应用题综合训练题目

| 收藏本文 下载本文 作者:蓝纹章鱼

下面小编给大家整理的应用题综合训练题目(共含8篇),希望大家喜欢!同时,但愿您也能像本文投稿人“蓝纹章鱼”一样,积极向本站投稿分享好文章。

应用题综合训练题目

篇1:应用题综合训练题目

应用题综合训练题目

山岫老师的解答如下:第18题我是这样想的:原速度:减速度=10:9,

所以减时间:原时间=10:9,

所以减时间为:1/(1-9/10)=10小时;原时间为9小时;

原速度:加速度=5:6,原时间:加时间=6:5,

行驶完180千米后,原时间=1/(1/6)=6小时,

所以形式180千米的时间为9-6=3小时,原速度为180/3=60千米/时,

所以两地之间的距离为60*9=540千米

19.某校参加军训队列表演比赛,组织一个方阵队伍。如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加。那么组成这个方阵的人数应为几人?

利用平方数解答题目:

根据题意,方阵人数要满足60方阵人数604,并且满足70方阵人数703

说明总人数在603=180和703=210之间

这之间的平方数只有1414=196人。

所以组成这个方阵的人数应为196人。

20.甲、乙、丙三台车床加工方形和圆形的`两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的。这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?

我用份数来解答:

甲车床加工方形零件4份,圆形零件42=8份

乙车床加工方形零件3份,圆形零件33=9份

丙车床加工方形零件3份,圆形零件34=12份

圆形零件共8+9+12=29份,每份是5829=2份

方形零件有2(3+3+4)=20个

所以,共加工零件20+58=78个

(170+10*4)/7=30个

30*4-40=80个

或者:

把师傅加工的零件数减去10*3=30个,师傅的1/3就正好等于徒弟的1/4。

(170-10*3)/(3+4)*4=80个

篇2:应用题综合训练的题目

应用题综合训练的题目

小升初数学:应用题综合训练11. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵

需要种的天数是215086=25天

甲25天完成2425=600棵

那么乙就要完成900-600=300棵之后,才去帮丙

即做了30030=10天之后 即第11天从A地转到B地。

2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

这是一道牛吃草问题,是比较复杂的牛吃草问题。54.一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.

第二小时比第一小时多走6千米,说明逆水走1小时还差6/2=3千米没到乙地。

顺水走1小时比逆水多走8千米,说明逆水走3千米与顺水走8-3=5千米时间相同,这段时间里的`路程差是5-3=2千米,等于1小时路程差的1/4,所以顺水速度是每小时5*4=20千米(或者说逆水速度是3*4=12千米)甲、乙两地距离是12*1+3=15千米

1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图 A---------------------C-----B--------D 第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米. 为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D至C是8千米.也就是D至A顺水行驶时间是1小时 D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此顺水速度∶逆水速度=5∶3. 由于两者速度差是8千米.立即可得出逆水速度=8/[(5-3)/3]=12千米/小时 A至B距离是 12+3=15(千米).

55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.小升初数学:应用题综合训练1

1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵

需要种的天数是215086=25天

甲25天完成2425=600棵

那么乙就要完成900-600=300棵之后,才去帮丙

即做了30030=10天之后 即第11天从A地转到B地。

2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

这是一道牛吃草问题,是比较复杂的牛吃草问题。

篇3:应用题综合训练

应用题综合训练

竞赛成绩排名次,前7名平均分比前四名的平均分少1分,前10名平均分比前7名的平均分少2分,问第五、六、七名三人得分之和比第八、九、十名三人得分之和多了几分?

解法一:因为前7名平均分比前4名的平均分少1分,所以第5、6、7名总分比前4名的平均分的3倍少1×7=7分;因为前10名平均分比前7名的平均 分少2分 所以第8、9、10名总分比前7名平均分的3倍少2×10=20分,所以比前4名平均分的3倍少20+1×3=23分。 所以第5、6、7名总分比第8、9、10名总分多23-7 =16分

解法二:以10人平均分为标准,第8、9、10名就得拿出7×2=14分给前7名。那么他们3人就要比标准总分少14分。第5、6、7名的原本比标准 总分多3×2=6分,但要拿出1×4=4分给前4名。那么他们3人比标准总分多6-4=2分。因此第5、6、7名3人得分之和比第8、9、10名3人的得 分之和多2+14=16分。

解:因为:前7名平均分比前四名的`平均分少1分,前10名平均分比前7名的平均分少2分

所以:第五、六、七名总分比前4名的平均分的3倍少1*7=7分;第八、九、十名总分比前7名平均分的3倍少2*10=20分,比前4名平均分的3倍少20+1*3=23分。

所以:第五、六、七名总分减去第八、九、十名总分 =23-7 =16分

回答者:uynaf - 举人 五级 1-24 23:17

解:设前四名的平均分为A,根据题意得:

前四名总分为4A,前七名总分为(A-1)*7,

五、六、七名得分为7A-7-4A=3A-7;

前十名总分为(A-3)*10,

八、九、十名得分为10A-30-(7A-7)=3A-23;

则得分之和多了3A-7-(3A-23)=16分。

篇4:初中应用题综合训练

初中应用题综合训练

12.一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的80%。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的。那么小轿车是在上午什么时候追上大轿车的。这个题目和第8题比较近似。但比第8题复杂些!

大轿车行完全程比小轿车多17-5+4=16分钟

所以大轿车行完全程需要的时间是16(1-80%)=80分钟

小轿车行完全程需要8080%=64分钟

由于大轿车在中点休息了,所以我们要讨论在中点是否能追上。

大轿车出发后802=40分钟到达中点,出发后40+5=45分钟离开

小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+642=49分钟了。

说明小轿车到达中点的时候,大轿车已经又出发了。那么就是在后面一半的路追上的。

既然后来两人都没有休息,小轿车又比大轿车早到4分钟。

那么追上的时间是小轿车到达之前4(1-80%)80%=16分钟

所以,是在大轿车出发后17+64-16=65分钟追上。

所以此时的时刻是11时05分。

13.一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成。如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时......。两人如此交替工作。那么打完这部书稿时,甲乙两人共用多少小时?

甲每小时完成1/14,乙每小时完成1/20,两人的工效和为:1/14+1/20=17/140;

因为1/(17/140)=8(小时)......1/35,即两人各打8小时之后,还剩下1/35,这部分工作由甲来完成,还需要:

(1/35)/(1/14)=2/5小时=0.4小时。

所以,打完这部书稿时,两人共用:8*2+0.4=16.4小时。

14.黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

黄气球数量:(32+4)/2=18个,花气球数量:(32-4)/2=14个;

黄气球总价:(18/3)*2=12元,花气球总价:(14/2)*3=21元。

15.一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

船的顺水速度:60+20=80米/分,船的逆水速度:60-20=40米/分。

因为船的顺水速度与逆水速度的比为2:1,所以顺流与逆流的时间比为1:2。

这条船从上游港口到下游某地的时间为:

3小时30分*1/(1+2)=1小时10分=7/6小时。(7/6小时=70分)

从上游港口到下游某地的'路程为:

80*7/6=280/3千米。(8070=5600)

16.甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

由于两个粮仓容量之和是相同的,总共的面粉43+37=80吨也没有发生变化。

所以,乙粮仓差1-1/2=1/2没有装满,甲粮仓差1-1/3=2/3没有装满。

说明乙粮仓的1/2和甲粮仓的2/3的容量是相同的。

所以,乙仓库的容量是甲仓库的2/31/2=4/3

所以,甲仓库的容量是80(1+4/32)=48吨

乙仓库的容量是484/3=64吨

17.甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478。那么甲、乙丙三数之和是几?

根据题意得:

甲数=乙数商+2;乙数=丙数商+2

甲、乙、丙三个数都是整数,还有丙数大于2。

商是大于0的整数,如果商是0,那么甲数和乙数都是2,就不符合要求。

所以,必然存在,甲数乙数丙数,由于丙数2,所以乙数大于商的2倍。

因为甲数+乙数=乙数(商+1)+2=478

因为476=1476=2238=4119=768=1434=1728,所以商+117

当商=1时,甲数是240,乙数是238,丙数是236,和就是714

当商=3时,甲数是359,乙数是119,丙数是39,和就是517

当商=6时,甲数是410,乙数是68,丙数是11,和就是489

当商=13时,甲数是444,乙数是34,丙数是32/11,不符合要求

当商=16时,甲数是450,乙数是28,丙数是26/16,不符合要求

所以,符合要求的结果是。714、517、489三组。

18.一辆车从甲地开往乙地。如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达。甲、乙两地之间的距离是多少千米?

这个问题很难理解,仔细看看哦。

原定时间是110%(1-10%)=9小时

如果速度提高20%行完全程,时间就会提前9-9(1+20%)=3/2

因为只比原定时间早1小时,所以,提高速度的路程是13/2=2/3

所以甲乙两第之间的距离是180(1-2/3)=540千米

篇5:应用题综合训练题

应用题综合训练题

1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵

需要种的天数是215086=25天

甲25天完成2425=600棵

那么乙就要完成900-600=300棵之后,才去帮丙

即做了30030=10天之后 即第11天从A地转到B地。

2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

这是一道牛吃草问题,是比较复杂的牛吃草问题。把每头牛每天吃的草看作1份。

因为第一块草地5亩面积原有草量+5亩面积30天长的草=1030=300份

所以每亩面积原有草量和每亩面积30天长的草是3005=60份

因为第二块草地15亩面积原有草量+15亩面积45天长的草=2845=1260份

所以每亩面积原有草量和每亩面积45天长的草是126015=84份

所以45-30=15天,每亩面积长84-60=24份

所以,每亩面积每天长2415=1.6份

所以,每亩原有草量60-301.6=12份

第三块地面积是24亩,所以每天要长1.624=38.4份,原有草就有2412=288份

新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此28880=3.6头牛

所以,一共需要38.4+3.6=42头牛来吃。

两种解法:

解法一:

设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)

解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

甲乙合作一天完成12.4=5/12,支付18002.4=750元

乙丙合作一天完成1(3+3/4)=4/15,支付15004/15=400元

甲丙合作一天完成1(2+6/7)=7/20,支付16007/20=560元

三人合作一天完成(5/12+4/15+7/20)2=31/60,

三人合作一天支付(750+400+560)2=855元

甲单独做每天完成31/60-4/15=1/4,支付855-400=455元

乙单独做每天完成31/60-7/20=1/6,支付855-560=295元

丙单独做每天完成31/60-5/12=1/10,支付855-750=105元

所以通过比较

选择乙来做,在11/6=6天完工,且只用2956=1770元

4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的183=6倍

上面部分和下面部分的高度之比是(50-20):20=3:2

所以上面部分的底面积是下面部分装水的'底面积的632=4倍

所以长方体的底面积和容器底面积之比是(4-1):4=3:4

独特解法:

(50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),

所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,

所以体积比就等于底面积之比,9:12=3:4

5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

把甲的套数看作5份,乙的套数就是6份。

甲获得的利润是80%5=4份,乙获得的利润是50%6=3份

甲比乙多4-3=1份,这1份就是10套。

所以,甲原来购进了105=50套。

6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

把一池水看作单位1。

由于经过7/3小时共注了一池水,所以甲管注了7/12,乙管注了5/12。

甲管的注水速度是7/127/3=1/4,乙管的注水速度是1/45/7=5/28。

甲管后来的注水速度是1/4(1+25%)=5/16

用去的时间是5/125/16=4/3小时

乙管注满水池需要15/28=5.6小时

还需要注水5.6-7/3-4/3=29/15小时

即1小时56分钟

继续再做一种方法:

按照原来的注水速度,甲管注满水池的时间是7/37/12=4小时

乙管注满水池的时间是7/35/12=5.6小时

时间相差5.6-4=1.6小时

后来甲管速度提高,时间就更少了,相差的时间就更多了。

甲速度提高后,还要7/35/7=5/3小时

缩短的时间相当于1-1(1+25%)=1/5

所以时间缩短了5/31/5=1/3

所以,乙管还要1.6+1/3=29/15小时

再做一种方法:

①求甲管余下的部分还要用的时间。

7/35/7(1+25%)=4/3小时

②求乙管余下部分还要用的时间。

7/37/5=49/15小时

③求甲管注满后,乙管还要的时间。

49/15-4/3=29/15小时

7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2

骑车和步行的时间比就是2:7,所以小明步行3/10需要5(7-2)7=7分钟

所以,小明步行完全程需要73/10=70/3分钟。

8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.

乙车比甲车多行11-7+4=8分钟。

说明乙车行完全程需要8(1-80%)=40分钟,甲车行完全程需要4080%=32分钟

当乙车行到B地并停留完毕需要402+7=27分钟。

甲车在乙车出发后322+11=27分钟到达B地。

即在B地甲车追上乙车。

9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

甲车和乙车的速度比是15:10=3:2

相遇时甲车和乙车的路程比也是3:2

所以,两城相距12(3-2)(3+2)=60千米

10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

我的解法如下:(共12辆车)

本题的关键是集装箱不能像其他东西那样,把它给拆散来装。因此要考虑分配的问题。

3吨(4个) 2.5吨(5个) 1.5吨(14个) 1吨(7个) 车的数量

4个 4个 4辆

2个 2个 2辆

6个 6个 3辆

2个 1个 1辆

6个 2辆

篇6:应用题综合训练及答案

1. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?

原来每天的利润是72×25%×100=1800元后来每件的利润是是72÷(1+25%)×(1-90%)=9元后来每天获得利润100×2.5×9=2250元所以,增加了2250-1800=450元

2. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?

利用份数来解答:甲车行3份,乙车就行了3×4/5=2.4份,72千米相当于4-2.4=1.6份,每份是72÷1.6=45千米所以A和B两站之间的距离是45×(3+4)=315千米

利用分数来解答:甲车行全程的3/7,乙车就要行全程的3/7×4/5=12/3572千米对应的分率是4/7-12/35=8/35所以全程是72÷8/35=315千米

3. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以多采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?

如果猴王一直不在场,那么35只猴子8小时共可采摘桃子:4400-35*12*2=3560千克每小时采摘:3560/8=445千克假设35只猴子都是大猴子,每小时可采:35*15=525千克比实际多:525-445=80千克而每只小猴子比每只大猴子每小时少采15-11=4千克所以共有小猴子:80/4=20只,大猴子:35-15=20只。

4. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的.人数比为6:5.(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?

根据条件(2)和(3):二等奖总人数为11份,那么一等奖总人数为11*2/3=22/3;转化为整数比,二等奖与一等奖人数比为33:22;甲、乙两校二等奖人数比为5:6=15:18,甲、乙两校获奖人数比为6:5=30:25。所以,甲校获二等奖的人数占该校获奖总人数的:15/30=50%

用份数来解答:

获奖总人数6+5=11份,二等奖人数11×60%=6.6份,甲校二等奖人数6.6×5/11=3份

所以,甲校二等奖人数占该校获奖总人数的3÷6=50%

5. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?

根据条件,小明、小强和小刚的速度比是:2*4:3*4:5*3=8:12:15再根据“小刚10分钟比小明多走420米”可以得出,小明10分钟走:420*8/(15-8)=480米所以,小明在20分钟里比小强少走:[480*(12-8)/8]*2=480米做完才发现,小明20分钟比小强少走的,正好是小明10分钟走的路程,所以方法应该更简单一些。

用分数来解答:把小强的看作单位“1”,那么小明是小强的2/3,小刚是小强的5/4 所以小强10分钟行420÷(5/4-2/3)=720米 小明10分钟比小强少行1-2/3=1/3,那么20分钟就少行1/3×2=2/3 所以,小明在20分钟里比小强少走720×2/3=480米

46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?

在加工剩下的1-3/5=2/5零件时,工效变为原来的6/5,那么所用时间就是原来加工这部分零件所用时间的5/6,比原来少用1/6。所以,提前的10天时间,就是原时间的:

10/(1/6)=60天 原计划加工这批零件的时间为:60/(2/5)=150天 这批零件共有:15*150=2250个。

采用新技术,完成1-3/5=2/5的任务,需要2/5÷(1+20%)=1/3的时间,所以计划用的天数是10÷(2/5-1/3)=150天 所以这批零件的个数是15×150=2250个

47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?

开始时,甲、乙速度比为8:6=4:3,所以甲跑4圈时第一次追上乙; 追上后,甲速变为8-2=6米/秒,乙速变为6-0.5=5.5米/秒,速度比为12:11,所以,甲再跑12圈第二次追上乙; 第二次追上乙后,甲速变为6-2=4米/秒,乙速变为5.5-0.5=5米/秒,速度比为4:5。 此时乙快甲慢,所以乙再跑5圈追上甲。这时,甲共跑了:4+12+4=20圈,还剩10000/400-20=5圈; 乙共跑了:3+11+5=19圈,还剩10000/400-19=6圈。 甲速变为4+0.5=4.5米/秒,乙速变为5+0.5=5.5米/秒,速度比为9:11。 当乙跑完剩余的6圈(2400米)时到达终点时,甲跑了6圈的9/11: 6*9/11=54/11圈,还剩:5-54/11=1/11圈,即:400*1/11=400/11米。

48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?

时间变为原来的4/5,说明速度是原来的5/4,所以,原来的速度是:1.5/(5/4-1)=6(千米/小时)现在每小时比原来少走1.5千米,也就是速度变为原来的:(6-1.5)/6=3/4那么所用时间就是原来的4/3,比原来多4/3-1=1/3。

49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?

利用和差问题的思想来解答:现在丙和丁的年龄和是64-21-17=26岁当甲18岁时,即21-18=3年前,丙和丁的年龄和是26-3×2=20岁丁的年龄是20÷(3+1)=5岁 所以丁现在的年龄是5+3=8岁

50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?

继续用第46题的这个思路来做:由于改进技术,完成1-1/3=2/3的任务,需要原计划总时间的2/3÷(1+10%)=20/33 所以,原计划的总时间是4÷(1/3-20/33)=66天所以这批零件有66×30=1980个

篇7:四年级数学应用题训练题目

四年级数学应用题及答案

1.声音的传播速度是340米/秒,那么,50秒一共能传播多少米?

分析:利用“速度×时间=路程”来解决。

340×50=17000(米)

答:一共能传播17000米。

2.一块长320米,宽250米的长方形草场,它的面积是多少平方米?合少公顷?

分析:1公顷=10000平方米

320×250=80×4×250

=80×1000

=80000(平方米)

=8(公顷)

答:它的面积是80000平方米,合8公顷。

3.一盒蛋黄酥有6个,售价24元。买这样的150盒蛋黄酥需要多少钱?

分析:该题中“一盒蛋黄酥有6个”是无用的干扰信息。

150×24=150×2×12

=300×12

=3600(元)

答:需要3600元钱。

4.课桌椅278元/套。学校总务处需要采购58套,带18000元钱够吗?

分析:要判断“带18000元够吗?”可以利用估算解决。

278×58<300×60=18000,够

答:带18000元钱够。

5.某公司去采购一批单价为138元/套的工作服42套,带5000元钱够吗

分析:要判断“带5000元钱够吗?”可以利用估算解决。

138×42>130×40=5200>5000,不够

答:带5000元钱不够。

四年级上册数学应用题及答案

1、体育老师买了8盒羽毛球,每盒12只,共288元,平均每只羽毛球多少元?

2、李师傅生产一批零件,原计划平均每小

时生产50个,6小时完成。实际5小时就完成了任务,实际平均每小时生产多少个?

3、商店运来5箱水果,共重50千克。如果把这些水果换成小箱来装,每箱重量是原来的一半,这些水果能装多少箱?

4、84千克黄豆可榨12千克油,照这样计算,如果要榨120千克油需要黄豆多少千克?

5、学校体育组有36人,美术组的人数比体育组的2倍少12人。学校美术组有多少人?

6、四年级要买5本相册和5枝自动铅笔奖励三好学生。买相册用了28.75元,买自动铅笔用了6.15元,一本相册比一枝自动铅笔贵多少元?

7、东关小学体育队有71人,其中15人是篮球队员,田径队员的人数是篮球队员的2.4倍,其余的是足球队员。足球队有多少人?

8、商店运来16筐苹果,每筐42.5千克。运来的梨比苹果重量的2倍少120千克。运来的梨有多少千克? .

9、同学们做操,每25人排成一排,男生排了30排,女生排了28排。男生比女生多多少人?

10、小明看一本180页的故事书,已经看了3天,平均每天看24页。剩下的平均每天看36页,还要几天才能看完?

参考答案

1、288÷(8×12) =288÷96 =3(元)

答:平均每只羽毛球3元。

2、 解:6×50÷5 =300÷5 =60(个)

答:实际平均每小时生产60个.

3、 解:50÷[50÷5÷2] =50÷5 =10(箱)

答:这些水果能装10箱。

4、每千克油所需大豆×油的总量=所需大豆

解:(84÷12)×120

=7×120 =840(千克)

答:如果要榨120千克油需要黄豆840千克。

5、 解:36×2-12 =72-12 =60(人)

答:学校美术组有60人。

6、 解:28.75÷5-6.15÷5 =5.75-1.23 =4.52(元)

答:一本相册比一枝自动铅笔贵4.52元.

7、解:71-15-15×2.4 =71-15-36 =20(人)

答:足球队有20人。

8、解:(16×42.5)×2-120 =670×2-120 =1340-120 =1120(千克)

答:运来的梨有1120千克.

9、解:(30-28)×25 =2×25 =50(人)

答: 男生比女生多50人.

10、 解:(180-3×24)÷36 =108÷36 =3(天)

答:还要3天才能看完.

人教版小学四年级数学第一单元四则运算练习题

1、填一填。

(1)食品超市有85箱饮料,上午卖出26箱,下午又运来18箱,超市现在有( )箱饮料。

(2)一辆轿车2小时行驶144千米,5小时能行驶( )千米。

(3)计算78-33+15时,要先算( )法,再算( )法。计算15×200÷100时,要先算( )法,再算( )法。

(4)在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要按从( )往( )的顺序计算。

2、比一比,谁最快。

(1)76+24=( )+29=( ) -36=( )+80=( )

(2)200÷5=( ) ×3=( )÷6=( )×15=( )

3、在里填上适当的数,然后列出综合算式。

(1)248÷8=( )×3=( ) (2)37+168=( )-97=( )

4、脱式计算。

136+72-143 40×16÷8 328÷8×19

246-187+121 52÷4×17 630—198—35

5、列综合算式,解决问题。

(1)4节车厢一共装煤228吨,照这样计算,如果一列火车有18节这样的车厢,那么这列火车一共可以运煤多少吨?

(2)小明5分钟跑了400米,照这样的速度,小明9分钟能跑多少米?

篇8:应用题综合训练3及答案

应用题综合训练3及答案

21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?

用盈亏问题思想来解答:

截取两根长度为B的金属线比截取两根长度为A的金属线少用2-0.4=1.6米

说明每根B比A少1.6÷2=0.8米

那么把5根B换成A就会还差0.8×5=4米,

把30米分成3+5+2=10根A,就差4+2=6米

所以长度为A的金属线,每根长(30+6)÷10=3.6米

利用特殊数据与和差问题思想来解答:

如果金属线长30+2=32就够5个A和5个B,

那么每根A和B共长6.4米

每根A比B长(2-0.4)÷2=0.8米

A长(6.4+0.8)÷2=3.6米

22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?

这是最优方案的问题。

每次不能超过4吨,将两种材料组合,看哪种组合最接近4吨,

最优办法是900×2+700×3=3900千克

所以,80÷2=40,120÷3=40,所以,40÷5=8次

23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?

用份数来解答:

把家到体育馆的路程看作4份,家到学校就是5份

从体育馆回来每分钟行4÷17=4/17份,去学校每分钟行5÷25=1/5份

所以每份是15÷(4/17-1/5)=425米

家到学校的距离是425×5=2125米

24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的`2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?

徒弟独做6天完成:1-13/30-2/5=1/6,所以徒弟独做的工效为:

25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

一班=二班+三班,二班=四班+五班;

可知,五个班的总和=一班+二班+三班+二班=二班×3+三班×2=100

所以二班×5>100>三班×5

所以二班人数超过20,三班人数少于20人

如果二班植树21棵,那么三班植树(100-21×3)÷2=17.5,棵数不能为小数。

如果二班植树22棵,那么三班植树(100-22×3)÷2=17棵

所以三班最多植树17棵。

26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

乙多跑的20分钟,跑了20/60×11=11/3千米,

结果甲共追上了11/3-2=5/3千米,

需要5/3÷(13-11)=5/6小时,

乙共行了11×(5/6+20/60)=77/6千米

27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?

这个题目要注意是“底面积”而不是“底面半径”,与高的关系!

容器A中的水全部倒入容器B,

容器B的水深就应该占容器高的(6×6)÷(8×8)=9/16

所以容器高2÷(7/8-9/16)=6.4厘米

28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.

用进一法解决问题,次数要整数才行。

需要跑的次数是104÷9=11次……5吨,所以要跑11+1=12次

实际跑的次数是104÷(9+1)=10次……4吨,故10+1=11次

往返一次1小时,所以提前(12-11)×1=1小时。

29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

这个题目有点像鸡兔同笼问题:

如果两人工作效率都提高24%,那么两人共加工零件225×(24%+1)=279个

说明徒弟提高45%-24%=21%的工作效率就可以加工300-279=21个

所以徒弟第一天加工21÷21%=100个,那么徒弟第二天加工了100×(1+45%)=145个,那么师傅加工了300-145=155个零件。

30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

利用等差数列来解答:

行程每天增加2千米我是这样理解的,第一天按照原来的速度行使,从第二天开始,都比前一天多行2千米。所以形成了一个等差数列。

由于前面四天和后面三天行的路程相等。

去时,四天相当于原速行四天还要多2+4+6=12千米

返回时,三天相当于原速行三天还要多8+10+12=30千米

所以原速每天行30-12=18千米,可以求出学校距离百花山18×3+30=84千米

(1/6)/6=1/36;

徒弟合作时的工效为:(1/36)*6/5=1/30;

师傅合作时的工效为:(2/5)/6-1/30=1/30;

师傅独做时的工效为:(1/30)*10/11=1/33;

师傅独做需要:1/(1/33)=33天。

初中应用题综合训练

小学数学应用题综合训练

小学数学应用题专项综合训练检测

数学应用题训练与解析

列综合算式解答两步应用题

小学三年级数学《时分秒》的应用题训练

综合素质拓展训练心得体会

社工毕业综合训练范文

高考满分作文素材训练题目

修辞专项训练(题目资料答案)

应用题综合训练题目(共8篇)

欢迎下载DOC格式的应用题综合训练题目,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档