应用题的教案设计

| 收藏本文 下载本文 作者:szbdt888

下面是小编给大家带来关于应用题的教案设计(共含17篇),一起来看看吧,希望对您有所帮助。同时,但愿您也能像本文投稿人“szbdt888”一样,积极向本站投稿分享好文章。

应用题的教案设计

篇1:简单应用题教案设计参考

简单应用题教案设计参考

教学目的

1.使学生进一步掌握简单应用题的结构,能够根据四则运算的意义和题目中的数量关系正确选择解答方法。

2.通过教学,进一步提高学生分析和解答应用题的能力。

3.探索知识间的内在联系,激发学生的学习兴趣。

教学重点

掌握简单应用题的结构,正确解答简单应用题。

教学难点

掌握简单应用题的数量关系。

教学过程

一、基本训练。

1.口算。

2.2+3.57 1.2

1.4- +0.5 11.3-8.6

( + )12 (0.18+ )9 7.75- -

2.下面各题只列式不计算。

(1)六年级学生为灾区捐款,六年级1班捐款105元,六年级2班捐款98元。两个班一共捐款多少元?

(2)学校图书馆买来150本故事书,借给五年级1班48本,还剩多少本?

(3)农具厂每天能够生产56件农具,7天能够生产多少件农具?

(4)水果店有24筐苹果,要6天卖完,平均每天要卖多少筐苹果?

(5)成绩展览会上要展出48本大字本,每张桌子上放8本,需要几张桌子?

(6)五年级有学生136人,其中 是女生,女生有多少人?

二、归纳整理。

揭示课题:今天我们就来复习这样的`简单应用题。(板书:简单应用题的整理和复习)

(一)教学例1:某工厂有男工人364人,女工91人。这个厂的男工和女工一共有多少人?

教师提问:这道题有哪几个已知条件?

问题是什么?

问题与已知条件有什么关系?

你为什么要这样回答?

教师总结:

这道题中,需要求的结果与两个已知条件直接相关。只要把两个已知数合并起来,就可以直接计算出结果。这是一道简单应用题。

(二)变式练习。

1.改变问题:根据例1中的两个已知条件,你还能够提出其他问题,编成简单应用题吗?

①男工比女工多多少人?

②男工人数是女工人数的几倍?

③女工人数是男工人数的几分之几?

2.改变条件:根据上面编出的应用题和列出的算式,你能够分别调换每一道题中的已知条件和问题,各编成两道不同的简单应用题吗?

①某工厂男工和女工一共有455人,男工有364人,女工有多少人?

②某工厂男工和女工一共有455人,女工有91人,男工有多少人?

③某工厂有女工91人,男工比女工多273人,男工有多少人?

④某工厂女工比男工少273人,女工有91人,男工有多少人?

⑤某工厂有女工91人,男工人数是女工人数的4倍,男工有多少人?

⑥某工厂有男工364人,女工人数是男工人数的 ,女工有多少人?

⑦某工厂男工人数是女工人数的4倍,男工有364人,女工有多少人?

⑧某工厂有女工91人,女工人数是男工人数的 ,男工有多少人?

教师提问:通过我们的编题,你发现了简单应用题的什么特点?你的收获是什么?

教师总结:从以上的编题可以看出,简单应用题都是由两个已知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的。也就是说,都是可以由已知条件经过一步计算直接求出答案。

(三)复习已经学过的一些常见的数量关系。

篇2:连乘应用题教案设计

连乘应用题教案设计

一、教材分析

本课题教学前,学生已经掌握了乘数是两位数乘法的计算方法,并且初步理解并掌握了乘法的一些常见的数量关系。这些都为本课题内容的学习作了充分的知识铺垫和思路孕伏。教材编入这一部分内容的目的一方面是为了巩固乘数是两位数的乘法的计算,另一方面是使学生掌握连乘应用题的数量关系,学会用两种方法解答应用题。本课题内容是两步以上应用题的重要基础之一,通过这一部分内容的学习,可以使学生加深对数量之间关系的理解,发展学生分析、判断、推理、综合等初步逻辑思维能力,把解应用题的水平提高一步。

本课题教材有层次地显示了“连乘应用题”的知识结构。例题之后,教材引导学生按照两种不同的思路去分析应用题的数量关系。

第一种思路:知道有5箱热水瓶,要求一共可以卖多少元,就要先算每箱热水瓶多少元?

第二种思路:知道每个热水瓶卖11元,要求一共可以卖多少元,就要先算5箱共有多少个热水瓶。通过这个分析过程,使学生明白分析这种问题的关键是弄清要算出题中要求的钱数,先选哪个作为已知条件,哪个条件是未知的,需要先算出来。分步列式后,教材又引导学生分别列出综合算式。然后说明:如果解答正确,那么两种解答方法的结果应该相同。可以用这种方法进行检查。再通过“做一做”和练习二十二中1-3题的练习,进一步帮助学生理解这类题目的数量关系,掌握解答方法。最后通过第4题补充条件的练习帮助学生进一步理解连乘应用题的结构数量关系。

本课内容这样有层次地呈示知识结构,符合学生的认知规律,有利于学生分析、判断、推理、综合,建立连乘应用题的认知结构。

本课题的教学目标

1.使学生理解连乘应用题的数量关系,初步会用两种方法解答,知道用一种解法可以检验另一种解法的正确性。

2.初步学会列综合算式解答连乘应用题。

3.培养学生分析、综合能力,渗透事物间相互联系的观点,培养自觉检验的'习惯。

教学重点:

分析数量关系。教学难点:用两种方法解答的思路。

教学关键:

弄清要算出“一共可以卖多少元”先选哪个作为已知条件,哪个条件是未知的。

二、教法和学法

1.运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故而知新”的教学思想。

2.运用直观性原则,采用线段图展示条件和问题,帮助学生理解题意,分析数量关系,确定先算什么,再算什么。

3.创设思维环境,引导学生有序地思维,鼓励学生用语言准确、连贯地表述思维过程。

三、教学步骤

(一)复习准备出示复习题,指名补充条件或问题,再解答出来,然后说出列式的根据。

1.,5箱热水瓶多少元?

2.一个商店运进5箱热水瓶,每箱12个,?

3.一个热水瓶卖11元,,一共卖了多少元?通过上面的复习,使学生进一步掌握一步应用题结构和乘法应用题的数量关系,为学习新课做好铺垫。

(二)教学新课

1.学习例题,分三个层次进行。

第一层次:理解题意。出示例

1,要求学生认真读题,说一说有几个已知条件,问题是什么。再想一想例1与复习题有什么关系。揭示了事物之间的联系,暗示了思考方向。画线段图表示题中的条件和问题。要边提问题边画。(图略)问题:

(1)5箱怎样表示?

(2)每箱12个怎样表示?

(3)每个11元用哪条线段表示?

(4)问题怎样表示?这一步使学生知道怎样理解题意,为分析数量关系打下基矗第二层次,分析数量关系。教师可以引导学生从问题入手,提出要求“一共可以卖多少元?”必须知道哪两个条件?启发学生说出不同的做法。方法之一:方法之二:一共可以卖多少元?每箱多少元有几箱一共可以卖多少元?每个多少元有几个然后教师组织学生讨论第一种分析思路,每箱多少元,有几箱,这两个条件中哪个是已知的,哪个是未知的?应该先算什么?再算什么?学生明白之后,再引导学生讨论第二种分析思路,确定先算什么,再算什么。第三层次,确定算法。引导学生结合分析结果,确定怎样列式计算,并说说为什么这样算?分步列式计算之后,教师要指出,我们采用不同的思路就得到了不同的解题方法,今后学习应用题,还会遇到这种情况,如果我们遇到问题,能从不同角度思考问题,对今后的学习是十分有利的。然后,要求学生将两种解法分别列出综合算式,再比较两种算法的差别,并说明理由。

2.反馈校正。指导学生做教科书99页上的“做一做”,要求学生认真审题,用两种方法解答。教师巡视,注意帮助有困难的学生,并给以适当的提示。做完后指名说说思考过程,集体订正。如有问题,及时校正。

3.小结。指出两种解答方法是一样的,我们可以用一种解法的结果来检验另一种解法的结果是不是正确。

并要求学生阅读99页例题下面的一段话。

(三)课堂练习

1.做练习二十二第1题,审题之后提示学生想一想与例题有什么类似的地方,然后要求学生独立完成。做完后集体订正时要先看两种解答方法的结果是否一样,如果不一样,表明列式或计算有错误,要及时检查。同时对有困难的学生要给以帮助和指导。

2.做第2题,要求独立完成,发现问题及时纠正。

3.做第4题。读题后提问,题中有几个已知条件?问题是什么?能不能解答?还需要补充什么条件?(学生在补充条件时,只要不是非常脱离实际,就要采用。)集体订正时,教师让两个补充条件不一样的学生分别说出做题过程,并说明列式的理由。

(四)课后作业

100页第3题

(五)全课小结。(略)

篇3:归总应用题教案设计

教学目标

1.使学生掌握两步应用题(归总)的结构特点和解答方法,能正确迅速地找到中间问题(先求什么).

2.使学生学会列综合算式解答,初步掌握这类应用题的解题规律.

3.训练学生有条理地分析数量关系,培养学生分析、解答应用题的能力.

教学重点

使学生掌握乘、除法应用题的数量关系、结构特征和解答方法.

教学难点

学画线段图,并借助线段图分析题中数量关系.

教学过程

一、联系生活实际,以旧引新.

1.请你根据学过的乘除法数量关系,联系自己的生活实际举例提问.

①单价×数量=总价

②路程÷时间=速度

③工作总量÷工效=工时

学生可能举例:

①一个足球50元,3个足球多少元?

②我家到姥姥家相距大约120千米,坐汽车行了2小时,这辆汽车每小时行多少千米?

③王师傅用小推车为食堂运菜,每小时运80千克,240千克的菜要几小时运完?

2.改编:工人们修一条路,每天修12米,10天修完.________?求什么?(求这条路长多少米?)为什么?如果去掉这个问题,改成“如果每天修15米,几天修完?”应该如何解答呢?

此时,学生可能会答也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师提问:要想知道“如果每天修15米,几天修完?”,就要先求出什么?(工作总量)根据哪一数量关系求工作总量?

教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.

二、尝试探索,学习新知.

1.(1)出示例5:工人们修一条路,每天修12米,10天修完.如果每天修15米,几天修完?

学生们自由读题,理解题意.

教师谈话:通过读题,你想到了那些问题,提出来供同学们思考.

学生可能提出:

题目中已知几个条件,它们各是什么?要求什么问题?线段图应该怎么画?

这道题可以先求什么?(中间问题)为什么?

求出总数量后,再求什么?为什么?

经同学们思考(也可以小组讨论),师生共同解决.

全班重点讨论下面的问题:

a.线段图怎样画?题中什么数量变了,什么没变?

使学生明确:为了清楚地反映数量关系,最好画两条线段,两条线段要同样长,表示同一条路(说明工作总量是固定不变的').

b.要求几天修完,必须先求什么?为什么?

[看图分析:可以从条件出发,已知每天修12米(工效),又知道修了10天(工时),就可以求出这条路全长多少米?(工作总量)还可以从最后的问题出发,要求每天修15米,几天修完?必须知道这条路全长是多少米,题目里没有给工作总量,所以要先求出工作总量.]

共同解题,说出解题方法.

(学生边回答教师边板书: 这条路全长多少米?

12 × 10 = 120(米)

几天修完?

120 ÷ 15 = 8(天)

综合算式: 12 × 10 ÷ 15

⑤请学生说一说怎样检验?

(2)教师提问:如果将第三个条件改成“每天修20米、每天修30米、每天修4 0米”,问题不变,仍求几天修完?应该怎样列式?

12×10÷20=6(天) 12×10÷30=4(天)

12×10÷40=3(天)

(3)教师提问:如果将第三个条件和问题改成“如果要求6天修完,每天应修多少米?”应该怎样解答呢?

订正:这条路长多少米? 12 × 10 = 120(米).

每天应修多少米? 120 ÷ 6 = 20(米).

综合算式:12×10÷6

全班共同订正,说说你的解题思路,每一步算式的含义.

(4)教师提问:再将第三个条件改成“要求5天修完、2天修完”,问题不变,仍求每天应修多少米?怎样列式?

12×10÷5=24(米) 12×10÷2=60(米)

2.对比质疑,归纳概括.

教师提问:比较例5、改编题,它们有什么共同点和不同点?

使学生明确:从应用题的结构上看,前两个条件是相同的,给了单一量和数量,第三个条件和问题不同,正好互相交换了一下.从解题思路上看,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的(题目中一般在第一句话表示出来).不同的是:总数量÷份数=每份数,总数量÷每份数=份数.

教师说明:具有以上特点的应用题叫做归总应用题.(出示课题)

三、巩固练习,发展提高.

1.独立完成下题.

①小华读一本书,每天读12页,6天可以读完.如果每天读9页,几天可以读完?

②小华和小刚读同样一本书,小华每天读12页,6天读完,小刚想8天读完,平均每天要读几页?

订正时说说解题的思路各是什么?

2.填表:

解放军列队出操.填出每行人数或行数.(说说解题思路)

每行人数

12

20

45

行数

15

10

四、课堂小结.

今天学习的是什么?你有什么收获?

五、布置作业.

1.方师傅给食堂运菜.如果用小推车每次运75千克,8次能运完.如果改用平板车运,4次就能运完.平板车每次运多少千克?

2.招待所新来一批客人.每间住2人,需要15间房.如果每间房住3人,需要几间房?

板书:

探究活动

折纸条游戏

活动目的

学生通过手、脑、口多种感官参与认知活动,加深对“归总应用题”的认识;锻炼灵活的思维能力,提高数学素质.

活动准备

学生两人一组,每组准备1张较长的彩条,一张表格.

活动过程

1.规则:两人一组,甲任意将彩条折成2段(或几段),乙测量出一段彩条的长度并记录,接着两人互换任务,乙将彩条折成不同的段数请甲根据第一次的测量结果猜出现在每段彩条的长度并记录,互相检查(计算)猜对为赢;此为一局;每场游戏可定为4局,赢者一局加10分,输者记0分并送对方10分,最后分高者为胜.

2.所填表格如下:

篇4:典型应用题教案设计

典型应用题教案设计

【复习要求】

1、通过复习能正确迅速地判断不同类型的典型应用题。

2、能用特定的方法(或公式)来解答典型应用题。

【复习重点】认识几种常见的典型应用题。

【复习程序】

一、知识梳理

1、典型应用题的种类。

⑴平均数应用题。

用移多补少的思想,把12个不相等的部分数平均分为相等的几份的应用题。

其数量关系式:

总数量÷总份数=平均数

⑵归一应用题。

能够先求出一个单位量(如速度、工作效率、单价、单产等)的思路来解答的一类应用题叫做归一应用题。

⑶相遇问题。

相遇问题是研究两个运动物体(或人)从两个不同地方,站同一路线相对运动的问题。

关系式:速度和×相遇时间=路程。

分析相遇问题时要抓住其特征,注意出发时间、地点、方向的变化,通常画出示意图帮助自己理解和分析。

二、例题。

例1:4台吊车7小时卸煤1414吨,照这样计算,增加5台同样的吊车,多工作8小时先卸煤多少吨?

这是一道典型的`归一应用题,单一量没有变即工效没有变:1414÷4÷7,工作台数增加到(4+5)台,工作时间增加到(7+8)小时,根据正归一应用题求总量的算式为:1414÷4÷7×(4+5)×(7+8)=6817.5(吨)

答:共卸煤6817.5吨。

例2:甲、乙两车同时从A、B两地出发,相向而行。甲车每小时行驶42千米,乙车每小时行驶38千克,两车相遇时离B地336千米。A、B两地相距多少千米?

分析:根据题意,画图解

甲每小时行42千米 乙每小时行38千米

甲 乙

336千米

千米

从线段图中可以看出,336千米正是乙从乙地出发到甲地相遇时所走过的路程。而乙的速度已知,这样就可以求出相遇时间,即:

336÷48=7(小时)。进而通过速度和×相遇时间=距离。

(42+48)×(336÷48)=90×7=630(千米)

答:AB两地相距630千米。

三、巩固练习。

1、师生讨论P87页第10题是什么类型的题,怎样解答。

2、讨论第12、15题。

在解答过程应该注意什么?(画图)

3、作业练习。

P87页11、12、13、14、15题。

四、补充练习。

1、小红骑自行车从甲地开往乙地,3小时行75千米,5小时到达乙地。甲乙两地相距多少千米?

2、两列火车相对行驶,在两地间的中点相遇,甲车每小时行驶76千米,相遇时行了5小时。乙车每小时行驶95千米,它比甲车迟出发几小时?

5 O

篇5:相遇应用题教案设计参考

相遇应用题教案设计参考

教学目标:

1、使学生初步理解相遇问题的意义。

2、使学生会分析相遇问题的数量关系和解题方法。

3、培养学生初步逻辑思维能力。

教学重点:相遇问题中数量关系的理解和解题思路的分析。

教学难点:解答问题时对速度和的理解和运用。

教具准备:演示软件、实物投影机、幻灯机。

教学过程:

开场白:

同学们,过去我们已经学过一些有关行程问题的知识,今天,我们要在过去的知识基础上,把这个问题作进一步的研究,为更好地掌握新知识,现在我们把一些相关知识进行复习。

一、复习铺垫:?

口答:

1、张华每分钟走65米,走了4分钟,一共走了多少米

65×4=260(米)

提问:为什么这样求?谁会用一个数量关系式表示

在学生回答的同时板书:速度×时间=路程。并由学生说明:张华行走的速度是每分钟走65米,时间是4分钟,求一共走多少米?就是求张华所走的路程。

2、李诚每分钟走70米,走了4钟,

由学生补充问题并进行计算。

二、新授:

1、导入新课:刚才我们复习了一般的求路程的行程应用题,它是由一个物体运动完成的。下面我们研究两个物体运动的行程应用题。

2、出示准备题:

①读题看演示,初步理解题意。

问:题中告诉我们,张华和李诚是怎样出发的?他们行走的方向又是怎样?(两人同时从家里出发,向对方走去)

板书:两地同时出发相向而行?

②边演示边带学生填写P58表格的数据,并分析数量关系。

这是他们两人走的时间和路程的变化情况表。我们看看1分钟的情况(演示1分钟的情况)教师问:张华1分钟走60米,李诚1分钟走70米,那么两人所走路程的和是多少?你是怎样算的?现在两人的距离是多少?怎样计算?下面请同学们按表中的四个要求填写2分、3分的路程变化情况。

学生翻开课本第58页填写。(教师巡视)

师生继续填写完这个表格,边演示边让学生回答2分、3分时的情况。填写完后,教师指表的第4列问:纵观此列,每经过1分钟,两人之间的距离有什么变化?(缩短了1个60+70米)当两人距离为0米时,说明两人相遇了,这时他们用的时间都是3分钟。板书:相遇。问:相遇时,两人所走路程的和与两家的距离有什么关系?(正好相等)。学生回答后板书:两人所走路程的和=两地间的距离。

3、小结并揭示课题?

像这样,两人从两地同时出发,相向而行,最后相遇,他们所走路程之和正好等于两地间的距离。我们称它为相遇问题。现在我们就学习解答相遇求路程的方法。板书课题:相遇应用题。

4、讲授例5。

①出示例5,教师读题,学生说出已知条件和问题。

问:小强和小丽是怎样运动的?(两人同时从自己家里走向学校)也就是从两地同时出发,相向而行,经过4分,两人怎样?(相遇在学校门口)

②启发学生学习第一种解法

演示后提问:a、小强小丽走的路程各是哪一段?用色段表示。

b、两人4分所走路程的和与两家相距的米数有什么关系?(正好相等)

c、要求两家相距多少米?可先求什么?(先求两人到校时各自走的路程)再怎样?(将它们合起来)就得出时各自走的路程)再怎样?(将它们合起来)就得出两家相距的米数。

指一名学生口述,教师板书:65×4+70×4?=260+280?=540(米)

问:65×4和70×4分别表示什么?为什么要相加?

③启发学生学习第二种解法。

问:这道题还有别的解法吗?让学生列式计算。

指一名学生口述,教师板书:(65+70)×4?=135×4?=540(米)

问:65+70求出什么?乘以4表示什么意思?请讲出你的解题思路。

相遇时,两人是否一共走了4个65+70米的路程呢?我们演示来验证一下。(演示)

④小结:相遇求路程的应用题通常有两种解法:一种是先求出两个物体各自走的路程再将它们合起来求得总路程,另一种是先求每分钟两人所走的路程的和,即是两人的速度和,再乘以相遇时间,就等于总路程。边说边板书:速度和×相遇时间=总路程,学生齐读关系式。?

⑤学生看第58页的例5。

三、巩固练习:

1。志明和小龙同时从两地对面走来,志明每分钟走54米,小龙每分钟走52米,经过5分两人相遇,两地相距多少米?(用两种方法解答)?

学生读题后,独立完成,教师巡视,订正答案。

2。两列火车从两个车站同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2。5小时两车相遇。两个车站之间的铁路长多少千米?

让学生自选一种方法解答。

3。两辆汽车同时从一个地方向相反的方向开出。甲车平均每小时行44。5千米,乙车平均每小时行38。5千米。经过3小时,两车相距多少千米??

出示题目,请一名学生读题,演示后由学生独立完成。

提问:两辆汽车同时从一个地方向相反的方向开出,也就说明两辆汽车背向而行,两辆汽车开出后有没有相遇?(没有)求经过3小时,两车相距多少千米?能用相遇问题的解法吗?(能)为什么?(因为甲乙两车每走1小时,两车之间的.距离就拉开44。5+38。5千米的距离,3小时后,两车就拉开3个44。5+38。5千米的距离,也就是两车相距的米数。)

小结:当两个物体同时从一个地方背向而行,它们的结果是相距,两个物体所走的路程的和等于两地间的距离,同样可以用速度和乘以经过时间,求得相距路程。

4、思考题:甲、乙两列火车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地间的铁路长多少千米?

出示题目,全班读题,演示后让学生独立完成。

订正时,师说:求两地间的铁路长多少千米?可以把铁路分为两段,一段是甲开出1小时单独行驶的路程,另一段是两车2小时共同行驶的路程。

还有不同的解法吗?师生共同分析不同解法。

引深:如果甲车开出后2小时,乙车才开出,又该怎样列式呢?指一名学生列式。

四、课堂总结:

这节课我们学习了两个物体相向运动的行程问题,其中求路程的解答方法通常有两种:

一是先求出两个物体各自走的路程再将它们合起来求得总路程;

二是用速度和乘以相遇时间得总路程。

五、作业:

P61第1题,P62第12题。

篇6:《应用题》的教案设计

《应用题》的教案设计

教学目的

1.使学生学会列含有未知数 的等式解答应用题.

2.培养学生分析推理的能力和分析数量关系的能力.

教学重点

分析数量关系.

教学难点

找等量关系.

教学过程

复习旧知,导入新知

一.说出下面各题的数量关系,不计算

①修路队5天修路400米,平均每天修路多少米?

②一个篮球场,长24米,宽45米,面积是多少?

③ 汽艇每分钟行驶840米,它的速度是帆船的3倍,帆船每分钟刑事多少米?

④一个生产小组每天生产200个零件,要生产6400个零件需要多少天?

二.列出含有未知数 的等式,在解答出来

24乘什么数得960?

什么数除以38得50?

提问:你解答这两个题的根据是什么?

教师谈话引出课题:今天我们继续学习乘法各部分间关系的实际应用.

板书课题:应用题.

小组合作,探究新知

1.出示例7:一个篮球场的长是28米,面积是420平方米.篮球场的`宽是多少米?

(出示图片“例7”)

教师提问:

(1)题目中已知什么,求的是什么?你能不能用以前学过的方法算出结果?

教师板书:420÷28=15(米)

(2)你是怎么想的?

(3)能不能用我们学过的乘法各部分之间的关系来解答呢?根据是什么?

教师板书:设篮球场的宽是 米.

28× =420 =420÷28 =15

2.练习

育民小学四年级学生参加浇树活动,平均每人浇树12棵,一共浇了468棵.四年级有多少学生参加浇树?

教师提问:题目中的等量关系是什么?谁能列出含有未知数的等式?

你是根据什么列出的等式?

全班同学一起解答,教师请同学板书:

设四年级有 名同学参加浇树.

12× =468=468÷12=39

三、巩固练习,掌握新知.

列出含有未知数 的等式:

1.向群文具厂每小时能生产250个文具盒,多少小时能生产10000个?等式,

2.爷爷今年72岁,正好是小华年龄的9倍.小华今年多少岁?

3.一座电视塔高120米,是电视台大楼高度的4倍.电视台大楼高多少米?(两种方法解答)

四、小结:

这节课你有那些收获?今天所学的知识和以前有什么联系?

五、布置作业

1.四年级同学去植树.把一批树苗平均分给8个小队,结果每个小队分到16棵.一共有多少棵树苗?

2.新星小学修建了一个长方形体育场,面积是4200平方米.长是100米,宽是多少米?

六、板书设计

篇7:《相遇应用题》教案设计

教学内容:

九年义务教育六年制小学数学第九册第58页准备题、例5。

教学目的:

1、使学生理解相遇问题的意义,学会分析“相遇问题”的数量关系,并能解答简单的相遇求路程的应用题。

2、培养学生的观察、比较、分析、综合能力及解决实际问题 的能力。

3、在教学过程中,渗透“事物是变化的`、发展的”辨证唯物主义观点。

教学重点:

理解相遇问题的数量关系,建立解题思路,掌握解题方法。

教学难点:

理解相遇问题中速度和、相遇时间和总路程之间的关系。

教学关键:

使学生弄清每经过一个单位时间,两物体之间的距离变化。

教具准备:

计算机及辅助软件

教学过程:

一、展示设疑:

⑴复习铺垫

同学们,过去我们已经学过一些有关行程问题的知识。今天,我们要在过去的知识基础上把这个问题作进一步的研究,为了更好地掌握新知识,现在我们把一些相关知识进行复习。

1、口答:张华每分钟走65米,走了4分钟,一共走了多少米?

为什么这样列式,谁会用一个数量关系式来回答?

2、在xx届奥运会中,我国体育健儿勇夺xx枚金牌,使我们每一个中国人都感到无比激动和自豪。现在我提议,以热烈的掌声祝贺我国体育健儿为我们取得的荣誉。

但是,鼓掌也很有学问,你们鼓掌时两只手是怎样运动的?从开始运动的地方,时间,方向及运动的结果等方面进行回顾,思考。

(边问、边答、边板书)

两手运动:

地点:两地 结果:相遇

时间:同时

方向:相对(相向)

今天,我们就要从以前研究一个物体的运动转变为研究两个物体运动的行程问题。

二、引导思疑

1、准备题:张华家距李诚家390米。两人同时从家里出发,向对方走去。张华每分钟走60米,李诚每分钟70米。

请同学们看屏幕,张华和李诚是怎样走的,结果怎样?

2、⑴先让学生独立填写表格中走的时间是1分钟这一行。完成后利用电脑演示两人同时出发相向而行1分钟的过程并集体校对答案。

问:走1分钟两人所走路程的和是怎样求出来?两人之间的距离呢?

⑵让学生把表格填完,利用电脑演示来校对

⑶引导学生观察并思考,随着两人走的时间一分一分地增加,两人所走路程的和怎样变化?两人之间的距离同时发生什么变化?

当两人的距离是0时,我们就说这时两人怎样了(相遇了)两人运动的结果就是相遇

⑷同桌讨论:相遇时两人所走路程的和与两家距离有什么关系?

要求两家距离就是求什么?

(板书:两家距离等于相遇时两人所走路程的和)

⑸像这样,两人从两地同时出发,相向而行,最后相遇,他们所走的路程之和正好等于两地间的距离。我们称它为相遇问题。

(板书:相遇应用题)

三、引思解疑

1、出示例5:小强和小丽同时从自己家里走向学校。小强每分钟走65米,小丽每分钟走70米,经过4分钟,两人在校门口相遇。他们两家相距多少米?

2、小强和小丽是怎样运动的?

3、让学生尝试解答。

你是怎样想的?在小组内相互讨论。

4、反馈学生情况,全班讨论并强化两种解法。

⑴请你说出先求什么?再求什么?怎样列式?

答:他们两家相距540米。

再请一位同学来说一说,先求什么?再求什么?

⑵还有别的解法吗?

答:他们两家相距540米。

问:65+70求什么?这就叫做速度和。乘以4表示什么?请说出你的解题思路。

相遇时两人是否是一共行了4个(65+70)米的路,我们来验证一下。

小结:相遇应用题通常有两种解法,第一种先求什么?再求什么?第二种是又先求什么?再求什么?

(板书:速度和×相遇时间=总路程)

四、拓思创新

1、甲乙两个工程对同时修筑一条公路,14天修完。甲队每天修280米,乙队每天修300米。这条路全长多少米?

2、甲乙两人同时从对面走来。甲每分钟走52米,乙每分钟走48米,两人走了10分钟。两地相距多少米?

板书设计:

篇8:应用题(四年级)(人教版四年级教案设计)

教学目标

(一)使学生初步学会列含有未知数x的等式解答需要逆思考的加、减一步应用题。

(二)培养学生分析推理能力。

教学重点和难点

重点:分析数量关系。

难点:找等量关系。

教具和学具

教具:口算卡片。

教学过程设计

(一)复习准备

1.板演。

(1)设要求的数是x,列出等式,再说一说根据什么求未知数x。

什么数加上240得320?

(2)解答应用题。

学校买来70盒粉笔, 用去28盒,还剩多少盒?

2.口答。(与板演同时进行)

求未知数x。 (口述口算过程,并说出根据。)

30+x=54  x+16=30  x-50=150  370-x=300

(二)学习新课

1.导入。

订正板演(2),把条件和问题对调一下,就成了例7。今天我们学习应用题。(板书课题:应用题)

2.教学例7:学校买来一些粉笔,用去28盒,还剩42盒。学校买来多少盒?指定一名学生读题,边读题,边画线段图。

根据线段图,全体学生列出算式,并解答出来。

指名学生列式,并说一说是怎样想的?

引导学生说出:把用去的粉笔盒数与剩下的粉笔盒数合起来,就是原来的总盒数,所以用加法解答。

28+42=70(盒)

口答:学校买来70盒粉笔。

提问:怎样进行检验呢?

引导学生说出:用求出的原来买来的70盒粉笔作为已知条件,减去用去的盒数,如果等于剩下的42盒,说明解答正确。

提问:

(1)上面的解法是我们过去学过的,今天我们来研究一下,这道题还有没有其他的解法呢?

(2)同学们可以联系求未知数x的知识想一想,按照题目的叙述顺序,哪些数量和哪些数量之间有等量关系呢?

根据学生回答,教师板书:

买来的盒数-用去的盒数=剩下的盒数

提问:

(1)买来的盒数知道吗?

根据学生回答,教师说明:可以设买来粉笔x盒。

(2)买来的盒数为x,用去的盒数知道吗?是多少?剩下的盒数知道吗?是多少?谁能把它们列出一个等式?

引导学生列出:x-28=42。

(3) 结合题意,谁能说一说这个等式什么意思?

引导学生说出:从原来粉笔的盒数x中去掉用去的28盒,就等于剩下的42盒。

教师说明:这是一个含有未知数的等式。由学生根据已学过的知识解答出来。

教师说明:因为设未知数x时,已经说明单位名称是盒,计算结果就不再注单位名称。

由学生验算:求出原来有粉笔70盒,从70盒中去掉28盒,剩下是42盒。说明解答正确,最后再写答句。

3.引导学生小结。

提问:今天我们新学的列含有未知数x的等式来解答应用题,它有哪些步骤呢?结合例7说一说。

引导学生说出:

第一步:读题弄清题意,分清已知条件,求的是什么,设未知的数量为x。(板书:设)

第二步:按照题意,找出哪些数量与哪些数量有相等的关系,列出含有未知数x的等式。

(板书:列)

第三步:求出未知数x是多少。注意x代表的数量不写单位名称。(板书:求)

第四步:检验并写出答句。(板书:验、答)

其中第二步最重要,要找出它们的等量关系式。

(三)巩固反馈

1.半独立练习。

课本第38页“做一做”:

食堂原来有27袋大米,又买来一些,现在共有42袋,食堂又买来多少袋大米?(列出含有未知数x的等式,再解答出来。)

提问:

(1)用列出含有未知数x的等式解答应用题的第一步是什么?这道题怎样设?

(2)第二步是什么?这道题的等量关系式是什么?

引导学生说出:原有袋数+买来袋数=现在袋数。

在此基础上,由学生在练习本上解答,指定一名学生在投影片上解答。

订正时,由学生说一说根据什么列出含有未知数x的等式,再检查计算和书写格式有没有错误。

2.独立练习。

小林原来有一些邮票,同学又送给他14张,现在一共有70张。小林原来有多少张邮票?

教师不作提示,由学生独立做在练习本上,指名一学生在投影片上做。订正时,由学生讲题,重点说一说根据什么列出含有未知数x的等式。

3.课后练习:

练习九第2,3,4题。

课堂教学设计说明

本节课学习了一些应用题的逆向叙述方式。需要逆思考的应用题,用一般的算术方法解答比较困难,而利用加、减法中各部分间的关系,列含有未知数x的等式来解则较容易,这样可以开拓学生的思路,提高解答应用题的能力。

本节课在新课前的复习准备部分,安排了解答含有未知数x的文字叙述题和求未知数x的口算题,直接为学习新知识打下基础。并通过一道顺向叙述的减法应用题,把其中一个条件和问题对调,引出例7,这样安排比较自然。

新课部分分为两个层次。第一层次在分析数量关系的基础上,先用已学过的一般算术方法解答,再引导学生顺着题意的顺序想,把要求的数用x表示,列出含有来知数的等式。重点帮助学生找出等量关系,通过例题,引导学生总结出解题步骤。

由于学生初学用这样的思路来解答应用题,可能会不太习惯,因此,在巩固练习时,分两个层次,第1题在关键部分教师作适当提示,第2题独立练习。两道题都要求当堂反馈,及时评价,使学生在课堂上基本学会本节课的内容,减轻学生的课外负担。

板书设计

应用题

步骤:

(1)设

(2)列

(3)求

(4)验

(5)答

28+42=70(盒)

答:学校买来70盒粉笔。

买来的盒数-用去的盒数=剩下的盒数

设:买来粉笔x盒。

答:学校买来70盒粉笔。

篇9:六年级分数应用题教案设计

教学目标

1.理解以“和倍”问题为基础的分数应用题的解题思路.会列方程解答此类应用题.

2.培养学生的迁移类推能力.

3.培养学生运用所学的知识解决生活中的实际问题的能力.

教学重点

理解应用的数量关系,找到题目中的等量关系.

教学难点

找准题中的等量关系.

教学过程

一、复习。(用含有字母的式子表示)

1、果园里有苹果树x棵,梨树的棵数是苹果树棵数的3/4。梨树有|棵。

苹果树和梨树一共有()棵。

2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。

二、生活引入.

上一年,有一位学生问我|:“老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的2/5。你能算出老师的年龄是多少岁吗?那杨莹的年龄又是多少岁呢?

1.老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了.

2.板书课题:分数除法应用题。

3、学生读题,理解题意弄清谁是单位”1“,画出线段图.

4、分层指导。

思考:(1)根据我和杨莹的年龄和是42岁这个条件找到它的等量关系吗?

(2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为?老师、杨莹的岁数用含有的式子怎么表示?

5.学生练习,集体订正,说明思路。

三、尝试练习

(一)出示例3

例3.饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的.白兔和黑兔

各有几只?

1.读题,理解题意弄清谁是单位”1“,画出线段图.

2.小组回答:

(1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?

(2)根据黑兔的只数是白兔的这个条件,可以把谁设为?白兔、黑兔的只数用含

有的式子怎么表示?

3.学生练习。

4.学生打开书本对答。(65页)

解:设白兔的只数为只,黑兔的只数是.

白兔只数+黑兔只数=总只数

答:白兔有15只,黑兔有3只.

4.教师提问:这道题还可以怎样列式?

18÷(1+)什么意思?

(二)写出下面应用题的等量关系,只列出含有未知数的等式,不解答.

1.商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

2.商店运来的苹果比沙果多60筐,其中沙果的筐数是苹果的,苹果和沙果各有多

少筐?

教师归纳:今天学习的应用题在解答时要根据分率句确定单位”1“,把单位”1“设为.

另一个数就是几分之几.根据已知条件列出方程解答.

四、巩固练习.

(一)变式练习

小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?

(二)对比练习

1.李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多

少吨?

2.李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?

(三)选择练习

果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵?

解:设桃树有棵.

A.B.

C.D.

五、质疑总结.

1.用方程解这类题的关键是什么?

2.用算术方法解答时应注意什么?

六、板书设计

分数除法应用题

解:设老师的年龄是岁.

......老师年龄

42-30=12......杨莹的年龄

答:老师30岁,杨莹12岁.

六年级分数应用题教案设计二

教学目标:

使学生比较系统地掌握分数应用题的解答方法。弄清稍复杂的分数应用题是从基本题扩展而来的,抓住关键提高学生的辩别能力。

使学生能够正确地选择适当的方法解答分数(百分数)应用题。

教学过程:

指导学习例题

基本复习

谁能根据这两个已知条件提出简单的用分烽解的问题并列出相应的算式。(水彩画是蜡笔画的几分之几?50/80;蜡笔画是水彩画的几分之几?80/50)

稍复杂分数应用题的复习:

根据上面已知条件,教师提出“蜡笔画比水彩画多几分之几”谁会列式并算出结果?(学生列式教师板书(80-50)÷50=3/5)如果提出“水彩画比蜡笔画少几分之几”又该怎样列式?结果又是多少?学生列式教师板书(80-50)÷80=3/8)

提问:解答以上问题列式的关键是什么?关键弄清哪个量是哪个量、哪个量比哪个量多(少)几分之几。“是”和“比”后面的量就看作单位“1”的量做除数,前面的量则做被除数。

稍有变化的复习题:根据上面总结的解题关键,我们来讨论下面两个问题。(教材111页的两道小题,可一一出示后让学生列式解答。)

总结解答方法:

找准题中单位“1”的量。

看单位“1”的量是已知还是未知。(单位“1”的量是已知就用乘法解答,否则可用方程解)

单位“1”的量×几分之几=几分之几的量

完成教材111页例4的“想一想”:

教师强调说明解题方法一样。因为这里的分数与百分数都是表示两个数的相除关系,实质是一样的,只是形式不同,如最前面的基本题中最后结果要化成百分数。

3.巩固练习

只列式说得数

完成教材113页的“做一做”。

小军看一本240页的书,第一天看了全书的1/5,第二天看了全书的1/4。

1)240×1/5求的是( )。

2)240×(1/4-1/5)求的是( )。

3)240×(1/4+1/5)求的是( )。

4)240×(1-1/4-1/5)求的是( )。

解答下面各题

一根铁丝第一次截去全长的3/7,第二次截去3/7米,还剩下全长的3/7。这根铁丝有多长?

光明学校的男生数占全校学生的33%,比女生少170人,女生有多少人?

(此二题可供班级中优等生解答,对学习有困难的同学可做教材练习二十八第一题。)

4.全课总结(略)

篇10:六年级分数应用题教案设计

教学目标

1、进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。

2、进一步掌握已知一个数的几分之几是多少求这个数的应用题的解题思路。

3、进一步培养学生解决问题和分析、推理等思维能力,提高解题能力。

教学重难点

进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。

教学准备

教学过程设计

教学内容

师生活动

备注

一、复习铺垫

二、教学新课

三、巩固练习

四、课堂小结

五、作业

1、复习

出示复习题(见幻灯)

问:解答这道题是怎样想的?为什么列方程解?

2、揭示课题

解答分数应用题,要先确定单位“1”,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。

1、教学例2

(1)学生读题,找条件和问题。

(2)找关键句,说数量关系。

(3)学生画线段图。

(4)学生独立列式、计算。

(5)小结:这道题的解题思路是怎样的?

2、教学试一试。

(1)学生读题,找条件和问题。

(2)找关键句,说数量关系。

(3)学生画线段图。

(4)学生独立列式、计算。

3、小结

问:通过上面的学习,你认为解答分数应用题该怎么去思考?

1、做练习十第6题

2、做“练一练”

3、做练习十第9题

问:列方程解是怎样想的?

这节课学习了什么内容?解答分数应用题一般要怎样想?今天学习的这类应用题可以有哪些方法解答?

练习使7、8、10

课后感受

例2比较简单,从学生的掌握情况来看,“试一试”稍有一些难度。所以本节课的重点放在了“试一试”的分析上。的确通过画线段图的分析,学生对此类题目有了一定的解题思路。

篇11:应用题(二年级)(人教版二年级教案设计)

教学目标

(一)使学生初步了解连续两问的应用题的结构,初步学会分析应用题中的数量关系.

(二)能够解答比较容易的连续两问的应用题.

(三)初步培养学生有条理的思考问题的能力.

教学重点和难点

重点:了解连续两问应用题的结构,分析应用题中的数量关系.

难点:解答第二问时,找出所需要的条件.

教学过程设计

(一)复习准备

把应用题补充完整,再解答出来.

1.________,用了4张,还剩多少张?

2.________,又跑来5只,一共有多少只?

教师谈话:我们学习的应用题,都是由两个条件和一个问题组成的,如果缺少一个条件就无法解答,必须根据所求问题和其中一个条件,找到所需要的另一个条件.今天我们继续学习应用题.(板书课题)

(二)学习新知

1.出示例5

学校有15只白兔,7只黑兔,一共有多少只兔?

由学生读题、分析,列式并解答.

15+7=22(只)

口答:一共有22只兔.

这是同学们学过的旧知识,把两种兔子的只数合并在一起,就是一共有多少只兔了.下面还有第二问.接着出示第二问.

又生了8只小兔,学校现在有多少只兔?

启发性提问:

(1)要想求学校现在共有多少只兔,问题中的“现在”指的是什么时候?

(2)第二问只有一个条件能解答吗?缺少的条件往哪里去找?

(3)怎样列式解答?

相邻的两名同学互相讨论,全班交流,三个问题分三次讨论.

通过讨论,明确以下问题:

(1)要求“现在”有多少只兔,指的是在学校原有小兔总只数的基础上,再添上又生的8只.(2)第二问只有一个条件不能解答,根据所求问题及知道的又生了8只,需要找到学校原来有多少只兔,而原来小兔的总只数通过第一问已经求出来了,是22只.(3)用22只再加上8只,就是所要求的现在小兔的只数.

列式:  22+8=30(只)

口答:现在有30只.

指若干名学生把解答第二问怎样想的说一说.

2.出示例6

一辆公共汽车里有30人,到胜利街车站有7人下车,车上还剩多少人?又上来9人,现在车上有多少人?

指名学生读题.

提问:这道题有几个问题?咱们先解答第一问.

指名学生解答第一问,并说一说是怎样想的.

(从30人中去掉 7人,就是车上还剩的人数)

30-7=23(人)

口答:车上还剩23人.

再解答第二问.

提问:现在已经求出车上还剩23人,还知道又上来9人,能不能求出现在车上有多少人?指名学生列式解答,并说一说是怎样想的.

(用车上还剩的 23人,和上来的 9人合在一起,就是现在车上有的人数)

23+9=32(人)

口答:现在车上有32人.教师小结:

今天我们学习有两个问题的应用题,这两个问题间有联系,在解答第二问时,其中一个条件要用上第一问求出的结果,所以叫做连续两问应用题.在解答时,要把题目看清楚,不要把第二问漏掉.

(三)巩固反馈

1.半独立性练习

课本中“做一做”的第1题:

商店有8辆自行车,又运来25辆,一共有多少辆?

全体学生在书上独立解答,订正后,老师稍加提示,解答第二问.

已经求出一共有33辆,卖出10辆,还剩多少辆?

全体学生在书上独立解答.

课本中“做一做”的第2题:

小华有25张动物邮票,送给同学8张,小华还剩多少张邮票?

王叔叔送给他7张,小华现在有多少张邮票?

第一问由学生独立解答,第二问指名学生说出条件和问题,再独立解答.

2.课堂独立练习

练习二第1题:

商店里运来45筐芹菜,运来的菠菜比芹菜多3筐.运来多少筐菠菜?卖出50筐菠菜,还剩多少筐菠菜?

由学生独立做在练习本上.

3.课后练习 练习二:第2,4题.

课堂教学设计说明

本节课是在学生已学过一步应用题的基础上进行的,它是为今后学习两步应用题做准备.所以课堂设计时,把教学的重点放在解答第二问时,怎样从第一问中找出所需要的条件.

本节课的各个环节,都是围绕这一重点进行的.例如,教学一开始,安排了两道给应用题补充条件的练习,就是为本节课的重点打下基础.在学习新课时,重点放在怎样解答第二问,组织学生讨论,在全班交流.巩固练习环节中,在半独立练习时,由学生说出解答第二问的两个条件,再过渡到由学生独立解答.这样步步深入,逐步使学生初步了解连续两问应用题的结构,了解两个问题之间的联系,从而掌握先解答什么,再解答什么的解题思路.

篇12:简单应用题(人教版六年级教案设计)

教学目的

1.使学生进一步掌握简单应用题的结构,能够根据四则运算的意义和题目中的数量关系正确选择解答方法.

2.通过教学,进一步提高学生分析和解答应用题的能力.

3.探索知识间的内在联系,激发学生的学习兴趣.

教学重点

掌握简单应用题的结构,正确解答简单应用题.

教学难点

掌握简单应用题的数量关系.

教学过程

一、基本训练.

1.口算.

2.2+3.57   ×    ×1.2

1.4-    +0.5 11.3-8.6

(  +  )×12 (0.18+  )÷9 7.75-  -

2.下面各题只列式不计算.

(1)六年级学生为灾区捐款,六年级1班捐款105元,六年级2班捐款98元.两个班一共捐款多少元?

(2)学校图书馆买来150本故事书,借给五年级1班48本,还剩多少本?

(3)农具厂每天能够生产56件农具,7天能够生产多少件农具?

(4)水果店有24筐苹果,要6天卖完,平均每天要卖多少筐苹果?

(5)成绩展览会上要展出48本大字本,每张桌子上放8本,需要几张桌子?

(6)五年级有学生136人,其中  是女生,女生有多少人?

二、归纳整理.

揭示课题:今天我们就来复习这样的简单应用题.(板书:简单应用题的整理和复习)

(一)教学例1:某工厂有男工人364人,女工91人.这个厂的男工和女工一共有多少人?

教师提问:这道题有哪几个已知条件?

问题是什么?

问题与已知条件有什么关系?

你为什么要这样回答?

教师总结:

这道题中,需要求的结果与两个已知条件直接相关.只要把两个已知数合并起来,就可以直接计算出结果.这是一道简单应用题.

(二)变式练习.

1.改变问题:根据例1中的两个已知条件,你还能够提出其他问题,编成简单应用题吗?

①男工比女工多多少人?

②男工人数是女工人数的几倍?

③女工人数是男工人数的几分之几?

2.改变条件:根据上面编出的应用题和列出的算式,你能够分别调换每一道题中的已知条件和问题,各编成两道不同的简单应用题吗?

①某工厂男工和女工一共有455人,男工有364人,女工有多少人?

②某工厂男工和女工一共有455人,女工有91人,男工有多少人?

③某工厂有女工91人,男工比女工多273人,男工有多少人?

④某工厂女工比男工少273人,女工有91人,男工有多少人?

⑤某工厂有女工91人,男工人数是女工人数的4倍,男工有多少人?

⑥某工厂有男工364人,女工人数是男工人数的  ,女工有多少人?

⑦某工厂男工人数是女工人数的4倍,男工有364人,女工有多少人?

⑧某工厂有女工91人,女工人数是男工人数的  ,男工有多少人?

教师提问:通过我们的编题,你发现了简单应用题的什么特点?你的收获是什么?

教师总结:从以上的编题可以看出,简单应用题都是由两个已知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的.也就是说,都是可以由已知条件经过一步计算直接求出答案.

(三)复习已经学过的一些常见的数量关系.

通过例1我们已经研究了一些简单应用题的数量关系,下面我们再来复习一些常见的数量关系.(出示下表)

数量关系 数量关系式

收入、支出、结余 收入-支出=结余

单价、数量、总价

单产量、数量、总产量

速度、路程、时间

工作效率、时间、工作总量

本金、时间、利率、利息

1.请你们以小组为单位,先举例说明数量关系的意义,在填出每组数量中最基本的数量关系式.

2.根据这些数量关系式你能够各编出三道不同的应用题吗?

篇13:数学教案设计:归总应用题

数学教案设计:归总应用题

教学目标

1.使学生掌握两步应用题(归总)的结构特点和解答方法,能正确迅速地找到中间问题(先求什么).

2.使学生学会列综合算式解答,初步掌握这类应用题的解题规律.

3.训练学生有条理地分析数量关系,培养学生分析、解答应用题的能力.

教学重点

使学生掌握乘、除法应用题的数量关系、结构特征和解答方法.

教学难点

学画线段图,并借助线段图分析题中数量关系.

教学过程

一、联系生活实际,以旧引新.

1.请你根据学过的乘除法数量关系,联系自己的生活实际举例提问.

①单价×数量=总价

②路程÷时间=速度

③工作总量÷工效=工时

学生可能举例:

①一个足球50元,3个足球多少元?

②我家到姥姥家相距大约120千米,坐汽车行了2小时,这辆汽车每小时行多少千米?

③王师傅用小推车为食堂运菜,每小时运80千克,240千克的菜要几小时运完?

2.改编:工人们修一条路,每天修12米,10天修完.________?求什么?(求这条路长多少米?)为什么?如果去掉这个问题,改成“如果每天修15米,几天修完?”应该如何解答呢?

此时,学生可能会答也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师提问:要想知道“如果每天修15米,几天修完?”,就要先求出什么?(工作总量)根据哪一数量关系求工作总量?

教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.

二、尝试探索,学习新知.

1.(1)出示例5:工人们修一条路,每天修12米,10天修完.如果每天修15米,几天修完?

学生们自由读题,理解题意.

教师谈话:通过读题,你想到了那些问题,提出来供同学们思考.

学生可能提出:

题目中已知几个条件,它们各是什么?要求什么问题?线段图应该怎么画?

这道题可以先求什么?(中间问题)为什么?

求出总数量后,再求什么?为什么?

经同学们思考(也可以小组讨论),师生共同解决.

全班重点讨论下面的问题:

a.线段图怎样画?题中什么数量变了,什么没变?

使学生明确:为了清楚地反映数量关系,最好画两条线段,两条线段要同样长,表示同一条路(说明工作总量是固定不变的).

b.要求几天修完,必须先求什么?为什么?

[看图分析:可以从条件出发,已知每天修12米(工效),又知道修了10天(工时),就可以求出这条路全长多少米?(工作总量)还可以从最后的问题出发,要求每天修15米,几天修完?必须知道这条路全长是多少米,题目里没有给工作总量,所以要先求出工作总量.]

共同解题,说出解题方法.

(学生边回答教师边板书: 这条路全长多少米?

12 × 10 = 120(米)

几天修完?

120 ÷ 15 = 8(天)

综合算式: 12 × 10 ÷ 15

⑤请学生说一说怎样检验?

(2)教师提问:如果将第三个条件改成“每天修20米、每天修30米、每天修4 0米”,问题不变,仍求几天修完?应该怎样列式?

12×10÷20=6(天) 12×10÷30=4(天)

12×10÷40=3(天)

(3)教师提问:如果将第三个条件和问题改成“如果要求6天修完,每天应修多少米?”应该怎样解答呢?

订正:这条路长多少米? 12 × 10 = 120(米).

每天应修多少米? 120 ÷ 6 = 20(米).

综合算式:12×10÷6

全班共同订正,说说你的解题思路,每一步算式的含义.

(4)教师提问:再将第三个条件改成“要求5天修完、2天修完”,问题不变,仍求每天应修多少米?怎样列式?

12×10÷5=24(米) 12×10÷2=60(米)

2.对比质疑,归纳概括.

教师提问:比较例5、改编题,它们有什么共同点和不同点?

使学生明确:从应用题的结构上看,前两个条件是相同的,给了单一量和数量,第三个条件和问题不同,正好互相交换了一下.从解题思路上看,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的(题目中一般在第一句话表示出来).不同的是:总数量÷份数=每份数,总数量÷每份数=份数.

教师说明:具有以上特点的.应用题叫做归总应用题.(出示课题)

三、巩固练习,发展提高.

1.独立完成下题.

①小华读一本书,每天读12页,6天可以读完.如果每天读9页,几天可以读完?

②小华和小刚读同样一本书,小华每天读12页,6天读完,小刚想8天读完,平均每天要读几页?

订正时说说解题的思路各是什么?

2.填表:

解放军列队出操.填出每行人数或行数.(说说解题思路)

每行人数

12

20

45

行数

15

10

四、课堂小结.

今天学习的是什么?你有什么收获?

五、布置作业.

1.方师傅给食堂运菜.如果用小推车每次运75千克,8次能运完.如果改用平板车运,4次就能运完.平板车每次运多少千克?

2.招待所新来一批客人.每间住2人,需要15间房.如果每间房住3人,需要几间房?

板书:

探究活动

折纸条游戏

活动目的

学生通过手、脑、口多种感官参与认知活动,加深对“归总应用题”的认识;锻炼灵活的思维能力,提高数学素质.

活动准备

学生两人一组,每组准备1张较长的彩条,一张表格.

活动过程

1.规则:两人一组,甲任意将彩条折成2段(或几段),乙测量出一段彩条的长度并记录,接着两人互换任务,乙将彩条折成不同的段数请甲根据第一次的测量结果猜出现在每段彩条的长度并记录,互相检查(计算)猜对为赢;此为一局;每场游戏可定为4局,赢者一局加10分,输者记0分并送对方10分,最后分高者为胜.

2.所填表格如下:

篇14:混合运算和应用题教案设计

四则混合运算和应用题教案设计

教学要求:

1、使学生掌握四则混合运算的运算顺序,学会中括号的使用方法,能够正确地、比较熟练地计算四则混合式题。

2、使学生能够用综合算式解答三步计算的一般应用题和相遇问题,进一步提高解答应用题的能力。

教学重点:

1、掌握四则混合运算的运算顺序,学会中括号的使用方法。

2、列综合式解答三步计算的一般应用题和相遇问题。

教具准备:

投影片

教学内容:

式题

课型:

新授课

教学目标:

1、使学生掌握四则混合运算的云运算顺序,学会中括号的使用方法,能够正确地比较熟练地计算四则混合式题。

2、培养学生计算四则混合式题的能力。

教学重点:

学会中括号的使用方法。

教具准备:

投影片

教学过程:

一、准备题:

先说出运算顺序,再口算。

(1)250-200+50

(2)250×200÷50

(3)250+200×50

(4)250-200÷50

提问:在一个没有括号的算式里,如果只有加减法,运算的`顺序是什么?

如果只有乘除法,运算的顺序是什么?

既有加减法,又有乘除法怎么做?

二、新课:

1、板书课题:式题

2、概括总结在一个算式里,只含有同级运算时的运算顺序。

出示例1:(1)460-180+270-320

(2)250×40÷125×8

学生独立计算,订正。

问:在一个没有括号的算式里,只有加减法或只有乘除法,按什么顺序计算?

师:我们通常把加法和减法叫做第一级运算,把乘法和除法叫做第二级运算。

问:(1)题里只有加减法,我们就说它只含有什么运算?

(2)题呢?

问:在一个算式里,如果只含有同级运算,应当按什么顺序进行计算?

结论:

一个算式里,如果只含有同一级的运算,要从左往右依次演算。

3、总结在一个算式里,既有加减法,又有乘除法时的运算顺序。

出示例2:(1)480-126×5÷21

(2)136÷17+12×4

问:第(1)题中含有哪些运算?第(2)题中含有哪些运算?

在一个算式里,如果既有加减法,又有乘除法,应按什么顺序进行计算?

总结:

在一个算式里,如果含有两级运算,要先做第二级运算,再做第一级运算。

4、练一练:先说出运算顺序,再计算。

(1)76+24-31+19(3)260+125×8÷10

(2)190÷5×10÷10(4)÷25-20×4

5、出示例3:(1)2000÷(25-20)×4

师:先说出运算顺序,再计算。

(2)3024÷

师:“”叫中括号。

这道题有哪几种括号?先算哪一步,再算哪一步?

板书:3024÷

=3024÷

=3024÷252

=12

总结:一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。

练一练:先说出运算顺序,再计算。

(1)320÷

(2)×6

三、巩固练习:

先说出下面各题的运算顺序,再计算。

150-50+25-5150×50-25×5150÷50×25×5

150÷50+25÷5150+50÷25+5150-50+25×5

四、作业:

p35-1、2、3

五、板书设计:

篇15:三年级《乘法应用题》教案设计

三年级《乘法应用题》教案设计

乘法应用题(课本第82页、第83页内容,“想想做做”第1-5题)

教学目标

1、会分析乘法简单应用题的关系。

2、培养学生观察,分析,比较及语言表达能力。

教学准备

圆片若干。

教学过程

一、创设情景,活动引入。

1、师:小朋友,六一节要到了,大家为了布置教室扎了许多花,我们一起来看看扎了些什么花?(课件显示一个花篮里装了一些蓝花、红花、黄花)

大家起来书数数每种花各有多少朵?

显示从蓝里拿出有2朵 红花有4个2朵 黄花有3个2朵

2、理解:蓝花有2朵,红花有4个2朵,我们就说,红花的朵数是蓝花的4倍,黄花有3个2朵,可以怎么说?(指名回答)

3、摆一摆

学生拿出小图片。(1)要求第一行摆2个圆片,第二行摆的个数是第一行的3倍。

问:第二行要摆的个数是第一行的3倍,第二行摆了几个圆片?你是怎样相的?

板书:3个2 2×3=6

(2)要求第一行摆3个圆片,第二行摆的是第一行的4倍

一块讨论:你是怎样摆的?又是怎样摆的?

二、合作探究,构建新知

1、看显示:蓝花有2朵,黄花的朵数是蓝花的`3倍,你能说出黄花有多少朵吗?你是怎样想的:(四人一组讨论)

交流:黄花的朵数是蓝花的3背,黄花的朵数用2×3=6,因此黄花有6朵。

2、想想:红花的朵数是蓝花的几倍?红花有几朵?

(组内互相说说)列出算式:2×4=8

3、小结:从上面可以看出:求一个数的几倍是多少?就是求几个这个数的和是多少,所以要用乘法计算。

三、形行应用,加强实践

1、课本第82页、83页“想想作做”第1、2题,看图理解图意并填空。学生独立完成。

2、第3题,学生边摆边列式。

3、游戏,变蝴蝶(把第5题做成头饰,学生根据题目选择)

5的4倍 5×4 2的3倍 2×3

3个4 3×4 4的2倍 2×4

四、自我评价,加深认识。

这节课我们学习了什么知识?你对自己的学习满意吗?

五、课堂作业

第83页第4题

篇16:分数乘法应用题教案设计参考

教学目标

1.进一步掌握分数乘法应用题的数量关系.

2.学会用一个数乘分数的意义解答两步分数乘法应用题.

教学重点

1.掌握两步分数应用题的解题思路和方法.

2.画线段图分析应用题的能力.

教学难点

分析两次单位“1”的不同之处.

教学过程

一、复习、质疑、引新

(一)指出下面分率句中的单位“1” .

1.乙是甲的

2.小红的身高是小明的

3.参加合唱队的同学占全班同学的

4.乙的 相当于甲

5.1个篮球的价钱是一个排球价钱的 倍

(二)口头分析并列式解答

1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小华储蓄了多少元?

2.小华储蓄了15元,小新储蓄的是小华的 ,小新储蓄了多少元?

(三)引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?这就是本节课要学习的新内容.

(出示课题――分数应用题)

二、探索、悟理

(一)出示组编的例题

例2.小亮储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的是小华的 ,小新储蓄了多少元?

1.思考讨论

(1)小华储蓄的钱是小亮的 ,是什么意思?谁是单位“1”?

(2)小新储蓄的是小华的 ,又是什么意思?谁是单位“1”?

2.汇报思路讲方法

根据“小华储蓄的钱是小亮的 ”,把小亮的钱看作单位“1”,可以求出小华储蓄的钱: .根据“小新储蓄的'是小华的 ”,把小华的钱看作单位“1”,再标出小新的储蓄钱: .

由此基础上试列综合算式:

(二)巩固练习

小华有36张邮票,小新的邮票是小华的 ,小明的邮票是小新的 ,小明有多少张邮票?

1.分析数量关系,独立画图并列式解答.

2.学生板演.

(张)

(张)

答:小明有40张.

3.综合算式

三、归纳、明理

用连乘解答的题有什么特点?”“解题思路是什么?”

1.认真读题弄清条件和问题

2.确定单位“1”找准数量关系

根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.

3.列式解答

板书:抓住分率句,找准单位“1”,

画图来分析,列式不用急.

四、训练、深化

(一)联想练习根据下面的每句话,你能想到什么?

1.苹果的个数是梨的 .(如,梨是单位“1”;苹果少,梨多;苹果比梨少 等)

2.修了全长的

3.现在的售价比原来降低了

(二)先口头分析数量关系,再列式解答.

1.鹅的孵化期是30天,鸭的孵化期是鹅的 ,鸡的孵化期是鸭的 ,鸡的孵化期是多少天?

2.3个同学跳绳,小明跳了120下,小强跳的是小明的 ,小亮跳的是小强的 倍,小亮跳了多少下?

(三)提高题.

六年级有三个班参加植树,___________,二班植树棵数是一班的 ,三班植树棵数是二班的 倍,___________?

五、课后作业

(一)六年级同学收集了180个易拉罐,其中 是一班收集的, 是二班收集的.两班各收集多少个?

(二)长跑锻炼,小雄跑了3千米,小雄跑的 等于小刚跑的,小勇跑的是小雄的 .小刚和小勇各跑多少千米?

六、板书设计

篇17:分数乘法应用题教案设计参考

小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的 ,小新储蓄的钱是小华的 .小新储蓄了多少钱?

教案点评:

解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几,分数乘法应用题,小学数学教案《分数乘法应用题》。这也正是课堂教学的重点和难点,是学生分析能力的体现。是我们课堂的叫目标之一。

这节课是分数应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易,教学中采用小组合作的形式,发挥集体的智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

行程问题应用题教案设计参考

连减应用题的教案设计

百分数应用题(三)(人教版六年级教案设计)

分数乘法应用题(三)(人教版六年级教案设计)

第7册第三章应用题(二)(人教版四年级教案设计)

连乘应用题

应用题一年级

应用题竞赛

方程解应用题

应用题解题技巧

应用题的教案设计(推荐17篇)

欢迎下载DOC格式的应用题的教案设计,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档