以下是小编为大家准备的《解比例》教学设计 (人教新课标六年级上册)(共含14篇),欢迎大家前来参阅。同时,但愿您也能像本文投稿人“OliverQueen”一样,积极向本站投稿分享好文章。
张鸿森供稿
【教学内容】人教版六年级下册P35例2、例3及做一做。
【教学目标】
1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。
2、学会应用比例的意义和基本性质解决实际问题。
【教学重点】掌握解比例的方法,会解比例。
【教学难点】应用比例的意义和基本性质解决生活中的实际问题。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、什么叫做解比例
2、我国国旗的长与宽的比是3:2,如果我们学校的国旗长是240厘米,求我们学校国旗的宽是多少厘米?
(1)你会解答吗?独立解答后,同桌间相互说说想法。
(2)反馈交流
①240÷3×2=160(厘米)
②解:设我们学校国旗的宽是 厘米。
240: =3:2
3 =240×2
=240×2÷3
=160
答:我们学校国旗的宽是160厘米。
(3)你是怎么想的?
二、关键点拨
1、用比例解决实际问题
(1)你明白第二种解法的意思吗?
(2)国旗长和宽的最简整数比和实际长度比可以组成比例,所以可以把国旗的宽设为 厘米,建立比例240: =3:2,再通过解比例求出 的值。
(3)小结:这种方法叫做用比例解决实际问题。
2、解比例的方法
(1)你是怎样解比例240: =3:2的?
(2)根据比例的意义,先求出3:2的比值,把比例转化为方程,再求 的值。
(3)根据比例的基本性质“两个外项的积等于两个內项的积”把比例转化为方程,再求出 的值。
(4)怎样才可以确定 的值是正确的?(检验)
(5)你更喜欢哪种解法?为什么?
三、巩固练习
1、解下面的比例
:10= : 0.4: =1.2:2 =
2、把左边的三角形按比例缩小后得到右边的三角形,求未知数X。(单位:厘米)
学生独立完成,汇报交流。
3、小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水;第二杯用了30毫升蜂蜜和250毫升水。
(1)分别写出每杯蜂蜜水中蜂蜜和水体积的比,看它们能否成比例。
(2)照第一杯蜂蜜水中蜂蜜和水的比计算,300毫升水中应加入蜂蜜多少毫升?
学生回答第一个问题,板书。再让学生观察是否能成比例。
分析:第一个问题应该说比较简单,比分别是25:200和30:250。
四、分享收获 畅谈感想
这节课,你有什么收获?
听课随想
反思与体会:
导学内容:P35页例2例3,完成做一做及练习六7--11题
导学目标
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。
3、培养学生的知识迁移的能力,增强学生的合作意识。
导学重点:使学生掌握解比例的方法,学会解比例。
导学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
预习学案
依照下面的条件列出比例,并且解比例。
(1)72和24的比等于15和x的比。
(2)等号左端比的前项和后项分别是0.4和16,等号右端的比是8:x。
(3)x和23 的比等于35 和14 的比。
(4)比例的两个外项分别是4和10,两个内项分别是x和28。
导学案
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
学习例2
(1)把未知项设为x。
(2)根据题意列出比例:x::320=1:10
(3)怎样解这个比例?解比例的根据是什么?
(4)一名同学到黑板解答。
从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。新课标第一网
学习例3 解比例1.52.5 =6x
这个比例和例2的比例有什么区别?哪是比例的前项和后项?根据比例的基本性质应该怎样解?
根据学生的回答总结出,像例3这种形式的比例要交叉相乘来解。
总结解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)
变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)
课堂检测新课标第一网
1、解比例。
X:10=14 :13 0.4:x=1.2:2 1.2:2.4=3:x
2、汽车厂按1:24的比生产了一批汽车模型。轿车模型长24.92厘米,它的实际长度是多少?公共汽车长11.76米,模型车的长度是多少?
课后拓展
小芳调制了两杯糖水,第一杯用了25克糖和200克水,第二杯用了30克糖和250克水。
(1)分别写出每杯糖水中糖与水质量的比,看它们能否组成比例。
(2)按照第一杯糖水中糖与水的比计算,300克水中应加入糖多少克?
板书设计
解比例
解比例:求比例中的未知项。
例2 法国巴黎的埃菲尔铁塔320m。 例3 解比例 1.52.5 =6x
北京的“世界公园”里有一座埃菲 解:1.5x=2.5×6
尔铁塔的模型,它的高度与原塔高 1.5x=15
度的比是1:10。这座模型高多少米? x=151.5
解:设这座模型的高度是x米。 X=10
x:320=1:10
10x=320×1
x=3 新课标第一网
x=32
张鸿森供稿
【教学内容】人教版六年级下册P35例2、例3及做一做。
【教学目标】
1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。
2、学会应用比例的意义和基本性质解决实际问题。
【教学重点】掌握解比例的方法,会解比例。
【教学难点】应用比例的意义和基本性质解决生活中的实际问题。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、什么叫做解比例
2、我国国旗的长与宽的比是3:2,如果我们学校的国旗长是240厘米,求我们学校国旗的宽是多少厘米?
(1)你会解答吗?独立解答后,同桌间相互说说想法。
(2)反馈交流
①240÷3×2=160(厘米)
②解:设我们学校国旗的宽是 厘米。
240: =3:2
3 =240×2
=240×2÷3
=160
答:我们学校国旗的宽是160厘米。
(3)你是怎么想的?
二、关键点拨
1、用比例解决实际问题
(1)你明白第二种解法的意思吗?
(2)国旗长和宽的最简整数比和实际长度比可以组成比例,所以可以把国旗的宽设为 厘米,建立比例240: =3:2,再通过解比例求出 的值。
(3)小结:这种方法叫做用比例解决实际问题。
2、解比例的方法
(1)你是怎样解比例240: =3:2的?
(2)根据比例的意义,先求出3:2的比值,把比例转化为方程,再求 的值。
(3)根据比例的基本性质“两个外项的积等于两个內项的积”把比例转化为方程,再求出 的值。
(4)怎样才可以确定 的值是正确的?(检验)
(5)你更喜欢哪种解法?为什么?
三、巩固练习
1、解下面的比例
:10= : 0.4: =1.2:2 =
2、把左边的三角形按比例缩小后得到右边的三角形,求未知数X。(单位:厘米)
学生独立完成,汇报交流。
3、小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水;第二杯用了30毫升蜂蜜和250毫升水。
(1)分别写出每杯蜂蜜水中蜂蜜和水体积的比,看它们能否成比例。
(2)照第一杯蜂蜜水中蜂蜜和水的比计算,300毫升水中应加入蜂蜜多少毫升?
学生回答第一个问题,板书。再让学生观察是否能成比例。
分析:第一个问题应该说比较简单,比分别是25:200和30:250。
四、分享收获 畅谈感想
这节课,你有什么收获? 听课随想
反思与体会:
《练习六》的教学设计
张鸿森供稿
【教学内容】人教版六年级下册P36-38练习六。
【教学目标】
1、通过练习,进一步巩固比例的意义和基本性质。
2、培养学生学习数学的自信心。
【教学重点】掌握解比例的方法,会解比例。
【教学难点】应用比例的意义和基本性质解决生活中的实际问题。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、自学反馈
小组代表展示对“比例的意义和基本性质”的整理成果,小组内成员可以互相补充完善。
(可能出现文字整理和用具体例子并画图整理的情况。)
【设计意图:让每一位学生动起来,首先让小组内后进生先说,有优生补充。给每类学生展示的舞台。】
二、智慧大冲关
师:下面我们进行智慧大冲关,这里为同学们准备了几关练习题,看你能冲到哪一关。
第一关:我学会了比例的意义和基本性质
1、下面是不是比例,为什么?
15:3 20:4 0.3:0.4=3:4 a:b=1:2
2、下面两个比能否组成比例吗?为什么?
3.6∶1.8和0.5∶0.25 40∶80和1/2∶1/4
18:12和30:20
有A类学生读答案,C类学生补充释疑。
生1:3.6∶1.8的比值是2,而且0.5∶0.25得比值也是2,所以他们能组成比例。
生2:3.6∶1.8=0.5∶0.25因为他们内项的积等于外项的积。
生3:我们要区分好比和比例。比例是一个等式,比不是。
师小结:我们可以根据两个相等的比叫做比例和比例的内项积等于外项积两种方法来判断是否能组成比例。
第二关:解比例,请独立做,比比看谁最认真。
X∶6.5=6∶4 5∶8= X∶16
由A类学生说答案,出现错题时给他一定的时间改错。
C类学生总结解比例需要注意的事项。
师小结:用内项的积等于外项的积来解比例。
第三关:请独立思考,有疑难点小组内讨论解决。
1、请大家用1,2,4,8这四个数组成一些比例
学生展示组成的比例并解释理由。
师总结:判断两个比能否组成比例的基本性质的三种方法:①比例的意义;②比例的基本性质;③比的基本性质。要根据具体情况灵活选择判断方法。
生继续展示其他的比例。
师:前面我们利用4个数可以组成8个不同的比例,并且从中发现了比例的基本性质。
2、a∶b=c∶d,如果把a扩大到原来的10倍,要使比例成立,则( )
① b缩小到原来的 ②c扩大到原来的10倍
③d扩大到原来的10倍 ④c缩小到原来的
第四关:请自由组合,共同探讨,共同解决。
1、根据4×6 = 3×8写出比例,你能写出几个?
2、已知a和b都是自然数,3∶b=a∶8,你知道ab各是多少吗?
下课前2分钟,师出示本题的答案,请优等生们比较讨论。不做统一的讲解。
师:如果这道题同学有什么问题,可以课后问老师。
三、分享收获 畅谈感想
这节课,你有什么收获? 听课随想
反思与体会:
学习成绩较差的学生更渴望得到老师和同学们的欣赏,更渴望享受成功的快乐。
在数学练习课的设计上,我摒弃以往的通学通练的模式,而是将练习题由易到难设计成几关,前两关是基础题,后两关是能力题。如此,让优等生能攻克更多的难题,更重要的是让后进生也能体验到冲关成功的快乐,增强他们的信心。提高他们的学习兴趣。
不足之处:练习题的设计层次性还要再加强一些。第三关的题要再稍微降低一些难度,让A层次的学生有时也能做出来。
人教新课标六年级下册《解比例》教学设计
一、教材分析
这部分内容是比例基本性质的应用,方法是依据比例的基本性质,把比例转化为方程,通过解方程的方法来求解。学习这节内容,可以为接下来学习比例尺和用比例解决问题做准备。
二、教学目标
1、在解比例的过程中进一步理解和掌握比例的基本性质,学会解比例的方法。
2、联系学生的生活实际创设情境,体现解比例在生产、生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力。
三、教学重难点
1、重点:自主探究出解比例的方法,并能轻松求出比例中的未知项。
突破方法:小组交流讨论,探究比例中未知项的各种计算方法,并从中进行优化。
2、难点:灵活运用解比例的方法解决问题。
突破方法:了解各种和比例知识相关的问题,掌握应用比例的基本性质灵活解决这些问题的方法。
四、教法与学法
1、教法:教师指导学生通过自主思考,交流讨论掌握解比例的方法。
2、学法:学生独立探究,全班交流,优化出解比例的方法。
五、教学准备
1、教师:教材例题投影图。
2、学生:常规学习用具。
六、教学过程
复习导入1、复习
(1)什么叫做比例?什么叫做比例的基本性质?
(2)用比例的基本性质判断下面哪一组中的`两个比可以组成比例?
18:20和7.2:8、100:0.2和10:0.0022导入新课
谁能很快说出下面比例中缺少的项各是几?(学生试说)14:21=2:、1.25:()=2.5:4
教师指出:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。这节课我们就一起来探究解比例的方法。设计意图:通过复习比例的意义和比例的基本性质,为学习解比例的知识做准备。互动新授
(一)教学例二
1、投影出教材第42页例二。
法国巴黎的埃菲尔铁塔高度约320m,北京的世界公园里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1:10.这座模型高多少米?
2、阅读与理解
(1)学生独立读题,找出已知条件和所求问题。
(2)小组内交流获得的信息。
已知条件:埃菲尔铁塔的高度约320m,埃菲尔铁塔模型的高度与原塔高度的比是1:10。所求问题:这座模型高多少米?
3、分析与解答
(1)分析题意,根据题意描述两个相等的比。模型高度:实际高度=1:10。
(2)指出其中的未知项,说一说你想怎样解答。
设计意图:引导学生先独立思考,再组织学生合作交流。交流中既要听取学生的意见,又要注意引导学生从多角度思考解决问题的方法。
例如,把比看作除法,那么x:320=1:10就可以转化成x/320=1/10,学生就可以运用原来学习解方程的有关知识来解;也可以应用比例的基本性质,把x:320=1:10转化成10x=320*1来解。
(3)教师根据学生的汇报交流情况进行板书。解:设这座模型的高度是xm。x:320=1:10
10x=320*1(问:根据什么?)x=320*1/10x=32
答:这做模型高32m。
(二)教学例三
1、出示教材第42页例三。
解比例2.4/1.5=6/x。
2、让学生说说这个比例中的内项和外项分别是什么。内项是1.5和6,外项是2.4和x。
3、学生独立解答
教师巡视,进行个别辅导。
4、组织交流订正解:2.4*x=1.5*6x=1.5*6/2.4x=15/4
5、小结
提问:解比例的方法是什么?
比例就是一种特殊的方程,不论在书写格式还是验算方法上,它与解方程都是相同的。解比例时,先根据比例的基本性质把比例转化为方程,再按解方程的方法进行解答。
七、巩固练习
1、教材第42页“做一做”第一题
这道题设计了三道未知项的位置不相同以及不同形式的比例,通过练习巩固解比例的方法。先让学生独立解答,再进行交流订正。
2、教材第42页“做一做”第二题
这道题的解题方法和例题类似,可以让学生独立思考解答。
3、在一个比例中,两个外项正好互为倒数,已知一个内项是3,另一个内项是多少?
八、课堂小结
通过这节课的学习,你有什么收获?
今天这节课,我们学习了解比例的知识。在解比例时,我们先根据比例的基本性质把比例转化成方程,再按照解方程的方法进行解答。
九、板书设计解比例
例2:解:这座模型的高度是xm。x:320=1:10
10*x=320*1(根据比例的基本性质)x=320*1/10x=32
答:这座模型高32m。
张鸿森供稿
【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第32-33页例1及“做一做”。
【教学目标】
1、明确比例的意义,掌握组成比例的条件,并熟练地判断两个比能否组成比例。 能根据不同要求,正确的列出比例式。
3、通过学习培养学生学习数学的兴趣。培养学生的观察能力、判断能力。 【教学重点】比例的意义。
【教学难点】求比值判断两个比能否组成比例,并能正确地组成比例。。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、什么叫做比例?
表示两个比相等的式子叫做比例。
2、今天是星期天,小瑜和小丽一起到文具店去买东西。
(1)小瑜用1 2元买了4本数学本,小丽用9元买了3本,谁买的本子便宜些?
(2)反馈:
①谁买的本子便宜些?说说你的理由。
②还有别的方法吗?
③这两个比能组成比例吗?为什么?
二、关键点拨
1、比例的意义。
出示课件:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时) 2 5
路程(千米) 80 200
根据表中的数量你能写出几个比例?你是怎么想的?他们的比值分别表示什么?
2、小结:判断两个比能否组成比例,最关键是看什么?
3、比和比例有什么区别?
生讨论汇报:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
三、巩固练习
1、下面哪组中的两个比能组成比例?把组成的比例写出来。课本第33页“做一做”第1题。
2、独立完成“做一做”第2题后反馈交流。
3、5:8和1:5 这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?
反馈:
(1)你给5:8找的朋友是( ),组成的比例是( ),向大家介绍你用了什么方法找到的。
(2)想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?
四、分享收获 畅谈感想
这节课,你有什么收获? 听课随想
反思与体会:
在本节课中,我充分重视了学生原有的认知基础,即在学生理解掌握比的意义和基本性质的基础上进行教学的,找准了新知识的生长点,为学生探究新知搭建了平台。 其次,主要采取探究的方式,充分发挥了学生小组合作,组间交流的作用。在比例的意义和基本性质的教学,我都把知识的探究过程留给了学生,问题让学生去发现,共性让学生去探索,将学习内容的“大板块”交给学生,给学生留有足够的时间、空间。采取小组合作交流的方式,获取结论,并对结果进行相互评价,从而使他们体会成功,共享合作学习的乐趣。在这个过程中,学生的主观能动性得以发挥,主体地位得到充分体现。最后,针对在以往的教学中发现学生学习完比例后把比例和比混淆的问题,我还特意增加了比和比例从意义、各部分名称、基本性质等方面进行横向对比的教学环节,加深学生对知识的印象。当然,纵观全课,还有很多不足之处,比如:如何在教学过程中让学生探讨的问题更贴近生活?教师要进行怎样的引导还值得我进一步思考。
第二课时
教学内容:P35~37 解比例
教学目的:1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。
3、培养学生的知识迁移的能力,增强学生的合作意识。
教学重点:使学生掌握解比例的方法,学会解比例。
教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学过程:
一、回顾旧知,复习铺垫
1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
2、判断下面每组中的两个比是否能组成比例?为什么?
6:3和8:4 : 和 :
3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)
二、引导探索,学习新知
1、什么叫解比例?
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、教学例2。
(1)把未知项设为X。解:设这座模型的高是X米。
(2)根据比例的意义列出比例:X:320=1:10
(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。
根据比例的基本性质可以把它变成什么形式?3x=8×15。
这变成了什么?(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。
(4)学生说,教师板书解比例的过程。
教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
3、教学例3。
出示例3:解比例 =
提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)
这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?
学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6
让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。
4、总结解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)
变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)
5、P35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。
三、巩固深化,拓展思维
P37第7题。
四、全课小结,提高认识
什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?
五、课堂练习,辅助消化
P37~38第8~11题。
六、课外补充,拓展延伸
1、P38第12、13题。
2、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?
3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。
4、一个比例的四个项都是大于0的整数,它的两个比的比值都是 ,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。
1.
教学内容:比例尺
教学目标:
1. 使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。
2. 认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。
3. 理解比例尺的书写特征。
教学重点:比例尺的意义。
教学难点:将线段比例尺改写成数值比例尺。
教学过程:
一揭示课题
1. 出示地图。(挂图)
(1) 学生观察地图,找到图中标注的比例尺。
(2) 教师说明比例尺的作用。
师:在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。这个比就是我们要学习的内容--比例尺。
2. 板书课题:比例尺。
二探索新知
1. 什么叫做比例尺?
师:一幅地图的图上距离的比,叫做这幅图的比例尺。
板书:图上距离:实际距离=比例尺
或
2. 数值比例尺。
(1) 出示课文插图。新课标第一网
(2) 找到“比例尺1:100000000”。
(3) 认识数值比例尺。
① 1:100000000是数值比例尺。
② 1:100000000表示图上距离1厘米相当于实际距离100000000厘米。(并做相应板书。
③ 因为1千米=1000米
1米=100厘米
所以1厘米:100000000厘米
=1厘米:1000千米
1:10000000也可以表示图上距离1厘米相当于实际距离1000千米。
④ 1:100000000有时也写成分数形式 。
3. 线段比例尺。
(1) 出示课文插图。
(2) 找到“比例尺 ”。
(3) 认识线段比例尺。
①说明:“比例尺 ”是线段比例尺。
②“比例尺 ”表示图上距离1厘米相当于实际距离50千米。
(写出相应板书)
(4) 改写成数值比例尺。(例1)
① 你会把这个线段比例尺改成数值比例尺吗?
② 学生尝试改写,并与同学交流,最后师生共同改写。
板书:图上距离:实际距离
=1㎝:5000000㎝
=1:5000000
4. 放大比例尺。
在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数后,再画在图纸上。
(1) 出示课文中的“图纸”。
(2) 找到“比例尺2:1”。
(3) 比例尺2:1表示图上距离2厘米相应于实际距离1厘米。
板书:比例尺2 : 1
图上距离 实际距离
(4) 这个比例尺与上面的比例尺有什么相同点,什么不同点。
相同点:都表示图上距离与实际距离的比。
不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。
5. 比例尺书写特征。
(1) 观察:比例尺1:100000000
比例尺1:5000000
比例尺2:1
(2) 看一看,比例尺书写形式有什么特征。
为了计算方便,通常把比例尺写成前项或后项是1的比。
三巩固练习
1. 做一做。
过程要求:
(1) 学生独立完成。(要求写出数值比例尺)
(2) 同学之间互相交流。
(3) 汇报交流结果。
2. 完成课文练习八第1~3题。
教学内容:解决问题
教学目标:
1. 使学生进一步理解比例尺的意义,掌握利用比例尺求图上距离和实际距离的方法。
2. 使学生能综合运用比例尺知识,解决有关问题,提高学生解决问题的能力。
教学重点:求图上距离和实际距离。
教学难点:求实际距离。
教学过程:
一旧知铺垫
1. 什么叫做比例尺?
板书:图上距离:实际距离=比例尺
或
2.说一说下列各比例尺表示的具体意义。
(1)比例尺1:45000
(2)比例尺80:1
(3)比例尺
二探索新知
1. 教学例2。
(1) 出示课文例题及插图。
(2) 说一说从中你得到哪些信息。
已知条件:
① 1号线的图上长度是10㎝;
② 条幅地图的比例尺1:500000。
所求问题:1号线的实际长度是多少?
(3) 你认为可以用什么方法解决问题?
① 学生尝试解决问题。
② 教师巡视课堂,了解解答情况,并对个别学生进行指导,帮助他们找到解决问题的方法。
③ 汇报解答情况。
方程解:
解:设地铁1号线的实际长度是X厘米。
根据
X=10×500000(问:根据什么?)
根据比例的基本性质。
X=5000000
5000000㎝=50㎞
答:略
算术解:
根据 ,得出:实际距离
10÷
=10×500000
=5000000(㎝)
5000000㎝=50㎞
答:略
2. 教学例3。
(1) 出示例题,学生了解题目要求。
(2) 讨论:你想怎样画?
通过讨论,使学生进一步理解在绘制平面图的时候,需要把实际距离按一定的比缩小,再画在图纸上。这时,就要确定;图上距离和相对应的实际距离的比。
① 确定比例尺;
② 求出图上的距离;
③ 画出操场的平面图。
(3) 小组同学合作,解决问题。
学生练习活动时,教师巡视课堂,了解学生解决问题的情况,记录存在的问题。
(4) 汇报,交流。
① 小组派代表说明你的方案和结果。
② 选择合适的方案,展示结果,并说明解决方案
如:选择比例尺1:1000画图。
图上的长=80× =0.08m
0.08m=8㎝
图上的宽=60× =0.06m
0.06m=6㎝
操场平面图:
三巩固练习
1.完成课文“”做一做”
2. 完成课文练习八第4~10题。
教学内容:图形的放大与缩小
教学目标:
1. 结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。
能按一定的比,将一些简单图形进行放大或缩小。
教学重点:图形的放大与缩小。
教学难点:按一定的比把图形放大或缩小。
教学过程:
一揭示课题
1. 你见过下面这些现象吗?
出示课文插图。
问:这些现象中,哪些是把物体放大?哪些是把物体缩小?
图1把物体缩小。
图2、3、4把物体放大。
2. 今天,我们就一起来学习这一内容。
板书课题:物体的放大与缩小。
二、探索新知
1.教学例4。
(1)出示图形
要求:按2:1画出这个图形放大后的图形。
①“按2:1放大”是什么意思?
先让学生说出自己的理解,然后教师说明。
师:按2:1放大,也就是各边放大到原来的2倍。
②说一说放大后图形的边长。
原来的边长是3倍,放大后图形的边长是6倍。
③ 画一画。
学生在方格纸上画一画,然后展示学生的作品。
(3) 出示图形。
要求:按2:1画出这个图形放大后的图形。
过程要求:
① 学生说一说“按2:1放大”的意思。
交流后使学生懂得按2:1放大,就是把长和宽都放大到原来的2倍。
② 学生各自尝试画图。
③ 展示学生的作品。
(4) 出示图形。
要求:按2:1画出这个图形放大后的图形。
过程要求:
①“接2:1放大”在这里是什么意思?
让学生交流,说出各自的理解,然后教师引导学生理解这个2:1的意思。即把三角形的两条直角边都放大到原来的2倍。
②学生尝试画图。
③展示作品。
④ 想一想:斜边是否也变为原来的2倍?
学生若有疑问,可以通过实验(如量一量,剪一剪,比一比等)进行验证。
(5) 讨论。
放大后的图形与原来的图形相比,有什么相同的地方?有什么不同的地方?
过程要求:
① 分小组讨论、交流。
② 汇报讨论结果。
要点:形状相同,大小不一样。
3. 练一练。
如果把放大后的三个图形的各边按1:3缩小,图形又发生了什么变化,画画看。
(1) 按1:3缩小是什么意思?
通过交流,使学生明确按1:3缩小就是各边长度缩小到原来的 。
(2) 学生尝试画一画。
(3) 实物投影展示学生的作品。
(4) 想一想。
缩小后的图形与原来的图形相比,有什么相同的地方?有什么不同的地方?
4. 课堂小结。
图形的各边按相同的比放大或缩小后,所得的图形与原来有什么相同的地方?有什么不同的地方?
三巩固练习
1. 完成“做一做”。
2. 完成课文练习九第1、2题。
教学内容:用比例解决问题。
教学目标:使学生掌握运用比例解决问题的方法,能正确运用正、反比例知识解决有关问题,发展学生的应用意识和实践能力。
重难点、关键:
重点:运用正、反比例解决实际问题。
难点:正确判断两种量成什么比例。
关键:弄清题中两种量的变化情况。
教学方法:尝试教学法、引导发现法等。
教学过程:
一、旧知铺垫
1、下面各题两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从甲地到乙地,行驶的速度和时间。
(3)每块地砖的面积一定,所需地砖的块数和所铺面积。
(4)书的总本数一定,每包的本数和包装的包数。
过程要求:
①说一说两种量的变化情况。
②判断成什么比例。
③写出关系式。
如:
2、根据题意用等式表示。
(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。
(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。
70×4=56×5
二、探索新知
1、教学例5
(1)出示课文情境图,描述例题内容。
板书: 8吨水 10吨水
水费12.8元 水费?元
(2)你想用什么方法解决问题?
过程要求:
①学生独立思考,寻找解决问题的方式。
②教师巡视课堂,了解学生解答情况,并引导学生运用比例解决问题。
③ 汇报解决问题的结果。
引导提问:
A. 题中哪两种量是变化的量?说说变化情况。
B. 题中哪一种量一定?哪两种量成什么比例?
C. 用关系式表示应该怎样写?
④ 板书:解:设李奶奶家上个月的水费是X元
8X=12.8×10
X=
X=16 答:略
(3)与算术解比较。
①检验答案是否一样。
②比较算理。算述解答时,关键看什么不变?
板书:先算第吨水多少元?
12.8÷8=1.6(元)
每吨水价不变,再算10吨多少元。
1.6×10=16(元)
(4)即时练习。
王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?
过程要求:
① 用比例来解决。
② 学生独立尝试列式解答。
③ 汇报思维过程与结果。
想:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,水费和用水吨数的比值相等。
解:设王大爷家上个月用了X吨水。
12.8X=19.2×8
X=
X=12
或者:
16X=19.2×10
X=
X=12
3. 教学例6。
(1) 出示课文情境图,了解题目条件和问题。
(2) 说一说题中哪一种量一定,哪两种量成什么比例。
(3) 用等式表示两种量的关系。
每包本数×包数=每包本数×包数
(4) 设末知数为X,并求解。
(5) 如果要捆15包,每包多少本?
3. 完成课文“做一做”。
4. 课堂小结。
三巩固练习
完成练习九第3~5题。
教学内容:练习课
练习目标:使学生进一步熟练掌握正、反比例解决问题的方法,能正确地解决有关实际问题,提高学生的实践能力。
教学过程:
一基础练习
1. 判断下面各题中相关联的量成什么比例。
(1) 三角形面积一定,底和高。
(2) 水池的容积一定,水管每小时注水量和所用时间。
(3) 总面积一定,每块砖的面积和砖的块数。
(4) 在一定的时间里,加工每个零件所用时间和加工零件个数。
2. 说一说。
(1) 判断两种量成正比例还是成反比例的关键是什么?
(2) 用比例解决问题的步骤。
二、综合练习
1.用比例解决下面两个问题。
(1)有一批纸,可以装订每本24矾的练习簿216本,如果要装订成每本18页的练习簿,可以装订几本?
(2)装订一种练习簿,装订200本要用4800页纸,有1页的纸可以装订多少本?
过程要求:
① 找出相关联的量,判断成什么比例。
② 写出关系式。
③ 列式解答,指名两位学生板演。
3. 引导比较。
(1) 说出题中数量关系,写关系式。
每本页数×本数=总页数
(2) 说一说哪一种量一定,另外两种量成什么比例。
(3) 针对以上两题,说一说思维过程和解题步骤
① 找出题中数量关系,判断哪一种量一定,另外两种量成什么比例。
② 根据等量关系列比例式。
③ 解比例。
④ 检验。
三巩固练习
完成课文练习九第6、7题。
张鸿森供稿
【教学内容】人教版六年级下册P34比例的基本性质。
【教材分析】
《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材直接以比例“2.4:1.6=60:40” 教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:
“ 2.4×40○1.6×60”。在此基础上,发现规律,揭示比例的基本性质。“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。个人认为这样的材料呈现方式至少存在两个弊端:(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;(2)没有给学生想想的猜想和验证的空间。
【教学目标】
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
【教学重点】探索并掌握比例的基本性质。
【教学难点】判断两个比能否组成比例,根据乘法等式写出正确的比例。
【教学设想】:
1、教学情境的呈现
创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。
教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是( ),两个內项的积是( ),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。个人认为这样的情境太直接,牵住学生的思维走,没有提供可探究的空间。为此,我简单创设了这样一个情境:老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?这个问题简单却开放,答案不唯一,为学生的思考打开了空间,同时学生可以通过求比值的方法解决:先填进一个数,然后就出比值,再确定另一个数。只要老师有意识的把学生的回答有序板书,可以达到引导有序思考的作用。
2、教学方式的选择
教育的真谛应该是促进人的发展,人的发展当然需要积累一定量的基础知识,更重要的是思维水平的提升和分析问题、解决问题能力的发展。我们的课堂教学要引领学生掌握知识,更要侧重引领学生经历知识的形成过程,让学生在探索知识形成过程的学习中,不断拓展思维的宽度和增加思维的厚度。
比例的基本性质本身并没有难度,难在通过观察、猜测、验证、归纳等数学活动探索“在比例中,两个外项的积等于两个內项的积”这个结论的形成过程。我想,这个探究过程应该就是一个合作、探究学习的过程吧。只有当学生经历了这个探究式学习过程,才有可能真正体验思考与合作的成就感,才能真正激发学生对数学的学习兴趣。
3、练习的设计
(1)判断下面哪组中的两个比可以组成比例。旨在巩固对比例基本性质的掌握,应用比例的基本性质解决问题,渗透假设、验证的解决问题方法,假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。补问引出求比值的方法判断两个比能否组成比例,追问引领学生对求比值判断两个比能否组成比例和用比例的基本性质判断两个比能否组成比例的方法进行比较优化,凸显了比例基本性质的应用价值。
(2)根据乘法等式“2×9=3×6”写比例。既是对比例基本性质的逆用,又旨在渗透有序思考的解决问题策略和方法。
(3)如果a×2=b×4,则a:b=( ):( ),旨在将比例的基本性质逆用推广到一般。追问:如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?旨在激发学生的思维矛盾,引领学生打破思维定势,体验变与不变的思想。那么a、b还可能是多少?你发现了什么?旨在引导学生经历一个列举、归纳的过程,提升思维水平。
(4)猜猜我是谁?6:( )=5: 4,旨在应用比例的基本性质时,渗透方程思想,为解比例的学生作铺垫。
【教学预设】
一、认识比例各部分的名称
1、呈现:4:5和8:10
(1)认识吗?叫什么?
(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)
(3)求比值,判断两个比能否组成比例。
2、介绍比例各部分的名称
4:5=8:10 中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。
3、你能说出下面比例的内项和外项各是多少吗?
(1)1.4: = :5 (2) =
二、探究比例的基本性质
1、猜数
呈现比例“12∶□=□∶2”。
(1)想一想,这两个内项可能是哪两个数?如1和24,2和12,……
(2)这样的例子举得完吗?
2、猜想
仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积”;两个內项的位置可以交换……)
3、验证
(1)是不是所有的比例都有这样的规律呢,有什么好办法?
(2)你觉得应该怎样举例呢?
(3)合作要求
1)前后4个同学为一个小组;
2)每个同学写出一个比例,小组内交换验证。
3)通过举例验证,你们能得出什么结论?
4、小结
(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?
(2)其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)
5、完善
(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)
(2)老师这里也有一个比例0:0=0:0,可以吗?
(3)比例的项不能为0。
6、如果比例写成分数形式 = ,这怎么相乘?
三、巩固练习,应用比例的基本性质
1、判断下面哪组中的两个比可以组成比例。
(1)6:3和8:5 (2) : 和 :
(3)1.2: 和 :5 (4) 和
【学法指导:假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。渗透假设、验证的解题策略和方法。】
(1)先让学生尝试判断,再交流明确思考方法。
(2)还可以用什么方法来判断?你能用求比值的方法1.2: 和 :5能否组成比例吗?
(3)这两种方法,你更喜欢哪种?为什么?
2、根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?
追问:你为什么写得这么快?有什么窍门?【渗透有序思考】
3、如果a×2=b×4,则a:b=( ):( );
如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?
那么a、b还可能是多少?你发现了什么?
4、猜猜我是谁?
6:( )=5: 4
四、分享收获 畅谈感想
这节课,你有什么收获?
反思与体会:
课中,猜数环节,学生举了一个这样的例子:12:60=1.2:20,这是一个出错的比例,因为12:60=0.2,1.2:20=0.6,两个比的比值不等,所以两个比不能组成比例,也可以用比例的基本性质判断,12×20≠60×1.2。学生报出错例后我没有及时处理,而是等到学生经历了猜想、验证过程得出了比例的基本性质这一结论后,我才引着学生回头来看这个错例,运用比例的基本性质判断例子的错误性,并改正。也许这可以算本节课的一个亮点,教师抓住了学生的错误,把错误用作了很好的生成资源,从反面验证了比例的基本性质是两个外项的积等于两个內项的积。但是,现在我还是耿耿于怀,我是否应该在学生报出例子后及时指出学生的错误,并引导学生利用求比值的方法进行改正。
【教学目标】
1.使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2.联系生活实际创设情境,体现解比例在生产生活中的广泛应用。
3.利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情感、价值观的发展。
【教学重难点】
重点:
使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
难点:
体现解比例在生产生活中的广泛应用。
【教学过程】
一、创境激疑,旧知铺垫
1.什么叫做比例?
2.什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?
3.比例有几种表示形式?
二、合作探究,探索新知
1.出示埃菲尔铁塔挂图
2.出示例题
(1)读题。
(2)从这道题里,你们获得了哪些信息?
(3)在这信息里,关键理解哪里?(埃菲尔铁塔模型与埃菲尔铁塔的高度比是1:10)
(4)这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)
(5)还有一个条件是什么?(埃菲尔铁塔的高是320米)
(6)我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)
(7)这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。
(8)根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)
(9)这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?
(10)不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)
(11)指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)
(12)为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)
(13)对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)
(14)这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。
(15)我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例.)
(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。
3.教学例3
过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?
(1)出示例3,问:这题与刚刚那个比例有哪些不同?
(2)解这种比例时,要注意些什么呢?(找出比例的外项、内项)
(3)在这个比例里,哪些是外项?哪些是内项?
(4)解答(提问:你们是怎么解答的?)
(5)检验。
三、拓展应用
在一个比例中,两个外项的乘积正好互为倒数,已知一个内项是3,另一个内项是多少?
四、总结
这节课主要学习了什么内容?
五、作业布置
教材43页5题
教学目标:
1.使学生学会解比例的方法,进一步理解并掌握比例的基本性质。
2.培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。
3.感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。
重点难点:
1.使学生掌握解比例的'方法,学会解比例。
2.引导学生根据比例的基本性质,将带未知数的比例改写成方程。教学准备:多媒体课件。
一、激情导课
师:上节课我们学习了比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
师:这节课,我们还要继续学习有关比例的知识,就是解比例。
(板书课题:解比例)
看了课题,你觉得这节课我们应该研究哪些知识?
引出学习目标(理解什么是解比例,怎样解比例,运用)
有了明确的学习目标,我们就有了研究的方向,相信同学们在这节课能勤于动手,善于发现,掌握解比例的相关知识,你们有信心吗?
二、民主导学
教师用多媒体课件出示教材第42页第1、2行的内容。
引导学生思考:什么叫做解比例?学生独立思考后,在小组中交流并说出:求比例中的未知项叫做解比例。
师:想一想,怎样才能解出比例中的未知项呢?学生很容易想到比例的基本性质。
任务一:教学例2
教师用多媒体课件出示例2。法国巴黎的埃菲尔铁塔高320米,北京的“世界公园”里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1:10.这座模型高多少米?
指名读题,理解题意,找出题中的数学信息。
请同学们先独立思考,尝试解答,再在小组内交流你的想法。
提示:交流时,
1.说说数量间的相等关系。
2.说说列出的比例。
3.说说解比例的过程或方法。
自主学习(先独立思考,再交流自己的想法)
展示交流(小组代表发言,与台下同学互动补充)
1.数量关系:
模型高度:实际高度=110。
2.列出比例,指出这个比例的外项、内项,并说明知道哪三项,求哪一项?
板书:x320=110
3.计算。
请一名学生板演,其余的学生在练习本上做。
做完后,师追问:怎样把比例式转化为方程式?
学生回答:根据比例的基本性质转化。
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以把未知数解出来。
注意:解方程要写“解”,那么解比例也要写“解”。师:怎样解这个方程?生:根据乘法各部分间的关系,把x看做一个因数,根据一个因数=积÷另一个因数,可以求出x。
小结:从刚才的解比例过程中可以看出,解比例可以根据比例的基本性质把比例转化为方程,然后用解方程的方法来求未知项x。
小练习:
餐馆给餐具消毒,要用100mL消毒液配成消毒水,如果消毒液与水的比是1:150,应加入水多少毫升?
独立完成,集体订正。(这道题还有别的解法吗?请不同思路的同学说说自己的方法)
任务二:自学例3。
任务呈现:请同学们自学课本42页例3,并和同桌说一说你解答的依据。
自主学习:学生独立练习,求出未知项。并在小组同学之间互相交流,发现问题,及时解决。
展示交流:请一位学生上台板演。
师追问:还可以用其他的知识解比例吗?
学生交流后,可能会说出:根据比例的意义,等号右边的比值是1.6,要使等号左边的比值也是1.6,x应等于3.75。
总结解比例的方法。
教师:刚才我们学习了解比例,大家回忆一下解比例首先要做什么?转化成方程后再怎么做?学生回忆解比例的过程。
教师:从上面的过程可以看出,在解比例的过程中哪一步是新知识?
学生:根据比例的基本性质把比例转化成方程。
三、检测导结
1.完成教材第42页“做一做”第1题。
2.学生独立练习,教师指名板演,集体订正。
3.反思总结通过这节课的学习,你在哪些方面得到了提高?
教学目标:
1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。
2、学会应用比例的意义和基本性质解决实际问题。
教学重点:
掌握解比例的方法,会解比例。
教学难点:
应用比例的意义和基本性质解决生活中的实际问题。
教法设计:
讲解法、对比法、归纳法。
学法设计:
合作交流、对比归纳。
教学准备:
多媒体课件
教学过程:
一、复习铺垫,引入新课
(一)汇报预习案上复习题。
1、解下列方程.
χ=×
2、应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?把组成的比例写出。
6∶10和9∶155∶1和6∶2
3、在括号里填上适当的数。
3:9=:156:0.8=():4
可以根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。(板书课题)
看到课题你想了解些什么?(出示学习目标)
二、自主探究,合作交流,完成预习案。
三、汇报展示,引导点拨
1、从题目中你获得了哪些信息?
2、理解题意
根据题意可知“模型的高度:原塔高度=1:10”,已知原塔的高度为320m,如果设模型的高χ米,则可列出比例式为( ):320=1:10
根据比例的基本性质,两个外项χ与10相乘的积()两内项320与1的积。(填等或不等):
3、列式解答
指名板演,老师点拨。
小结:这种方法叫做用比例解决实际问题。
4、小结解比例的方法及应注意的问题。
四、知识检测,达标提升
1、解下面的比例
2、解下面的比例
(1)8︰12=X︰45
(2)0.4︰X=1.2︰2
3、博物馆展出了一个高为19.6厘米的秦代将军俑模型,它的高度与实际高度的比是1:10。这个将军俑的实际高度是多少?
五、拓展延伸,总结激励
作业布置:
练习八7、10题。
板书:解比例
1、什么叫做解比例
例:1.5:2.5=6:X
解2.5×6=1.5X
1.5X=15
X=10
X:320=1:10
解10X=320
X=32
一、谈话导入,引出话题:
师:春天来了,万物复苏,每年3月12日是中国植树节。同学们养过花、种过树吗?你们通常是怎么照料它们的?生:(畅所欲言)师:你们都说了自己的想法,想不想知道有一个种树高人在培育树苗时是怎么做的?今天,老师就带你们走进语文第9课《桃花心木》去看一看。(板书课题
二、初读感知通大意:
1.林清玄资料
2. 请同学们自由读文,思考:文中讲了一件什么事?
三、品读感受晓内容
默读课文,画出直接描写桃花心木的句子。
生:(生活动)指名读句子。
师:这么优雅自在、充满生命力的桃花心木,你们想看看吗?(课件出示)
师:这就是桃花心木,它是常绿乔木,树杆笔直,树冠茂盛,树高达15公尺以上,也就是我们五层教学楼那么高,甚至还要高。
师:(课件出示)瞧,这又是什么?生:桃花心木苗师“对,这就是桃花心木苗,难以至信,就是这么小的树苗居然能长成那样的参天大树,这得花费多少心血,经过怎样的精心照料啊?
师:如果你是种树人,你会怎样培育呢?
生:天天浇水、施肥。
生:给它除草。
师:那书中的种树人是怎样育苗的呢?现在请同桌一起读文,共同找出描写种树人培育树苗的句子。
师:谁来读一读。
生:(读句子)
师:(板书:种树苗 天数 浇水 无规律 )
师: 这么粗心、不负责任的种树人为什么能培育出姿态优美,高大挺拔的桃花心木呢?老师奇怪了,你们奇怪吗?
生:齐声 :感到奇怪。
师:作者也奇怪了,(出示:奇怪的……越来月趣怪的……更奇怪的…..)快到文中找找,谁能带着感到奇怪的语气来试着读读。
四、研读感悟明道理
生:(读课文)
师:谁还能再试试(指导朗读)
点评:多读深入体会当时作者的奇怪及所产生的疑惑心理。
师:作者越来越奇怪了(出示:“我起先以为……..但是….”)那一段
师:谁来读读,能不能不改变句子的原意,把两个问句换一种说法。
生:但懒的人不会知道有几棵树苗枯萎了,忙的人不可能行事那么从容。
师:是啊,这样说不是也可以吗?可是作者为什么要用问句呢?
生:反问句更能增加作者当时奇怪的心理。
点评:通过插入的句子训练,让学生细读体会说法的不同,在表达意义上程度也不同,问句更能体现作者奇怪的心理。
师:是啊!真的好奇怪!面对我们的不解和疑问,种树人怎么回答的?快动笔画画种树人说的话。
生:(读书、动笔画)
师:画好了,谁原意当种树人来读读。(生读文,同时课件出示种树人说的一段话)
师:同桌一个扮演种树人,一个扮演作者,相互问一问说一说。(生活动)
点评: 在我们的日常生活中,每个人都要经常地跟别人交流,而交流最主要的手段是口语,那么,口头表达能力的强弱就直接关系到交流的效果,因此,口头表达能力的培养就显得尤为重要。又因为小学阶段是一个人发展语言的黄金时期,那么,尽快培养学生清楚、准确地运用语言,培养口头表达能力。
师:谁能用上“之所以……是因为……”这个句式说一说种树人的话
师:种树人的话你们都理解了吗?那老师来当记者采访一下,谁来当种树人。(指名)师:你好!种树人,你不按时给树苗浇水,有的树苗都枯死了,你不后悔吗?如果总来浇水并浇一定量的水结果会怎样?
生:不后悔,只有在不确定中寻找水源,拼命的扎根,才能长成参天大树。如果每天来浇并浇一定量的水,树苗就会养成依赖的习性,根就会浮在地表,无法深入地下。
师:听了你的话,我明白了你的良苦用心,你真是一个了不起的种树人。同学们:十年树木,百年树人,种树和育人一样。(板书:育人)种树人的话让我们明白了一个道理。你知道什么道理吗?
生:齐读“在不确定中生活的人……”(课件出示)
师:你是怎么理解这句话的?这个“不确定”指什么?(师板书:不确定)
生:指生活的变化无常、经受困难或遭受不幸。
师:是啊!在我们生活中有很多这样的人,尽管他们遭遇了不幸,但他们能勇敢的面对困难,这样的例子你能说说吗?
点评:由树联想到了人,培养学生结合生活实际拓展知识同时培养了学生语言表达能力。
五、美读拓展升情感生:(举例说)
师:他们的事迹让我们感动,他们的精神值得我们学习,这样的面孔你海熟悉吗?(出示5.12地震中的小英雄的图片,让学生说他们的事迹)
师:这些孩子用他们的行动诠释了“坚强”,面对生活中的不幸,他们做到不放弃,勇敢的面对,他们才是(生齐:在不确定中生活的人,比较经得起生活的考验。)
师:让我们再一次为那些生活在很艰苦的环境中,但从不放弃努力的人们说一声(生齐:在不确定中生活的人,比较经得起生活的考验)
师:我们很感谢种树人给我们的启迪,同学们:如果你就是那棵已经长大了的桃花心木,你想对谁说点什么?(课件出示)
生:(畅所欲言)
点评:通过种树人给的启迪,让学生进一步理解‘环境造就人’的道理,让学生走进文本,换角色深入体会。师:同学们,这是一篇借物喻理的文章,学习了本课,结合自己的学习和生活,你从以下三道题中任选一题,写出你的心里话。(课件出示)生:(动笔写作)师:谁写好了,能给大家读读吗?生:(展示自己的习作,师给予评价)师:同学们: 不经历风雨怎么能见彩虹,在今后的学习和生活中,老师希望你们无论遇到什么困难,都要勇敢坚强的面对,做一个自强不息的孩子!
[《桃花心木》教学设计 (人教新课标六年级上册)]
第一单元 位置
教学目标:
1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。
2. 使学生能在方格纸上用数对确定位置。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的位置,正确区分列和行的顺序。
一、导入
1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新授
1、教学例1
(1) 如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?
(2) 学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3) 教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、小结例1:
(1) 确定一个同学的位置,用了几个数据?(2个)
(2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。
3、练习:
(1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
4、教学例2
(1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。
(2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(3) 同桌讨论说出其他场馆所在的位置,并指名回答。
(4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)
三、练习
1、练习一第4题
(1) 学生独立找出图中的字母所在的位置,指名回答。
(2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。
2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置
3、练习一第6题
(1) 独立写出图上各顶点的位置。
(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?
(3) 照点A的方法平移点B和点C,得出平移后完整的三角形。
(4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)
四、总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?
五、作业
练习一第1、2、5、7、8题。
练习课
教学目标:
1、使学生熟练掌握用两个数据决定物体位置的方法,并能正确运用确定位置的方法解决有关的问题。
2、丰富学生对现实空间的认识,建立空间观念。
体会数学与人类生活的密切联系,体验数学活动充满着探索与创造。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的位置,正确区分列和行的顺序。
教学过程:
一、基础练习
1、说一说。
怎样确定物体的位置?确定一个物体的位置用了几个数据?通常情况第1个数据表示什么?第2个数据表示什么?
2、练一练。
(1)介绍一下,你在班上的座位是第几列第几行,你的几个好朋友分别在第几列第几行。
(2)利用方格图标出你和你的朋友的座位。(电脑课件呈现)
(3)完成后,学生说一说座位的具体位置和表示的数据。
二、专项练习
完成课本练习一中第6~8题
1、第6题。
(1)画出三角形ABC向右和向左平移5个单位后所在的位置,并在顶点用A′B′C′表示。
(2)依据顶点A(1,1),写出其它各顶点的位置。
(3)观察各顶点位置,说一说你有什么发现。
2、第7题
(1)认真观察题目,然后填上数据。
(2)按顺序描述王玲的活动路线。
3、第8题
(1)认真读题,弄清题意。
(2)独立思考,设计编号的方法。
(3)反馈结果,全班交流。
三、作业
选用课时作业设计。
教学目标
1.能有感情地朗诵诗歌,培养鲜明的爱憎感情,懂得为人民服务的人将得永生,与人民为敌的人必然灭亡的道理。
2.了解本文运用的对比手法,体会这种手法运用的好处。
教学难点: 理解两种人的含义
教学流程
一、轻叩鲁迅,引入课题
师:同学们,你们知道他是谁吗?(幻灯出示鲁迅图片)
师:对,他就是鲁迅!一个多么响亮的名字!通过本组前面几篇课文的学习,我们对鲁迅这个中国伟大的革命者、思想家、文学家已经有了较深刻地认识,接下来让我们看一段影像资料。(课件播放《鲁迅》电影片尾葬礼部分)
师:看了这段影像资料,你心里体会到了些什么?
生说:(送葬的人多,鲁迅得到了许多人的尊敬和热爱……)
师:下面请大家再来读这段一遍,体会人民对鲁迅的尊敬和热爱。(课件出示文段)
师导接:是呀!“鲁迅死了,但他永远活在我们的心中!” 1949年10月19日,鲁迅逝世13周年,全国各地第一次公开、隆重地纪念鲁迅,著名诗人臧克家参加了首都的纪念活动,他深切追忆鲁迅为了人民鞠躬尽瘁的一生,百感交集,写下了《有的人》这首短诗。
生:齐读诗题两遍
二、听范读,理顺思路
1.自读诗歌。
师:下面请同学们一起走进诗歌--齐读一遍。
师:哪位同学来读一读,可以选择你喜欢的小节读一读?)
师:你觉得他读得怎样?为什么?(注意表扬:他读得很有感情,你点评得也很到位,掌声送给他们。)
2.听范读。
师:下面请大家来看一看、听一听朗诵家沙桐和长潇是如何诵读的这首诗歌的? (课件播放2009年新诗会沙桐和长潇朗诵的《有的人》)
过渡:听了两位朗诵家的朗诵后,你是否有一种被感染了的感受呢?下面就请大家好好地学习这首一诗吧,好好体会鲁迅伟大的人生。首先,让我们来了解诗歌的主要内容及层次。
3.理思路。
师提问:这首诗一共有几节?可以分为几部分?每一部分的主要内容是什么?(生说后,师课件出示,再齐读段意。)
三部分:第一部分(第1节): 作者提出了对生和死的不同的观点。
第二部分(第2、3、4节):写了两种人对待人民的不同态度。
第三部分(第5、6、7节): 写了人民对待两种人的不同态度。
师提问:请同学们认真分析三部分之间是什么结构关系?(课件出示)
(第一部分是全诗的总纲,二、三部分是对第一部分提出的感触最深的两点分别进行解说和深入开掘,赞颂鲁迅鞠躬尽瘁为人民的伟大精神。)
三、品读重点句子、词语,理解诗意,体会句子所表达的思想感情。
(一)思考问题:
诗歌前四节中每节有两个“有的人”,它们的意思是否相同呢?(课件出示)
(每节诗前两句都是指反动统治者。每节诗后两句都是指鲁迅以及像鲁迅一样的人。)
(二)小组内交流,理解诗句意思。
看看你还有哪些诗句的意思是不明白的?先在小组内交流,把解决不了的问题提出来吧。
(三)读重点句子,体会深层含义。
诗句1.有的人活着,他已经死了;有的人死了。他还活着。
思考一:这一节写了几种人?(两种)他们指的是哪些人?(课件出示)
填空完成对这节诗的理解。(课件出示)
思考二:两个“活”与“死”有什么不一样的含义呢? (课件出示)
前面的“活”是指人活着,后面的“活”是指精神活着。前面的“死”是指精神死了,后面的“死”是指人死了。 (课件出示)
诗句2. 有的人/ 骑在人民头上:“呵,我多伟大!”
有的人/ 俯下身子给人民当牛马。
哪个同学来读读这节诗?其他同学听后说说:你是怎样理解这节诗的?(温馨提示:注意红色的字词)
诗句3. 情愿作野草,等着地下的火烧。
请同学跟老师一起来理解这句诗的意思。
诗句4. 骑在人民头上的/ 人民把他摔垮;给人民作牛马的/ 人民永远记住他!
这里的“摔垮”有什么深刻的含义呢?
诗句5. 把名字刻入石头的/ 名字比尸首烂得更早; 只要春风吹到的地方/ 到处是青青的野草。
请同学跟老师一起来理解这句诗的意思。
四、分角色朗读,体会表达方法。
1.朗读要求:
(1)男同学读每节诗的第一、二行,女同学读每节诗的第三、四行。
(2)要有感情地读,读出人民对反动派的恨和对像鲁迅这样的人的爱的感情来。
2读完成后思考:诗歌是为纪念鲁迅先生(“有的人”)而写,但为什么还要写反动统治者(“有的人”)?这样写的用意是什么?
这里运用了对比的手法。更好地表现了广大人民群众对鲁迅先生的无比崇敬和爱戴之情
3. 请找出文中具体运用对比的手法的地方
1、每一小节前后两句话构成对比。
2、第二小节和第五小节构成对比。
3、第三小节和第六小节构成对比。
4、第四小节和第七小节构成对比。
五、领悟诗歌主旨。 (填空:课件出示)
六、拓展延伸。
1. 你还知道哪些像鲁迅一样一心为人民的典范呢?请你说一说。
图片出示鲁迅这样的人物(配解说)
2. 欣赏歌曲《八荣八耻》。
[《有的人》教学设计 (人教新课标六年级上册)]
★ P35~37解比例 教案教学设计(人教新课标六年级下册)
★ 解比例教学反思
★ 解比例教学设计