘的两个数改写成分子、分母分别相乘的形式,直接把整数或分数的分子与另一个数的分母进行约分。

三、实践应用

1.练习二的第6题。

2.练习二的第8题。

第(1)题明确:整数4可以看作分母是1的分数,而不能用分子和分子或分母和分母约分。

第(2)题明确:约分后,分子相乘的积作分子,分母相乘的积作分母,不能相加。

3.练习二的第10题。

四、小结作业

这节课你知道了什么?

1:练习二的第5、7、9、11题。

课后作业:必做作业本P5/1、2、3、4、5、

回家作业:必做课时特训P9-P10/1、2、3、5、6、

选做课时特训P9-P11/4、思维拓展

(4)分数混合运算和简便运算

教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

教学过程:

一、复习

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)36×2+15    (2)5×6+7×3    (3)15×(34-27)

二、新授

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

(1) + ×       (2) × -     (3) - ×     (4) × +

2、复习整数乘法的运算定律

(1)乘法交换律:a×b=b×a               乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:25×7×4    0.36×101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、练习

P14“做一做”:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。

四、作业

课后作业:必做作业本P6/1、2、3、4、

回家作业:必做课时特训P11-P13/1、2、3、4、

选做课时特训P13/思维拓展

篇13:第二单元分数乘法1 教案教学设计(人教新课标六年级上册)

1、分数乘法

第一课时     分数乘整数

教学内容:教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

教学目标:让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

重难点、关键

分数乘整数的计算方法。

教学准备:电脑课件

教学过程: 一、旧知铺垫

1、计算下列各题

2/11  +2/11+2/11

过程要求

(1)  写出计算过程。

(2)  说一说分数加法的计算方法。

2、想一想,能不能把 2/11+2/11+2/11改写成乘法算式呢?

二、探索新知

1、教学例1

(1) 出示例题

根据题意,电脑课件呈现示意图。

(2) 根据题意列出解答算式:

2/11+ 2/11+2/11 = 2+2+2/11  =  6/11

2/11×3= 6/11

(3)探索分数乘整数的计算方法。

师:2/11×3= ,说一说你是怎么想的?

①   学生在小组交流各自的想法

②   小组讨论后反馈思维的过程和结果

教师板书:

③总结分数乘整数的计算方法。

A、学生口述分数乘整数的计算方法;

B、 教师整理并板书:

分数乘整数,整数与分子相乘的乘积作分子,分母不变。

2、教学例2

计算:3/8×6

(1)  学生独立计算。

(2)  交流计算方法和步骤。

(3)  比较计算过程,看一看哪一种更为简单

(3)归纳:能约分的要先约分,再计算。

三、巩固练习

1、  完成课本“做一做”。

(1) 学生独立完成,然后计算过程和结果。

(2)第3题,说一说你是怎样计算的?怎样想的?

一般要求学生列综合算式计算。如:

6/7×10×7==60(kg)

2、课本练习二第1、2题

四、课后作业设计

一、计算

7/8× 7     3/4×8     1/9×3  1/2×4

5/6×5      5/18×3    27× 2/3 3/8 16×

三、列式计算

1、3个5/8是多少?      2、2/3的6倍是多少?

3、5/14扩大7倍以后是多少?     4、5/6与24的积是多少?

课后反思:

第二课时   分数乘分数

教学内容:教材第10页例3,第11页例4以及“做一做”,练习二中的3、4题

教学目标:

1、理解一个数乘分数就是求一个数的几分之几是多少。

2、掌握分数乘分数的计算方法,并能正确地进行计算。

重难点、关键:

1、重难点:分数乘分数的计算方法。

2、  关键:理解一个数乘分数就是求一个数的几分之几是多少。

教学准备:实物投影或者电脑课件。

教学过程:

一、创设情境引入新课

教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。

师:能提出什么问题?

学生提问题,教师板书。

以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”

师:怎样列式?(板书1/5×4)

师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

让学生计算,并说说怎样计算。

师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

板书课题:分数乘分数

二、操作探究计算算理

1笔Γ合旅嫖颐抢刺教址质乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

学生操作。

学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

学生自己涂色。

师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

学生讨论交流汇报。

教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到 (板书)。

三、迁移延伸,归纳法则

提出问题:3/4小时粉刷这面墙的几分之几?

师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)

小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?

交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到 (板书)

根据板书的两个计算算式讨论归纳计算方法。

通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。

四、反馈提高,巩固计算

出示例4,读题。

师:怎样列式?依据什么列式?

由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。

让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。

课堂总结:今天我们学习了什么?分数乘分数怎样计算?

课后反思:

篇14:第二单元分数乘法1 教案教学设计(人教新课标六年级上册)

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、分数乘法计算法则的推导。

第一课时 :分数乘整数

教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、  引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则

教具准备:多媒体课件、

教学过程:

一、复习引入

1.课件出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少?   9个11是多少?  8个6是多少?

(2)计算:

+ + =     + + =

2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二:新知探究

1.出示课题明确学习目标。

2.课件出示自学题纲,让学生自学课本。

(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?

(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?

(3)分数乘以整数的意义。

3、 课件出示例1

教师引导学生画出线段图。

学生根据线段图列出不同的算式,并解答。

(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的

”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?

2/11  + 2/11   + 2/11   =

2/11   × 3  =

(3).分数乘以整数的法则。

A.导出计算方法。

你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)

B.归纳法则。

通过以上计算,想一想分数乘以整数怎样计算呢?

师:比一比,看哪个组的同学总结的语言准确又简练。

小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)

C.应用法则计算。

讨论,这两种方法哪种简单?为什么?

强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。

4、 教学例2

(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

三、当堂测评(课件出示)

1.看图写算式

2.先说算式意义,再填空。

3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

四、学生课堂自评

1、这节课你有什么收获?

2、每个学生给自己在课堂上的表现进行评价。

板书设计

分数乘以整数

意义:求几个相同加数 和的简便运算。

法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

2/11 ×3

= 2×3/11

= 6/11

教学后记

篇15:第四课时:分数混合运算/第六课时:解决问题(一) 教案教学设计(人教新课标六年级上册)

教学目标:

1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

教学重点:确定运算顺序再进行计算。

教学难点:明确混合运算的顺序。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×5      (2)1.8+1.5÷4―3×0.4

(3)3.2÷[(1.6+0.7)×2.5]  (4)[7+(5.78-3.12)]×(41.2―39)

3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

二、新知探究

(一)、教学例4(1)

1、教师课件出示例4

2、课件出示自学提纲:

(1)例4中的哪些条件和复习中的3相同?问题相同吗?

(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

(3)尝试说说自己的解题思路并解答。

3、学生根据提纲尝试解题。

4、全班汇报

(1)根据学生的回答,归纳出两种思路:

A、可以从条件出发思考,根据彩带长8m ,每朵花用 m 彩带,可以先算出一共做了多少朵花。

B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

(2)说说运算顺序,再进行计算。

(二)、教学例4(2)

(1)计算1/5÷(2/3+1/5)×15

让个别学生说出运算顺序并计算题目的得数。

教师巡回指点,搜集存在问题。

教师黑板出示问题,学生上台改正,并说明理由。

(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

三、当堂测评

练习九第1、2、3题:

注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

楼楼板到地面的高度实际上只有5层楼的高度。

学生独立完成教师点评,解决疑难。

学生相互得分,评选优胜小组。

四、课堂小结

这节课有什么收获?说一说。

还有什么不懂的?提出来小组内解决。

设计意图

1、在课初始,我便从复习整数及小数的运算顺序入手,

重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

习加强计算的训练。

2、当堂测评题将学生置于提高之处,联系实际生活解决问

题,让学生体会到数学知识的广泛性和严谨性

教学后记

第五课时:练习课

第六课时:解决问题(一)

已知一个数的几分之几是多少求这个数的应用题

教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:

分数除法应用题的特点及解题思路和解题方法。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、根据题意列出关系式。

(1)一个数的3/4等于12.

(2)男生人数的11/12等于220人。

(3)甲数的5/8是40.

(4)乙数的4/5刚好是1/6.

2、解决问题

根据测定,成人体内的水分约占体重的 ,而儿童体内的水分约占体重的 ,六年级学生小明的体重为35千克,他体内的水分有多少千克?

(1)看看题目中所给的三个条件是否都用得上,并说说为什么。

选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重× =体内水分的重量

(2)指名口头列式计算。

二、新知探究

(一)教学例1.

1、课件出示自学提纲:

(1)这一例题和复习中的题有什么不同和相同呢?想一想。

(2)有几个问题?都和哪些条件有关?

(3)读题、理解题意,并画出线段图来表示题意

(4)独立解决第一个问题。

2、全班汇报

(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

小明的体重× =体内水分的重量

(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

3、解决第二个问题:小明的体重是爸爸的 ,爸爸的体重是多少千克?

(1)启发学生找关键句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸的体重× =小明的体重

①方程解:解:设爸爸的体重是χ千克。

χ= 35

χ=35÷

χ=75

②算术解:  35÷ =75(千克)

4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、当堂测评(课件出示)

1、根据题意列出算式,不必计算(每题15分)。

(1)一个数的2/5是40,这个数是多少?

(2)一个数的3/8是24,这个数是多少?

(3)甲数是100,占乙数的4/5,乙数是多少?

(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

2、解决问题(40分)。

某校有女生160人,正好占男生的8/9,男生有多少人?

学生独立完成,教师巡回指点,注重学困生的提高。

小组内订正、互评,做到兵强兵。

四、课堂总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

设计意图:

本堂课我设计了“题目--线段图--等量关系式--解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

教学后记:

篇16:(2)一个数乘分数 教学计划(人教新课标六年级上册)

教学目标:

1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:推导算理,总结法则。

教学过程:

一、导入

1、计算下列各题并说出计算方法。

×        ×        ×

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

二、新课

1、教学例3

(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×

(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”

(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。

(4)提出问题:  小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

2、相关练习:练习二第5题。xkb1.com

3、小结一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

4、教学例4

(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式:  × 。

(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式:                      (km)

(3)学生独立解答“5分钟飞行多少千米?”,讲评中介绍分数乘整数的另一种格式。

5、巩固练习:P11“做一做”(注意提醒学生要先观察能否约分,再着手计算)。

三、练习

1、练习三第6题

(1)求2枝长多少分米,就是求2个 是多少?算式: ×2

(2)求 枝或 枝长多少分米,就是求 的 是多少,或 的 是多少。

2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)

四、作业

练习二第3、7、8、10题。

教学追记:

分数乘整数、分数乘整数这两堂课,我都注重从生活引入,并通过直观的线段图、折纸等方式让学生理解算理。课中,我能改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。

(3)分数混合运算和简便运算

教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

教学过程:

一、复习

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)36×2+15    (2)5×6+7×3    (3)15×(34-27)

二、新授

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

(1) + ×       (2) × -     (3) - ×     (4) × +

2、复习整数乘法的运算定律

(1)乘法交换律:a×b=b×a               乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:25×7×4    0.36×101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、练习

P14“做一做”:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。

篇17:课题:《分数乘分数》 教案教学设计(人教新课标六年级上册)

编制人:蔡 娜       时间: . 08 .20

NO.2-2

班级      姓名        小组       小组评价

学习目标:

1、理解分数乘分数的意义。掌握分数乘分数的计算方法,并能运用计算

方法进行正确计算。

2、掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。

3、极度热情,全力以赴,精彩展示,做最好的自己。

重点:分数乘分数的意义。

难点:分数乘分数的算理。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的意义,掌握分数乘分数的计算方法,能运用计算方法正确进行计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。

一、自主学习:

1、自学课本P10页

2、计算

4/9× 4 =                7/15×5=               8×9/20=

3、我能辩对错。(对的打“   ” ,错的打“    ” )

1)、求1/6的5倍和求5个1/6的和列式都是1/6×5。              (      )

2)、分数乘整数是求几个加数的和的简便运算。                  (      )

3)、4/21×3=4×3/21=4/7                                          (      )

4)、2根1/4米长的铁丝比1根1米长的铁丝长。                  (      )

二、合作探究:

例1、工人师傅每小时粉刷这面墙的1/5,1/4小时粉刷这面墙的几分之几?3/4小时粉刷多少呢?

小结:分数乘分数的意义:

例2、4/5千克的1/2是多少千克?           7/12小时的4/7是多少小时?

小结:分数乘分数的计算方法:

例3、0.5×1/7=                    21/3×1/5=

小结:1、分数乘分数的计算方法也适用于小数乘分数,先把小数化成(        ),然后按(                     )的方法进行计算。

2、分数乘分数,这里的分数也可以是带分数,计算时先把带分数化成(           ),然后按(                     )的方法进行计算。

三、学以致用:xkb1.com

1、想一想、填一填

1)、2/3×1/4表示(                              );

5/6×2/3表示(                              );

2)、分数乘分数,应该 (       )乘(        ),(       )乘(        ),能约分的可以(         )再乘。

3)、一根木棒长7/8米,它的2/7是(         )米。

4)、一个长方形的宽是3/7米,长是宽的2倍,这个长方形的面积是(       )平方米。

2、计算

7页

3、列式计算

1)、2/5千克的3/4是多少千克?          2)、 24的5/12的1/5是多少?

4、动手画一画

1)、用线段图表表1/2千米1/4。        2)、用图形表示1/3千克的一半

5、解决问题新课标第一网

1)、要修一条长3/4千米的公路,第一天修了全长1/8,第一天修了多少千米?

2)、一个正方形的边长4/5分米,它的面积是多少平方分米?

篇18::《分数乘整数》 教案教学设计(人教新课标六年级上册)

编制人:蔡 娜       时间:2010 . 08 .20

课题:《分 数 乘 整 数》       NO.2-1

班级      姓名        小组       小组评价

学习目标:

1、结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。

2、通过独立思考、小组合作、展示质疑,培养观察推理的能力。

3、激情投入,阳光战示,全力以赴,挑战自我。

重点;分数乘整数的简便算法。

难点:分数乘整数的算理。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,补充之后由老师进行点拨,最后巩固知识。

一、自主学习:

1、自学课本P8---P9页

2、想一想,填一填

1)、5+5+5+5=(     )× (      ) 表示(     )个(      )相加。

2)、1.2+1.2+1.2+1.2+1.2=(   )×(    )表示(    )个(     )相加。

3)、  +  +  =(     )× (     )表示(     )个(      )相加。

4)、  × 4改写成加法算式是(    )

3、看图填空。

1)、

(          )+ (         )+ (        )= (        )

(          )× (         )= (        )

2)、

(        ) +  (        ) + (        )+ (       )= (       )

(        )× (        )= (        )

二、合作探究:新课标第一网

例1、人跑一步的距离相当于袋鼠跳一下的    。人跑3步的距离相当于袋鼠跳一下的几分之几?

小结:分数乘整数的意义:

例2、     × 5

小结:分数乘整数的计算方法:

例3、6 ×     =

思考:你有什么技巧?

小结:分数乘整数的简便算法:

三、学以致用:

1、填空

1)、分数乘整数,用分数的(     )和整数相乘的积作( ),( )不变。

2)、分数乘整数的意义与(                        )意义相同,都是求的简便计算。

3)、      × 4表示( )或表示( )

4)、 4个    的和是多少?用乘法计算可列式为(                   )。

2、计算

× 4 =            3 ×    =                   × 8 =

xkb1.com

3、列式计算

1)、6个   相加的和是多少?           2)、   的5倍是多少?

4、解决问题

1)、一辆汽车每分钟行   千米,这辆汽车每小时行驶多少千米?

2)、李师傅加工一个零件   小时,加工24个零件需多少个小时?

5、附加题

1)、计算

× 2 =

2)、把下面的加法算式改写成乘法算式。

篇19:课题:《分数乘分数》 教案教学设计(人教新课标六年级上册)

编制人:蔡 娜       时间:2010 . 08 .20

NO.2-3

班级      姓名        小组       小组评价

学习目标:

1、掌握分数乘分数的计算方法,并能运用计算方法熟练进行计算。

2、掌握分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间

的关系进行正确判断。

3、激情投入,阳光战示,全力以赴,挑战自我。

重点:分数乘分数的简便算法。

难点:因数与积的关系。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。

一、自主学习:

1、自学课本P11页

2、计算:

3、填空:

1)、   × 6表示(                                );

×   表示(                               );

2)、一根绳子长81米,剪去    ,还剩这根绳的           ,还剩(       )米,这里是把(              )看作单位“1”。

二、合作探究:

例1、蜂鸟是目前所发现的世界上最小的鸟,也是唯一能倒飞的鸟。蜂鸟每分钟可飞行    千米,  分钟飞行多少千米?

思考:你想到了几种计算方法,有什么技巧?

小结:分数乘分数的简便算法:

例2、比较大小。

思考;你发现了什么规律?

小结:当一个因数大于1时,积(       )另一个因数(0除外);

当一个因数小于1时,积(       )另一个因数(0除外);

当一个因数等于1时,积(       )另一个因数;

三、学以致用:

1、直接写出得

2、

3、我能辩对错。(对的打“   ” ,错的打“    ” )

1)、一个数乘真分数,积小于这个数。                    (    )

2)、几个假分数相乘的积大于1,几个真分数相乘的积小于1。(    )

3)、X ×   ×X                                         (    )

4)、分数乘法的意义与整数乘法的意义相同。              (    )

5)、如果A×   =B×    ,那么A大于B。                (    )

4、解决问题:

1)、一根电线第一次用去   米,第二次用去的是第一次的    ,第二次用去多少米?

2)、学校合唱队有76人,舞蹈队的人数是合唱队   ,管乐队的人数是舞蹈队的    ,学校管乐队有多少人?

第二课时:一个数乘以分数

《一个数乘分数》教学设计

《一个数乘分数》练习课教学反思

第二课时:折线统计图 教案教学设计(人教新课标六年级下册)

一个数乘小数练习题

数学教案-一个数除以分数

第2节《小数乘小数》(一)教学设计 (人教新课标五年级上册)

第一单元:位置2课时 教案教学设计(人教新课标六年级上册)

《呼风唤雨的世纪》第二课时教学设计 (人教新课标四年级上册)

《稍复杂的求一个数的几分之几是多少的问题》 教案教学设计(人教新课标六年级上册)

第二课时:一个数乘分数 教案教学设计(人教新课标六年级上册)(整理19篇)

欢迎下载DOC格式的第二课时:一个数乘分数 教案教学设计(人教新课标六年级上册),但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档