下面是小编为大家推荐的七年级下几何证明题(共含12篇),欢迎大家分享。同时,但愿您也能像本文投稿人“雪娥雪宝呛”一样,积极向本站投稿分享好文章。
七年级下几何证明题
七年级下几何证明题学了三角形的外角吗?(三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于和它不相邻的任何一个内角)
角ACD>角BAC>角AFE
角ACD+角ACB=180度
角BAC+角ABC+角ACB=180度
所以角ACD=角BAC+角ABC
所以角角ACD>角BAC
同理:角BAC>角AFE
所以角ACD>角BAC>角AFE
2
解∶v1w连接AC
∴五边形ACDEB的内角和为540°
又∵∠ABE+∠BED+∠CDE=360°
∴∠A+∠C=180°
∴AB∥CD
v2w过点D作AB的垂线DE
∵∠CAD=∠BAD,∠C=∠AED
AD为公共边
∴Rt△ACD≌Rt△AED
∴AC=AE,CD=DE
∵∠B=45°∠DEB=90°
∴∠EDB=45°
∴DE=BE
AB=AE+BE=AC+CD
v3w∵腰相等,顶角为120°
∴两个底角为30°
根据直角三角形中30°的角所对的边为斜边的一半
∴腰长=2高
=16
v4w根据一条线段垂直平分线上的点到线段两个端点的距离相等
∴该交点到三角形三个顶点的距离相等
3
解∶v1w先连接AC
∴五边形ACDEB的内角和为540°
∵∠ABE+∠BED+∠CDE=360°
∴∠A+∠C=180°
∴就证明AB∥CD
♂等l♀运e -05-30 17:33
4
(1)解:过E作FG∥AB
∵FG∥AB
∴∠ABE+∠FEB=180°
又∵∠ABE+∠CDE+∠BED=360°
∴∠FED+∠CDE=180°
∴FG∥CD
∴AB∥CD
(2)解:作DE⊥AB于E
∵AD平分∠CAB,CD垂直AC,DE垂直AB
∴CD=DE,AC=AE
又∵AC=CB,DE=EB,AC⊥CB,DE⊥EB
∴∠ABC=∠EDB=45°
∴DE=EB
∴AB=AE+EB=AC+CD
(3)16CM
(4)3个顶点
5
如图 已知在四边形ABCD中,∠BAD为直角,AB=AD,G为AD上一点,DE⊥BG交BG的延长线于E,DE的延长线与BA的延长线相交于点F。
1.求证AG=AF
2.若BG=2DE,求∠BDF的度数
3.若G为AD上一动点,∠AEB的.度数是否变化?若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
解:由题意得
1)∠BAD=∠DAF=90°
∵∠5=∠6(对顶角)
∠1=∠2=90°
∴∠3=∠4
∵AB=AD
∴△BAG≌△DAF(ASA)
∴AG=AF
2)由1)可知BG=DF,∴DF=2DE
∴BE为△BDF的中线
又∵BE⊥DF
∴BE为△BDF的高线
∵△BDF的中线与高线重合
∴△BDF是等腰三角形
又∵∠DBF=45°
∴∠BDF=∠F=(180°-∠DBF)/2=67.5°
3)变化
范围是0°到45°
初一下几何证明题
初一下几何证明题31.黑板上写有1,2,3,……,,这1998个数,对它们进行如下操作:擦去其中三个数,再将这三个数和的个位数补写在黑板上。列如:,擦去5,13,1998后,添加6;再如擦去6,6,38后,添加0,等等。如果经过998次操作后,黑板上只剩下两个数,一个是25,问另一个是多少?
2.在线段AB上,先在A点点标注0,在B点标注,这次称为第一次操作;然后在AB中点C处标注(0+2002)/2=1001,称为第二次操作;又分别在得到的线段AC,BC的中点D,E处标注对应线段两端所标注的数字和的一半,即(0+1001)/2与(1001+2002)/2,称为第三次操作,照此下去,那么经过11次操作后,在线段AB上所有标注的数字之和是多少?
3.已知X,Y,Z满足:
X+[Y]+xZy=-0.9
[X]+xYy+Z=0.2
xXy+Y+[Z]=1.3
其中记号:对于数A,[A]表示不大于A的最大整数,{A}=A-[A],求X,Y,Z的值。
4.司机小李驾车在公路上均速行速,他看到里程碑上的数是两位数,1小时后,看到里程碑上的数恰好是第一次看到的`相反数的两位数,再过一个小时,他看到里程碑上的数是第一次看到的两位数中间加个0,求小李每次在里程碑上看到的数。
5.某人拟得1,2.......几这几个数数输入电求平均数。当他输入完毕时,电脑显示只输入了(n-1)个数,平均数为35又7分之5。问末输入的一个数是多少
6.求使8p的2次方+1为素数的所有素数
7.已知一个等腰三角形的两边分别为22.85和两边的夹角为22.5°求第三边的长!
4
1.黑板上写有1,2,3,……,1997,1998这1998个数,对它们进行如下操作:擦去其中三个数,再将这三个数和的个位数补写在黑板上。列如:,擦去5,13,1998后,添加6;再如擦去6,6,38后,添加0,等等。如果经过998次操作后,黑板上只剩下两个数,一个是25,问另一个是多少?
2.在线段AB上,先在A点点标注0,在B点标注2002,这次称为第一次操作;然后在AB中点C处标注(0+2002)/2=1001,称为第二次操作;又分别在得到的线段AC,BC的中点D,E处标注对应线段两端所标注的数字和的一半,即(0+1001)/2与(1001+2002)/2,称为第三次操作,照此下去,那么经过11次操作后,在线段AB上所有标注的数字之和是多少?
3.已知X,Y,Z满足:
X+[Y]+xZy=-0.9
[X]+xYy+Z=0.2
xXy+Y+[Z]=1.3
其中记号:对于数A,[A]表示不大于A的最大整数,{A}=A-[A],求X,Y,Z的值。
4.司机小李驾车在公路上均速行速,他看到里程碑上的数是两位数,1小时后,看到里程碑上的数恰好是第一次看到的相反数的两位数,再过一个小时,他看到里程碑上的数是第一次看到的两位数中间加个0,求小李每次在里程碑上看到的数。
5.某人拟得1,2.......几这几个数数输入电求平均数。当他输入完毕时,电脑显示只输入了(n-1)个数,平均数为35又7分之5。问末输入的一个数是多少
6.求使8p的2次方+1为素数的所有素数
7.已知一个等腰三角形的两边分别为22.85和两边的夹角为22.5°求第三边的长!
几何证明题
1.在三角形ABC中,BD,CE是边AC,AB上的中点,BD与CE相交于点O,BO与OD的.长度有什么关系?BC边上的中线是否一定过点O?为什么?
答题要求:请写出详细的证明过程,越详细越好.
ED平行且等于1/2BC
取MN为BO,OC中点
则MN平行且等于1/2BC
得到ED平行且等于MN,则EDNM是平行四边形
则OD=OM,又M为BO中点,显然BO=2OD
一定过
假设BC中线不经过O点,而与BD交与O
同理可证AO=2OG
再可由平行四边形定理得到O与O重合
所以必过O点
2.在直角梯形ABCD中,角B=角C=90度,AB=BC,M为BC边上一点。且角DMC=45度
求证:AD=AM
(1)几何证明题,首先画图
哎没图不好说啊
就空说吧 你在纸上画图
先看已知条件,从已知条件得出直观的结论.
因为M是BC边上一点,在三角形DMC中,角DMC=45度,角MCD=角C=90度,可以知道角MDC=45度,则三角形DMC是个等腰直角三角形,MC=CD.
又AB=BC,M是BC边上一点,MC长度小于BC,所以知道这个直角梯形是以CD为上底,AB为下底,图形先画对
接下来求证
要证AD=AM,从已知条件中得知,MC=CD,
则作一条辅助线就可得证
连接AC
∵AB=BC,角B=90度∴三角形ABC是个等腰直角三角形
∴角BCA=45度
∴角DCA=角BCD-角BCA=45度=角BCA
所以三角形AMC≌三角形ADC(MC=CD,角DCA=角BCA,AC=AC――边角边)
所以AD=AM得证
(2)延长CD至F点~CF=AB 连接AF~~因AB=BC ~SO ~ABCF是正方形~剩下的就容易了~只要证AFD~和ABM ~是一样的3角形就OK 了~~哎~快没碰几何了~那些专业点的词我都忘了~这题应该是这样吧 ~不知道有没错
回答者: fenixkingyu - 试用期 一级 -8-7 19:23
上楼的有两处错误:
1.描述错误,ABCF不是四边形,ABFC才是.
2.按照条件并不能证明ABFC是正方形.
注意:要证明四边形是正方形,必须证明2个问题:
1.该四边形是矩形;2.该四边形是菱形。
(3)把图画出来就好解了。我是按自己画的图解的,楼主画梯形下面是BA,上面是CD,然后在按我的文字添加辅助线就行了,度那个圆圈打不出来,我就没写了。
证明:连接MD,AM,连接AC并交MD于E
因为 角DMC=45,角C=90
所以 三角形MCD为等边直角三角形,既角CDM=45
又 角B=90 AB=BC
所以 角CAB=45
由 梯形上下两边平行,则内对角相加为180度
因 角CAB 角DMB=45+45=90
所以 角EDA 角DAE=90
既 AC垂直于MD
在等腰直角三角形CDM中则有ME=ED,且AC垂直于MD
所以 AE是三角形AMD的中垂线
既 AD=AM(等腰三角形的法则)。
初二几何证明题
初二几何证明题1.
已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。M为AB中点,联结ME,MD、ED
求证:角EMD=2角DAC
证明:
∵M为AB边的中点,AD⊥BC, BE⊥AC,∴ MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA
∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA
∴∠MAD=∠MDA, ∴∠BMD=2∠MAD, ∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC
2.
如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、 BC的延长线与EF的延长线交于点H、D
求证:∠AHE=∠BGE
证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:
∵E是CD的中点,且EM‖AD,
∴EM=1/2AD,M是AC的中点,又因为F是AB的中点
∴MF‖BC,且MF=1/2BC.
∵AD=BC,
∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.
∵EM‖AH,∴∠MEF=∠AHF
∵FM‖BG,∴∠MFE=∠BGF
∴∠AHF=∠BGF.
3.
写出“等腰三角形两底角的'平分线相等”的逆命题,并证明它是一个真命题
这是经典问题,证明方法有很多种,对于初二而言,
下面的反证法应该可以接受
如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC
证明:
BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)
==>BE=AB*BC/(BC+AC)
同理:CD=AC*BC/(BC+AB)
假设AB≠AC,不妨设AB>AC.....(*)
AB>AC==>BC+ACAC*BC
==>AB*AB/(BC+AC)>AC*BC/(BC+AB)
==>BE>CD
AB>AC==>∠ACB>∠ABC
∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/2
==>∠BEC>∠BDC
过B作CE平行线,过C作AB平行线,交于F,连DF
则BECF为平行四边形==>∠BFC=∠BEC>∠BDC.....(1)
BF=CE=BD==>∠BDF=∠BFD
CF=BE>CD==>∠CDF>∠CFD
==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC...(2)
(1)(2)矛盾,从而假设(*)不成立
所以AB=AC。
2、
两地角的平分线相等,为等腰三角形
作三角形ABC,CD,BE为角C,B的角平分线,交于AB,BE.两平分线交点为O
连结DE,即DE平行BC,所以三角形DOC与COB相似。
有DO/DC=EO/EB,又EB=DC所以DO=EO,三角形COB为等腰
又角ODE=OCB=OED=OBC
又因为BE和DC是叫平分线,所以容易得出角C=角B(这个打出来太麻烦了),即ABC为等腰。
初一几何证明题
初一几何证明题一、
1)D是三角形ABC的BC边上的点 且CD=AB,角ADB=角BAD,AE是三角形ABD的中线,求证AC=2AE。
(2)在直角三角形ABC中,角C=90度,BD是角B的平分线,交AC于D,CE垂直AB于E,交BD于O,过O作FG平行AB,交BC于F,交AC于G。求证CD=GA。
延长AE至F,使AE=EF。BE=ED,对顶角。证明ABE全等于DEF。=》AB=DF,角B=角EDF角ADB=角BAD=》AB=BD,CD=AB=》CD=DF。角ADE=BAD+B=ADB+EDF。AD=AD=》三角形ADF全等于ADC=》AC=AF=2AE。
题干中可能有笔误地方:第一题右边的E点应为C点,第二题求证的CD不可能等于GA,是否是求证CD=FA或CD=CO。如上猜测准确,证法如下:第一题证明:设F是AB边上中点,连接EF角ADB=角BAD,则三角形ABD为等腰三角形,AB=BD;∵ AE是三角形ABD的中线,F是AB边上中点。∴ EF为三角形ABD对应DA边的中位线,EF∥DA,则∠FED=∠ADC,且EF=1/2DA。∵ ∠FED=∠ADC,且EF=1/2DA,AF=1/2AB=1/2CD∴ △AFE∽△CDA∴ AE:CA=FE:DA=AF:CD=1:2AC=2AE得证第二题:证明:过D点作DH⊥AB交AB于H,连接OH,则∠DHB=90°;∵ ∠ACB=90°=∠DHB,且BD是角B的平分线,则∠DBC=∠DBH,直角△DBC与直角△DBH有公共边DB;∴ △DBC≌△DBH,得∠CDB=∠HDB,CD=HD;∵ DH⊥AB,CE⊥AB;∴ DH∥CE,得∠HDB=∠COD=∠CDB,△CDO为等腰三角形,CD=CO=DH;四边形CDHO中CO与DH两边平行且相等,则四边形CDHO为平行四边形,HO∥CD且HO=CD∵ GF∥AB,四边形AHOF中,AH∥OF,HO∥AF,则四边形AHOF为平行四边形,HO=FA∴ CD=FA得证
有很多题
1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z
证明;过E点分别作AB,BC上的高交AB,BC于M,N点.
过F点分别作AC,BC上的.高交于P,Q点.
根据角平分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN.
过D点做BC上的高交BC于O点.
过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.
则X=DO,Y=HY,Z=DJ.
因为D 是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD
同理可证FP=2DJ。
又因为FQ=FP,EM=EN.
FQ=2DJ,EN=2HD。
又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN
又因为
FQ=2DJ,EN=2HD。所以DO=HD+JD。
因为X=DO,Y=HY,Z=DJ.所以x=y+z。
2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠BON=108°时。BM=CN还成立
证明;如图5连结BD、CE.
在△BCI)和△CDE中
∵BC=CD, ∠BCD=∠CDE=108°,CD=DE
∴ΔBCD≌ ΔCDE
∴BD=CE , ∠BDC=∠CED, ∠DBC=∠CEN
∵∠CDE=∠DEC=108°, ∴∠BDM=∠CEN
∵∠OBC+∠ECD=108°, ∠OCB+∠OCD=108°
∴∠MBC=∠NCD
又∵∠DBC=∠ECD=36°, ∴∠DBM=∠ECN
∴ΔBDM≌ ΔCNE ∴BM=CN
3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=( )
3°
因为AB=AC,∠A=58°,所以∠B=61°,∠C=61°。
因为AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN
所以 ∠NBD=58°,所以∠NBC=61°-58°=3°
4.在正方形ABCD中,P,Q分别为BC,CD边上的点。且角PAQ=45°,求证:PQ=PB+DQ
延长CB到M,使BM=DQ,连接MA
∵MB=DQ AB=AD ∠ABM=∠D=RT∠
∴三角形AMB≌三角形AQD
∴AM=AQ ∠MAB=∠DAQ
∴∠MAP=∠MAB+∠PAB=45度=∠PAQ
∵∠MAP=∠PAQ
AM=AQ AP为公共边
∴三角形AMP≌三角形AQP
∴MP=PQ
∴MB+PB=PQ
∴PQ=PB+DQ
5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,BP⊥MC于点P,求证DP⊥NP
∵直角△BMP∽△CBP
∴PB/PC=MB/BC
∵MB=BN
正方形BC=DC
∴PB/PC=BN/CD
∵∠PBC=∠PCD
∴△PBN∽△PCD
∴∠BPN=∠CPD
∵BP⊥MC
∴∠BPN+∠NPC=90°
∴∠CPD+∠NPC=90°
∴DP⊥NP。
初三几何证明题
初三几何证明题第一题(2)相似后,由RT三角形求出BC=2倍根2,
所以AB/DC=BD/EC
2/2倍根2-X=X/EC,
求出EC=(2倍根2倍的X-X平方)/2
所以Y=2-(2倍根2倍的X-X平方)/2
(3)因为相似且AD=DE
所以两三角形全等
所以DC=AB=2
所以EC=BD=BC-DC=2倍根2-2
所以AE=AC-EC=2-(2倍根2-2)
=4-2倍根2
第二题(1)过E,F,Q分别向AD作垂线
交于点H,I,J,
因为PF平行AQ
所以三角形DPF与DAQ相似
所以DP/DA=DF/DQ=3-X/3
因为三角形DJF与DIQ相似
所以FJ/QI=DF/DQ
FJ/2=3-X/3
FJ=2/3倍(3-X)
同理EH=2/3倍X
所以S三角形AEP=1/2*X*2/3倍X=1/3倍X方
S三角形DFP=1/2*(3-X)*2/3倍(3-X)=1/3倍(3-X)方
因为平行
所以S三角形PEF与EFQ相等
所以Y=(S三角形AQD-AEP-DFP)/2
=(1/2*3*2-1/3倍(3-X)方-1/3倍X方)/2
=2/3倍X方+2X
(2)延长AB到M使BM=AB,连接DM交BC于点Q',
点Q'为所求
由RT三角形ADM,用勾股勾出DM=5
所以DQ'+AQ'=5
所以周长为DQ'+AQ'+AD=5+3=8
2
1.在△ABC中,M为BC边的中点,∠B=2∠C,∠C的平分线交AM于D。
证明:∠MDC≤45°。
2.设NS是圆O的.直径,弦AB⊥NS于M,P为弧 上异与N的任一点,PS交AB于R,PM的延长线交圆O于Q,求证:RS>MQ。
答案:
1.设∠B的平分线交AC于E,易证EM⊥BC作EF⊥AB于F,则有EF=EM,
∴AE≥EF=EM,从而∠EMA≥∠EAM,即90°-∠AMB≥∠EAM。又
2∠MDC=2(∠MAC+∠ACD)=2∠MAC+∠ACM=∠MAC+∠AMB,
∴90°≥∠AMD+∠MAC=2∠MDC,∴∠MDC≤45°。
2.连结NQ交AB于C,连结SC、SQ。易知C、Q、S、M四点共圆,且CS是该圆的直径,于是CS>MQ。再证Rt△SMC≌Rt△SMR,从而CS=RS,故有RS>MQ.
3
第一题省略∠ √ ⊥ △ ≌
第二题:根据上一题的结论 两个三角形相似
可以得出AB:BD==DC:CE
AB==2,BD==x,DC==2√2-x,CE==2-y
所以,[2√2-x]*x==4-2y
y==x^2/2-√2x+2,其中0
第三题:△ADE是等腰三角形的情况只有两种
1、∠AED==90°时候
∠BDA==90°
BD==√2
AE==√2^2/2-√2*√2+2==1
2、∠AED==67.5°的时候
AD==DE,而且△ABD∽△DCE
所以△ABD≌△DCE
BD==CE 也就是x==2-y
再加上第二题的结论就有
2-x==x^2/2-√2x+2
x^2- 2(√2-1)x==0
解方程得结果是
x==2(√2-1)或者0
如果是0,就会有B、D重合,所以弃去0
AE==2-x
==2(2-√2)
初中几何证明题
初中几何证明题己知M是△ABC边BC上的中点,,D,E分别为AB,AC上的点,且DM⊥EM。
求证:BD+CE≥DE。
1.
延长EM至F,使MF=EM,连BF.
∵BM=CM,∠BMF=∠CME,
∴△BFM≌△CEM(SAS),
∴BF=CE,
又DM⊥EM,MF=EM,
∴DE=DF
而∠DBF=∠ABC+∠MBF=∠ABC+∠ACB<180°,
∴BD+BF>DF,
∴BD+CE>DE。
2.
己知M是△ABC边BC上的中点,,D,E分别为AB,AC上的点,且DM⊥EM。
求证:BD+CE≥DE
如图
过点C作AB的平行线,交DM的延长线于点F;连接EF
因为CF//AB
所以,∠B=∠FCM
已知M为BC中点,所以BM=CM
又,∠BMD=∠CMF
所以,△BMD≌△CMF(ASA)
所以,BD=CF
那么,BD+CE=CF+CE……………………………………………(1)
且,DM=FM
而,EM⊥DM
所以,EM为线段DF的中垂线
所以,DE=EF
在△CEF中,很明显有CE+CF>EF………………………………(2)
所以,BD+CE>DE
当点D与点B重合,或者点E与点C重合时,仍然采用上述方法,可以得到BD+CE=DE
综上就有:BD+CE≥DE。
3.
证明 因为∠DME=90°,∠BMD<90°,过M作∠BMD=∠FMD,则∠CME=∠FME。
截取BF=BC/2=BM=CM。连结DF,EF。
易证△BMD≌△FMD,△CME≌△FME
所以BD=DF,CE=EF。
在△DFE中,DF+EF≥DE,即BD+CE≥DE。
当F点落在DE时取等号。
另证
延长EM到F使MF=ME,连结DF,BF。
∵MB=MC,∠BMF=∠CME,
∴△MBF≌△MCE,∴BF=CE,DF=DE,
在三角形BDF中,BD+BF≥DF,
即BD+CE≥DE。
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的`方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
高考几何证明题
高考几何证明题输入内容已经达到长度限制
∠B=2∠DCN
证明:
∵CN⊥CM,∴∠2+∠3=90°,∴∠1+∠4=90°;
又∠1=∠2,∴∠3=∠4,∴∠BCD=2∠DCN;
∵AB//DE,∴∠B=∠BCD;
于是∠B=2∠DCN。
11
输入内容已经达到长度限制
∠B=2∠DCN
证明:
∵CN⊥CM,∴∠2+∠3=90°,∴∠1+∠4=90°;
又∠1=∠2,∴∠3=∠4,∴∠BCD=2∠DCN;
∵AB//DE,∴∠B=∠BCD;
于是∠B=2∠DCN。
12、
空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。
如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.
立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。
以下用向量法求解的简单常识:
1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得 或对空间一定点O有
2、对空间任一点O和不共线的三点A,B,C,若: (其中x+y+z=1),则四点P、A、B、C共面.
3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R).
4、利用向量证在线a⊥b,就是分别在a,b上取向量 .
5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题.
6、利用向量求距离就是转化成求向量的模问题: .
7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.
13
空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。
如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.
立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。
以下用向量法求解的简单常识:
1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得 或对空间一定点O有
2、对空间任一点O和不共线的三点A,B,C,若: (其中x+y+z=1),则四点P、A、B、C共面.
3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R).
4、利用向量证在线a⊥b,就是分别在a,b上取向量 .
5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题.
6、利用向量求距离就是转化成求向量的模问题: .
7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.
首先该图形能建坐标系
如果能建
则先要会求面的法向量
求面的法向量的方法是 1。尽量在土中找到垂直与面的向量
2。如果找不到,那么就设n=(x,y,z)
然后因为法向量垂直于面
所以n垂直于面内两相交直线
可列出两个方程
两个方程,三个未知数
然后根据计算方便
取z(或x或y)等于一个数
然后就求出面的一个法向量了
会求法向量后
1。二面角的求法就是求出两个面的法向量
可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积
如过在两面的.同一边可以看到两向量的箭头或箭尾相交
那么二面角就是上面求的两法向量的夹角的补角
如果只能看到其中一个的箭头和另一个的箭尾相交
那么上面两向量的夹角就是所求
2。点到平面的距离就是求出该面的法向量
然后在平面上任取一点(除平面外那点在平面内的射影)
求出平面外那点和你所取的那点所构成的向量记为n1
点到平面的距离就是法向量与n1的数量积的绝对值除以法向量的模即得所求
高中数学几何证明题
高中数学几何证明题一、
如图,AB∩α=P,CD∩α=P,点A,D与点B,C分别在平面α的两侧,且AC∩α=Q,BD∩α=R,求证:P,Q,R三点在同一条直线上
∵AB∩α=P
CD∩α=P
∴AB∩CD=P
即AB与CD在同一个面β上(假设为该平面为β)
由此得:β与α相交 即有一条交线
而A、B、C、D四点均属于平面α
∴AC属于平面α,DB属于平面α
而AC∩α=Q,BD∩α=R
则有Q、R均属于平面β,同时Q、R又是平面α上的两点
由上述得:P、Q、R共线
二、
如图,四棱锥P-ABCD的底面ABCD是矩形,点E,F分别是AB,PC的中点,求证:EF‖平面PAD
找DC中点G 连接EG FG
那么因为底面是个矩形所以EG平行等于AD
F点和G点的连线就是三角形的中位线所以 FG平行DP
在因为DP属于平面PAD DA也属于平面PAD
且DP交DA于D
在因为EG属于平面EFG FG也属于平面EFG
所以平面EFG平行于平面PAD
又因为EF属于平面EFG 所以 EF平行于PAD
三、
怎样才能一步步学会证明几何题呢??
我实在是不懂啊!!证明几何题的步骤是怎样呢>?有什么方法吗?
其实证明几何题关键是要把一些定理公式的用法搞清楚。学数学最重要的`是多做题, 其实数学题就是反复的那几中类型的,做的题多了,就自然的会了,还要注意多总结,做好数学笔记,告诉你数学笔记是很重要的。然后就是要有耐心,可能一开始你感觉没有效果,但是漫漫效果会出来的,相信自己一定可以的。我是以我的高考经验来说的,我得数学以前一直是我的弱项,但我最后高考得了131,虽然不是很高,但是对我来说很不错的了。希望你高考可以取得好的成绩。
在正方形ABCD-A'B'C'D'中,证明:平面ACC'A'⊥平面A'BD
各位帮忙写下这题的证明过程啊
因为CC'垂直于面ABCD所以CC'垂直于AC又AC垂直于BDAC交CC'于C所以DB垂直于面AA'C'C即两面垂直
四、
AB为圆O所在平面为a,PA⊥a于A,C为圆O上一点,
求证:平面PAC⊥平面PBC
AB是圆O的直径吧解:圆O所在平面是a,AB是圆O的直径,PA⊥a于A,C为圆O上一点所以PA⊥BC AC⊥BC PA与AC交于点A所以BC⊥平面PAC BC属于平面PBC所以平面PAC⊥平面PBC。
七年级证明题
七年级证明题如图AD//BC,∠A=∠C。试说明AB//DC
ps:写过程..
∵AD//BC
∵∠A=∠ABF(两直线平行,内错角相等)
∵∠A=∠C
∵∠C=∠ABF
∴AB//DC(同位角相等,两直线平行
∵AD//BC(已知)
∴∠A+∠ABC=180°(两直线平行,同旁内角互补)
∵∠A=∠C(已知)
∴∠C+∠ABC=180°(等式的'性质)
∴AB//DC(同旁内角互补,两直线平行)
)在正方形ABCD中,p(p靠近是D点)CD上的一点,BE⊥AP于E,DF⊥AP于F,说明△AFD≌△BEA
D--------C
1 1
1 1
1 1
A--------B
∠BAE与∠DAF互余
∠ADF与∠DAF互余
所以∠BAE=∠ADF
又待证明的两三角形都是Rt三角形,且AB=DA
根据角角边定理,两三角形全等
∠A=75°
第二题是不是有问题啊 ∠GQD是30°吗 应该是∠GQH=30°吧 还有 不懂怎么算的 你追问一下 我们QQ聊
补充回答:
∵GA//ED
∴∠EBF=∠FHG=30°(两只线平行,同位角相等)
∴∠FBA=∠ABD=(180°-30°)÷2=75°
∵∠AHB=∠FHG=30°(对顶角)
∴∠a=180°-75°-30°=75°
#FormatImgID_0#还有一题等等啊
补充回答:
∵MN⊥CD
∴∠MHD=90°
∵∠GQD=130°
∴∠GQH=180°-130°=50°
∴∠HGQ=180°-90°-50°=40°
∵MN⊥AB
∴∠AGH=90°
∴∠EGA=180°-90°-40°=50°
您已经评价过!
好:0
您已经评价过!
不好:0
您已经评价过!
原创:5
您已经评价过!
非原创:0
第一题的答案:
证明:
因为这是等宽带
所以AG平行DE
所以∠EBF=∠GOF=30°(“O”是我加上去的)
因为∠EBF+∠FBD=180°
所以∠FBD=180°-∠EBF=150°
因为∠FBA由∠ABD折叠而成
所以∠FBA=∠ABD
所以∠FBA=150°/ 2=75°
图为∠AOB和∠GOF为对顶角
所以∠AOB=∠GOF=30°
所以∠GAB=180°-∠ABF-∠AOB=75°
(∠GAB是∠a)
第二题的答案:
因为∠DQE+∠CQE=180°
所以∠CQE=180°-∠DQE=50°
图为AB⊥MN,CD⊥MN
所以AB平行CD
所以∠AGE=∠CQE=50°
因为MN垂直AB
所以∠AGH=90°
所以∠NGF=180°-∠EGA-∠AGH=40°
初一下册几何证明题
初一下册几何证明题1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z
证明;过E点分别作AB,BC上的高交AB,BC于M,N点.
过F点分别作AC,BC上的高交于P,Q点.
根据角平分线上的'点到角的2边距离相等可以知道FQ=FP,EM=EN.
过D点做BC上的高交BC于O点.
过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.
则X=DO,Y=HY,Z=DJ.
因为D 是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD
同理可证FP=2DJ。
又因为FQ=FP,EM=EN.
FQ=2DJ,EN=2HD。
又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN
又因为
FQ=2DJ,EN=2HD。所以DO=HD+JD。
因为X=DO,Y=HY,Z=DJ.所以x=y+z。
2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠BON=108°时。BM=CN还成立
证明;如图5连结BD、CE.
在△BCI)和△CDE中
∵BC=CD, ∠BCD=∠CDE=108°,CD=DE
∴ΔBCD≌ ΔCDE
∴BD=CE , ∠BDC=∠CED, ∠DBC=∠CEN
∵∠CDE=∠DEC=108°, ∴∠BDM=∠CEN
∵∠OBC+∠ECD=108°, ∠OCB+∠OCD=108°
∴∠MBC=∠NCD
又∵∠DBC=∠ECD=36°, ∴∠DBM=∠ECN
∴ΔBDM≌ ΔCNE ∴BM=CN
3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=( )
3°
因为AB=AC,∠A=58°,所以∠B=61°,∠C=61°。
因为AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN
所以 ∠NBD=58°,所以∠NBC=61°-58°=3°
4.在正方形ABCD中,P,Q分别为BC,CD边上的点。且角PAQ=45°,求证:PQ=PB+DQ
延长CB到M,使BM=DQ,连接MA
∵MB=DQ AB=AD ∠ABM=∠D=RT∠
∴三角形AMB≌三角形AQD
∴AM=AQ ∠MAB=∠DAQ
∴∠MAP=∠MAB+∠PAB=45度=∠PAQ
∵∠MAP=∠PAQ
AM=AQ AP为公共边
∴三角形AMP≌三角形AQP
∴MP=PQ
∴MB+PB=PQ
∴PQ=PB+DQ
5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,BP⊥MC于点P,求证DP⊥NP
∵直角△BMP∽△CBP
∴PB/PC=MB/BC
∵MB=BN
正方形BC=DC
∴PB/PC=BN/CD
∵∠PBC=∠PCD
∴△PBN∽△PCD
∴∠BPN=∠CPD
∵BP⊥MC
∴∠BPN+∠NPC=90°
∴∠CPD+∠NPC=90°
∴DP⊥NP。
中考数学几何证明题
中考数学几何证明题在ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
第一个问我会,求第二个问。。需要过程,快呀!!
连接GC、BG
∵四边形ABCD为平行四边形,∠ABC=90°
∴四边形ABCD为矩形
∵AF平分∠BAD
∴∠DAF=∠BAF=45°
∵∠DCB=90°,DF∥AB
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰Rt△
∵G为EF中点
∴EG=CG=FG
∵△ABE为等腰Rt△,AB=DC
∴BE=DC
∵∠CEF=∠GCF=45°→∠BEG=∠DCG=135°
∴△BEG≌△DCG
∴BG=DG
∵CG⊥EF→∠DGC+∠DGB=90°
又∵∠DGC=∠BGE
∴∠BGE+∠DGB=90°
∴△DGB为等腰Rt△
∴∠BDG=45°
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的'条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
★ 平行线证明题
★ 七年级下教学计划
★ 全等三角形证明题
★ 考研数学证明题
★ 七年级下教学反思