下面就是小编整理的高中数学几何空间怎么学好(共含4篇),希望大家喜欢。同时,但愿您也能像本文投稿人“laitouka”一样,积极向本站投稿分享好文章。
一、“转化”思想的应用
我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
(1) 两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
(2) 异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
(3) 面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
二、建立数学模型
新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。
从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。
三、总结规律,规范训练
立体几何解题过程中,常有显著的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换,如能建立空间坐标系可用空间向量来解决。只有不断总结,才能不断高。
还要注重规范训练,高考中反映的这方面的不足十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果联系不充分,图形中各元素联系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,以平时的每一道题开始培养这种规范性的好处是很显著的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
一、抓住课堂。
理科学习重在平日功夫,不适于突击复习。平日学习最重要的是课堂40分钟,听讲要聚精会神,思维紧跟老师。同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。
二、高质量完成作业。
所谓高质量是指高正确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题,也要认真完成。如果不会决不能轻易放弃,要发扬“钉子”精神,一有空就静心思考,灵感总是突然来到你身边的。最重要的是,这是一次挑战自我的机会。成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深刻的印象。
三、勤思考,多提问。
首先对于老师给出的规律、定理,不仅要知“其然”还要“知其所以然”,做到刨根问底,这便是理解的最佳途径。其次,学习任何学科都应抱着怀疑的态度,尤其是理科。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考、提问是清除学习隐患的最佳途径。
四、总结比较,理清思绪。
(1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。
(2)题目的总结比较。同学们可以建立自己的题库。可以有两本题集。一本是错题,一本是精题。对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。童鞋们还可以把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。最终它们会成为你宝贵的财富,对你的数学学习有极大的帮助。
五、有选择地做课外练习。
课余时间对中学生来说是十分珍贵的,所以在做课外练习时要少而精,只要每天做两三道题,天长日久,你的思路就会开阔许多。学习数学方法固然重要,但刻苦钻研,精益求精的精神更为重要。只要你坚持不懈地努力,就一定可以学好数学。相信自己,数学会使你智慧的光芒更加耀眼夺目!
1、研读考纲知识点
考纲里面要求的每一个知识点,从定理,推导,例题,课后习题,每一步,都要求你自己去做,不要不耐烦,不要觉得好像很无聊,你是菜鸟,你难道还想着大鹏展翅吗?实际点。
2、找到相关习题,刷题
接来就是,按照每个知识点找到这个单元相关的习题,我们开始刷题。
3、错题的思考
在刷题的过程中,你会发现,原来我对这个知识点并没有我自己想的理解透彻了,我只是理解了表面。这时候,你就进入状态了。拿出你的笔记,开始写,你错的这道题,你为什么错,对应的知识点是什么?还有不同的解法吗?
有时候,一道题可以花费我1个多小时的时间,写了满满两张活页纸,但这恰恰加深了你对这个知识原理的理解,相信我是值得的。
然后,在未来的每个日子里面,你遇到相同的类型题的时候,就整理在一起,时间一久,你慢慢就会发现,其实还真的错来错去就是那么几个知识点。你理解透彻了,你的分数就上来了。
我们现在的数学考试都是知识考试,不是智力考试。比的就是你多认真,对这个知识理解是不是透彻了,是不是了解清楚了,仅此而已。
而你如果可以做到对每个知识点都把握到位,相信我,你的水平已经在绝多数人之上了,剩下的,就看你自己的造化了。毕竟我不是什么数学家,教育专家,每个人的能力极限都是不一样的东西。
一、培养空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
二、总结规律,规范训练
立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。
还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
三、典型结论的应用
在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。
一、高考数学几何题考试时间分配
理解的基础上去做,不要单纯的套公式,做题一定要保证真的会了,而不是只追求数量。如果感觉自己的水平没有提高,那么问问自己错题有没有好好整理,有没有盖住答案重新做过,再做的时候能不能保证很快的就有思路,之前出过的问题有没有及时得到解决?总之刷题不能埋头死刷,要有总结和反思。如果都做到了,考试还是没有好成绩,那么看看是不是考试时过于紧张,这个时候心态也很重要!
数学只有三四十分马上高考该从哪里开始复习分数会提高呢
简单的题目模块比如复数、集合、线性规划、程序框图、三角函数与解三角形、简单的等差等比数列以及立体几何等,还有导数和圆锥曲线的第一问,找出前几年的高考题,看看都考了哪些简单模块,一个模块练几十道,绝对会有效果的,别放弃,只要努力一定能看到进步!
二、解析几何如何把握
类似于轨迹方程这种题型
这种动点的题目,要找到动点的坐标,联立直线和曲线,按照常规方法找到韦达定理,利用中点坐标公式求出M的坐标,这时候M的x坐标与y的坐标都含有斜率,消掉斜率找到xy的关系就可以。
轨迹方程的问题
设出动点坐标,根据题目给出的条件列等量关系式,给什么条件就列什么式子,然后再化简整理。
如果遇到一些特殊的,比如两条线段相等,也可以利用等腰三角形三线合一去列式。
求离心率范围
根据条件和abc本身的关系式,整理出一个只有a和c的不等式或方程,一般都是二次的,两边同时除以a的平方,就可以得到一个关于离心率e的不等式或方程,然后求解就可以了。
解析几何都类型
一般联立的题型都是设直线法,常见题型有以下
1.弦长面积问题
题目问题是弦长或者面积的最值以及取值范围,或者是题目条件中给出了弦长面积的值,这个时候要利用弦长公式来列出式子,找到关系。
2.向量
题目中有两线段垂直,或者夹角是钝角锐角的条件,这个时候利用向量点乘来表示,题目中经常见的是以弦为直径的圆过某定点,此时利用圆中性质直径所对应的圆周角是直角来找到垂直。如果是直角角那么对应着相关向量点乘等于零,如果是锐角对应的是向量点乘大于零,如果是钝角对应的是向量点乘小于零。
3.弦的垂直平分线以及中点弦问题
垂直平分线问题:涉及到的是垂直即两直线的斜率之积为-1,平方即中点坐标公式。利用点斜式把处置平分线表示出来。这里需要注意平行于坐标轴的两直线一个斜率为0一个斜率不存在,要单独考虑。
中点弦问题:和垂直平分线类似,如果是弦的中点与原点连线,可以尝试利用点差法求解。
4.共线比例问题
通过向量坐标表示出共线成比例的关系,然后将坐标关系式代入韦达定理,消掉x或者y,找到参量的关系式。
5.定点定值问题
定点问题:证明直线y=kx m,只要找到k与m的关系即可。
定值问题:基本思路是转化为与两动点相关的斜率问题,然后利用韦达定理代入找到参量关系式。这类问题转化思想非常重要,要能把条件或问题进行转化。
解析几何根本不知道怎么入手
解析几何大题有两大类。第一类是设直线联立,这一类题目主要是利用圆锥曲线与直线联立,得到一个一元二次方程,列出韦达定理。把题目的问题进行转化,将韦达定理代入,找到几个参量之间的关系,然后利用这些关系根据不同题目的要求去求解。第二类是设点法,首先设交点坐标,然后根据题目的要求把点的坐标所满足的等量关系都列出来,把这些等量关系向目标转化。
我们见到一道解析几何的大题,先看几个动点的关系,如果是一条直线与圆锥曲线有两个交点,那么我们一般利用设直线法求解,如果不是那么我们就用设点法会更好,要注意的是,这里的设点法不一定是真的把点的坐标设出来,也可以利用直线和曲线联立直接求解将点的坐标表示出来。
预习的习惯
预习是课堂的“前奏曲”,它直接影响着课堂学习质量,影响着学生的发展。因此,培养学生良好的预习习惯是非常必要的,培养学生良好预习习惯是养成学生自主学习的重要手段,培养学生良好的课前预习习惯也是教育改革的呼唤和学生终身发展的需要。郭沫若先生说过:“教育的目的是养成自己学习自己研究,用自己的头脑来想,用自己的眼睛来看,用自己的手来做的这种精神。”数学课前预习要做到看一看、想一想、练一练。
课前看一看。
要看学习内容,包括本课主要讲什么,重点和难点是什么;要看这部分知识与原有知识有什么联系,哪些是你可以独立解决的;要看自己还有什么知识是不能自己解决的,勾画下来,以便上课时寻求答案。
课前想一想。
以教师课前设计的问题,动脑思考。
课前练一练。
预习例题以后,学生可以把例题后面的练习先尝试性地练一练,通过练习,检查一下自己看懂了多少知识,不会做的或看不懂的地方,作上记号,上课时注意听或提出来。
第二招
倾听的习惯
有一位哲人说:“上帝给我们两个耳朵,却只给我们一个嘴巴,意思是要我们多听少说。” “倾听就像海绵一样,汲取别人的经验与教训,使你在人生道路上少走曲折的弯路,经过你有目标的艰苦奋斗,使你能顺利地到达理想目的地。”著名的社会学家兰金曾做过这方面的研究并得出这样的结论:在人们日常的语言交往活动(听、说、读、写)中,听的时间占45%,说的时间占30%,读的时间占16%,写的时间占9%。这说明,听在人们交往中居于非常重要的地位。善于倾听在人际交往中是非常重要的。倾听是一种艺术,也是一种礼仪,必须做好三到位,即:身体到位、眼神到位、情绪到位。“学会倾听”是一种良好的学习习惯,也是学习的重要组成部分。良好的倾听习惯有助于学生获取知识。学生在学习的过程中,通过认真倾听教师的讲解,获取所需知识;通过认真倾听他人发言,来修正自己认识中的错误,弥补自己思维中的不足,使自己的思想更趋完善、知识更加完整。让学生会听、善听,离不开教师的指导,因此我们教师要有意识地加强对学生倾听的习惯的训练。
培养学生专心去倾听。大多数学生往往只注意听老师讲,同学发言时却漫不经心。因此,教师要让学生明白,无论是听老师讲课还是听同学发言,都应做到“专心、细心、虚心”。要给孩子一个具体的、可操作的、细化了的倾听要求,首先要提出听的要求如:“在别人发言时请你看着他”、“想发言有补充需等别人说完后再说”、“别人讲解题时,你应做到眼睛看着题,耳朵听着题,脑子想着题”、“如果同学的回答让你满意,请你用眼睛看着他,对他笑一笑以示赞同”……有了这样细化的要求,学生的倾听习惯就可以逐步养成。其次,引导学生注意说话人的语气,思考这种语气要表现什么,培养孩子对语言的感觉。
带着问题去倾听。在把别人的发言听清楚、听懂的前提下,还要让学生学会有选择的接受别人发言,并且能把大家的发言进行归纳,想想他们说得有没有道理,和自己的答案有没有联系,或者将他不完整的答案加以完善,你又有了什么更好的发现,使自己的答案更完美。学生掌握了倾听的方法,明白了该怎样去听、听什么,倾听的意识就会越来越强,倾听的习惯便会逐步形成。
第三招
交流的习惯
课标指出“学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式。”交流是学生必须养成的习惯。在一节课中,只有学生不断地提问、发表自己的观点,才说明学生在思考,在学习,为此我们要注意培养学生积极主动说的习惯。首先,我们在课堂中,要用激励性的语言,鼓励学生畅所欲言,积极引导,不要轻易打断学生的话语。数学具有严密性和逻辑性,为此我们还要注意培养学生说完整的话,说准确的话,从而正确掌握学习内容。
1、对基础知识的掌握一定要牢固,在这个基础上我们才能谈如何学好的问题
例如我们在证明相似的时候,如果利用两边对应成比例及其夹角相等的方法时,必须注意所找的角是两边的夹角,而不能是其它角。在回答圆的对称轴时不能说是它的直径,而必须说是直径所在的直线。像这样的细节我们必须在平时就要引起足够的重视并且牢固掌握,只有这样才是学好几何的基础。
2、善于归纳总结,熟悉常见的特征图形
举个例子,已知A,B,C三点共线,分别以AB,BC为边向外作等边△ABD和等边△BCE,如果再没有其他附加条件,那么你能从这个图形中找到哪些结论?
如果我们通过很多习题能够总结出:一般情况下题目中如果有两个有公共顶点的等边三角形就必然会出现一对旋转式的全等三角形的结论—手拉手,这样我们很容易得出△ABE≌△DBC,在这对全等三角形的基础上我们还会得出△EMB≌△CNB,△MBN是等边三角形,MN⊥AC等主要结论,这些结论也会成为解决其它问题的桥梁。在几何的学习中这样典型的图形很多,要善于总结。
3、熟悉解题的常见着眼点,常用辅助线作法
把大问题细化成各个小问题,从而各个击破,解决问题。在我们对一个问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决问题的着眼点。例如:在一个非直角三角形中出现了特殊的角,那你应该马上想到作垂直构造直角三角形。因为特殊角只有在特殊形中才会发挥作用。再比如:在圆中出现了直径,马上就应该想到连出90°的圆周角。其实很多时候我们只要抓住这些常见的着眼点,试着去做了,那么问题也就迎刃而解了。另外只要我们想到了,一定要肯于去尝试,只有你去做了才可能成功。
4、考虑问题全面也是学好几何至关重要的一点
在几何的学习中,经常会遇到分两种或多种情况来解的问题,那么我们怎么能更好的解决这部分问题呢?这要靠平时的点滴积累,对比较常见的分情况考虑的问题要熟悉。例如说到等腰三角形的角要考虑是顶角还是底角,说到等腰三角形的边要考虑是底还是腰,说到过一点作直线和圆相交,要考虑点和圆有三种位置关系,所以要画出三种图形。这样的情况在几何的学习中是非常常见的,在这里不一一列举,但大家在做题时一定要注意考虑到是否要分情况考虑。很多时候是你平常注意积累了,你心里有了这个问题,你做题时才会自然而然的想到。
1建立空间观念,提高空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。还可以通过画图帮助理解,从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。
2掌握基础知识和基本技能
直线和平面是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。
3积累解决问题的策略
如将立体几何问题转化为平面问题,又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。一方面从已知到未知,另方面从未知到已知,寻求正反两个方面的知识衔接点——一个固有的或确定的数学关系。
4重视证明过程
各类考试中都有立体几何论证的考察,论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法形式写出。
5充分运用“转化”思想
解立体几何的问题,要充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。通过转化可以使问题得以大大简化。
6平时注意规范训练
在平时要养成良好的答题习惯,按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
第一要建立空间观念,提高空间想象力。
从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。
2. 2
第二要掌握基础知识和基本技能。
要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。要学会用图(画图、分解图、变换图)帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法——分析法、综合法、反证法。
3. 3
第三要不断提高各方面能力。
通过联系实际、观察模型或类比平面几何的结论来提出命题;对于提出的命题,不要轻易肯定或否定它,要多用几个特例进行检验,最好做到否定举出反面例子,肯定给出证明。欧拉公式的内容是以研究性课题的形式给出的,要从中体验创造数学知识。要不断地将所学的内容结构化、系统化。所谓结构化,是指从整体到局部、从高层到低层来认识、组织所学知识,并领会其中隐含的思想、方法。所谓系统化,是指将同类问题如平行的问题、垂直的问题、角的问题、距离的问题、惟一性的问题集中起来,比较它们的异同,形成对它们的整体认识。牢固地把握一些能统摄全局、组织整体的概念,用这些概念统摄早先偶尔接触过的或是未察觉出明显关系的已知知识间的联系,提高整体观念。
一、逐渐提高逻辑论证能力
立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。
二、立足课本,夯实基础
学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
三、培养空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。
例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。
其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。
最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
四、“转化”思想的应用
我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
(1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
(2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
(3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
五、建立数学模型
新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。
★ 初三几何怎么学好
★ 怎样学好高中数学
★ 几何画板课件
★ 高中数学练习题
★ 高中数学新课程