完全平方公式课堂实录

| 收藏本文 下载本文 作者:麻浦靓仔蔡徐坤

以下是小编整理的完全平方公式课堂实录(共含6篇),欢迎阅读与收藏。同时,但愿您也能像本文投稿人“麻浦靓仔蔡徐坤”一样,积极向本站投稿分享好文章。

完全平方公式课堂实录

篇1:完全平方公式课堂实录

完全平方公式课堂实录第一课时

师生问好,组织上课。

师:我们在初一第二学期就已经学习了乘法完全平方公式,请一位同学用文字语言来描述一下这个公式的内容?

生1:(答略)

师:你能用符号语言来表示这个公式吗?

生1:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

师:不错,请坐。由此我们可以看出完全平方公式其实包含几个公式?

生齐答:两个。

师:接下来有两道填空题,我们该怎么进行填空?

a2+ +1=(a+1)2 4a2-4ab+ =(2a-b)2

生2:(答略)

师:你能否告诉大家,你是根据什么来进行填空的吗?

生2:根据完全平方公式,将等号右边的展开。

师:很好。(将四个式子分别标上○1○2○3○4)

问题:○1、○2两个式子由左往右是什么变形?

○3、○4两个式子由左往右是什么变形?

生3:(答略)

师:刚才的○1和○2是我们以前学过的完全平方公式,那么将这两个公式反过来就有:

a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 (板书)

问题:这两个式子由左到右的变形又是什么呢?

生齐答:因式分解。

师:可以看出,我们已将左边多项式写成完全平方的形式,即将左边的多项式分解因式了。

这两个公式我们也将它们称之为完全平方公式,也是我们今天来共同学习的知识(板书课题)

师:既然这两个是公式,那么我们以后遇到形如这种类型的多项式可以直接运用这个公式进行分解。这个公式到底有哪些特征呢?请同学们仔细观察思考一下,同座的或前后的同学可以讨论一下。

(经过讨论之后)

生4:左边是三项,右边是完全平方的形式。

生5:左边有两项能够写成平方和的形式。

师:说得很好,其他同学有没有补充的?

生6:还有一项是两个数的乘积的2倍。

师:这“两个数的乘积”中“两个数”是不是任意的?

生6:不是,而是刚才两项的底数。

师:刚才三位同学都回答得不错,每人都找出了一些特征。再请一位同学来综合一下。

生7:左边的多项式要有三项,有两项是平方和的形式,还有一项是这两个数的积的2倍。右边是两个数的和或差的平方。

教师在学生回答的基础上总结:

1)多项式是三项式

2)有两项都为正且能够写成平方的形式

3)另一项是刚才写成平方项两底数乘积的2倍,但这一项可以是正,也可以是负

4)等号右边为两平方项底数和或差的平方。

师:我们如何将符号语言转化为文字语言呢?

生8:a、b两个数的平方和加上a、b乘积的2倍,等于a与b的和的平方;

a、b两个数的平方和减去a、b乘积的2倍,等于a与b的差的平方。

师:如果不用字母a、b,又怎么表达?能否将两句合并成一句呢?

生9:两个数的平方和加上或减去这两个数的乘积的2倍,等于这两个数的和或差的平方。

师:非常好!我们以后只要遇到这种类型的多项式可以直接利用完全平方公式方便地进行因式分解了。

通过刚才的学习,我们已经初步掌握了利用完全平方公式分解因式的有关知识,下面有几道练习题向我们同学提出了挑战,看你掌握知识的情况:

判断下列各式是不是完全平方式,并说出理由。

(1)a2-4a+4 (2 )x2+4x+4y2 (3 )4a2+2ab+ b2

(4 )a2-ab+b2 (5 )x2-6x-9 (6 )a2+a+0.25

生10:第一题是完全平方式。有三项,其中有两项正且能写成平方的形式,另一项是减去这两个数的积的2倍。

生11:第四题不是完全平方式,因为中间一项不是两个数的乘积的2倍。

生12:第五题是完全平方式。三项,有两项能写成平方的形式,另一项也是两个数的积的2倍。

师:其它同学同意他的意见吗?有没有补充的?

生13:这一题不是完全平方式,虽然有两部分能写成平方的形式,但这两项不是平方和。

师:同意他的意见吗?

生齐答:同意。

师:因此我们在观察一个多项式是否符合完全平方式的特点时,不仅要找有没有两项能够写成平方的形式,同时还要看这两项的符号是否同为正,更要看另一项是不是这两数的积的2倍。像刚才的第2题和第4题都只满足特征中的一部分。

篇2:完全平方公式课堂实录

完全平方公式课堂实录第二课时

引例讲解:将下列各式分解因式。

1、x2+6x+9 2、4x2-20x+25

问题:这两题首先怎么分析?

生14:将9改写成32,6x正好是x与3的乘积的2倍。(学生回答,教师板书)

生15:将4x2写成(2x)2,25写成52,20x写成2×2x×5

x2+6x+9=x2+2×x×3+32=(x+3)2

4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2

(联系字母表达式用箭头对应表示,加深学生印象。)

师:由刚才的例子,我们同学能否发现将因式分解为两数的和或差的平方,如何确定是两数的和还是两数的差的平方呢?

生16:由符号来决定。

师:能不能具体点。

生16:由中间一项的符号决定,就是两个数乘积2倍这项的符号决定,是正,就是两个数的和;是负,就是两个数的差。

师:总之,在分解完全平方式时,要根据第二项的符号来选择运用哪一个完全平方公式。

例题1:把25x4+10x2+1分解因式。

师:这道题目能否运用以前所学的方法分解?就题目本身有什么特点?可以怎么分解?

生17:题目符合完全平方式的特点,可以将25x4改写成(5x2)2,1就是12,10x2改写成2×5x2×1。(此学生板演,过程略)

例题2:把-x2-4y2+4xy分解因式。

师:按照常规我们首先怎么办?

生齐答:提取负号。〔教师板书:-(x2+4y2-4xy) 〕以下过程学生板演。

师:如果是这道题:4xy-x2-4y2 怎么分解呢?(教师改变刚才题型)

提示:从项的特征进行考虑,怎样转化比较合理?四人小组讨论。

生18:同样还是将负号提取改变成完全平方式的形式。

师:从这里我们可以发现,只要三项式中能改写成平方的两项是同号,且另一项为两底数积的2倍,我们都能利用这个公式分解,若这两项同为正则可直接分解,若同为负则先提取负号再分解。

练习题:课本p21 练习:第1题,学生板演,教师讲解,学生板演的同时,教师提示注意点、多项式的特征;第2题,学生口答。

例题3:把3ax2+6axy+3ay2分解因式。

师:先观察,再选择适当的方法。(学生板演,教师点评)

练习:课本p22 第3题分两组学生板演,教师评讲、适当提示注意点。

师:这一堂课我们一起研究了完全平方式的有关知识,同学们先自查一下自己的收获,然后请同学发表自己的见解。(学生小声讨论)

生甲:我学到了如何将完全平方式分解因式,遇到三项式中有两项符号相同且能化成平方的形式,另一项为这两个数的积的2倍的形式,如果能化成平方项是负的,首先将负号提取再分解。第二项是正的就是两数的和的平方,第二项是负的就是两数差的平方。

生乙:有公因式可提取的先提取公因式,然后再分解,同时根据第二项的符号来选用合适的公式。

教师布置课堂作业:课本p23习题8.2 A组 4~5 偶数题

课外作业:课本p23习题8.2 A组 4~5 奇数题

下课!

篇3:完全平方公式

教学建议

一、知识结构

二、重点、难点分析

本节教学的重点是完全平方公式的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).完全平方公式是进行代数运算与变形的重要的知识基础。

1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:

这两个公式是根据乘方的意义与多项式的乘法法则得到的.

这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.

2.只要符合这一公式的结构特征,就可以运用这一公式.

在运用公式时,有时需要进行适当的变形,例如 可先变形为 或 或者 ,再进行计算.

在运用公式时,防止发生 这样错误.

3.运用完全平方公式计算时,要注意:

(1)切勿把此公式与公式 混淆,而随意写成 .

(2)切勿把“乘积项” 中的2丢掉.

(3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.

4. 与 都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.

三、教法建议

1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“ ”连结起来,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用完全平方公式进行计算.

2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.

3.如何使学生记牢公式呢?我们注意了以下两点.

(1)既讲“法”,又讲“理”

在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对完全平方公式做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.

(2)讲联系、讲对比、讲特点

对于类似的内容学生容易混淆,比如在本节出现的(a+b)2=a2+b2的错误,其原因是把完全平方公式和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的`特点.所以讲“理”是要讲联系、讲对比、讲特点.

教学设计示例

一、教学目标

1.理解完全平方公式的意义,准确掌握两个公式的结构特征.

2.熟练运用公式进行计算.

3.通过推导公式训练学生发现问题、探索规律的能力.

4.培养学生用数形结合的方法解决问题的数学思想.

5.渗透数学公式的结构美、和谐美.

二、学法引导

1.教学方法:尝试指导法、讲练结合法.

2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:

(1)切勿把此公式与公式 混淆,而随意写成 .

(2)切勿把“乘积项”2ab中的2丢掉.

(3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.

三、重点・难点及解决办法

(一)重点

掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.

(二)难点

综合运用平方差公式与完全平方公式进行计算.

(三)解决办法

加强对公式结构特征的深入理解,在反复练习中掌握公式的应用.

四、课时安排

一课时.

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.

2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.

3.举例分析如何正确使用完全平方公式,师生共练完成本课时重点内容.

4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

七、教学步骤

(一)明确目标

本节课重点学习完全平方公式及其应用.

(二)整体感知

掌握好完全平方公式的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.

(三)教学过程

1.计算导入;求得公式

(1)叙述平方差公式的内容并用字母表示;

(2)用简便方法计算

①103×97

②103 × 103

(3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.

学生活动:编题、解题,然后两至三个学生说出题目和结果.

要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘

法公式”.

引例:计算 ,

学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

或合并为:

教师引导学生用文字概括公式.

方法:由学生概括,教师给予肯定、否定或更正,同时板书.

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

【教法说明】

①复习近平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.

②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识方法,因此推导完全平方公式可以由计算直接得出.

2.结合图形,理解公式

根据图形完成下列问题:

如图:A、B两图均为正方形,

(1)图A中正方形的面积为____________,(用代数式表示)

图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。

(2)图B中,正方形的面积为____________________,

Ⅲ的面积为______________,

Ⅰ、Ⅱ、Ⅳ的面积和为____________,

用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。

分别得出结论:

学生活动:在教师引导下回答问题.

【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。

3.探索新知,讲授新课

(1)引例:计算

教师讲解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,则 、 ,就可用完全平方公式来计算,即

【教法说明】  引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

(2)例1  运用完全平方公式计算:

① ② ③

学生活动:学生独立在练习本上尝试解题,3个学生板演.

【教法说明】  让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

4.尝试反馈,巩固知识

练习一

篇4:完全平方公式

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(l0)

学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

5.变式训练,培养能力

练习二

篇5:完全平方公式

(l) (2) (3) (4)

学生活动:学生分组讨论,选代表解答.

练习三

(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

甲的计算过程是:原式

乙的计算过程是:原式

丙的计算过程是:原式

丁的计算过程是:原式

(2)想一想, 与 相等吗?为什么?

与 相等吗?为什么?

学生活动:观察、思考后,回答问题.

【教法说明】  练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

练习四

运用乘法公式计算:

(l) (2)

(3) (4)

学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

【教法说明】  这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.

(四)总结、扩展

这节课我们学习了乘法公式中的完全平方公式.

引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

八、布置作业

P133  1,2.(3)(4).

参考答案

略.

篇6:第二册完全平方公式

第二册完全平方公式

完全平方公式(教案)        贾村中学       聂盼山

一、教学目标

(1)                            (1)            知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。

(2)                            (2)            过程与方法目标;学生探究完全平方公式,体会数形结合。

二、教学重点;公式结构及运用。

三、教学难点;公式中字母AB的含义理解与公式正确运用。

四、教具;自制长方形、正方形卡片

五、教学过程;

教师活动

学生活动

1、            1、        创设情景,提出问题,引入课题

(1)                (1)          想一想

一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人就会每个孩子几块糖。

(1)                (1)          第一天,a个男孩去看老人,老人共给他们几块糖?

(2)                (2)          第二天,个女孩子去看望老人,老人共给他们多少块糖?

(3)                (3)          第三天,(   )个孩子一起去看望老人,老人共给他们多少块糖?

(4)                (4)          第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)

1、  1、  学生四人一组讨论。

填空:

(1)第一天给孩子    块糖。

(2)第二天给孩子    块糖。

(3)第三天给孩子   块糖。

男孩子第三天多得    块糖

女孩第三天多得   块糖。

教师活动

学生活动

(2)                (2)          做一做、请同学拼图

a

教师巡视指导学生拼图

2、            2、        教师提问:

(1)、大正方形边长?(2)每一块卡片的面积是多少?(3)用不同形式表示正方形总面积,比较发现什么?

3、            3、        想一想

(1)(a +b )用多项式乘法法则说明

(2)( a -b )

4、请同学们自己叙述上面的等式

5、说一说,a b能表示什么?

(□+○) □+2□○+○

6、算一算

(1)(2X-3)(2)(4X+5Y)

请同学们分清a b

7、练一练

(1)(2X-3Y) (2)(2XY-3X)

8、试一试(a+b+c)

作业:P135 1、2

学生2人一组拼图交流

2、学生观察思考

(1)            (1)     大正方形边长?

(2)            (2)     四块卡片的`面积分别是

(3)            (3)     大正方形的总面积是多少?

3、(1)学生运用多项式乘法法则推导

(a+b)=a+2ab+b说出每一步运算理由

(2)学生自己探究交流

4、学生用语言叙述公式

5、师生共同a、b对应项 教师书写

6、学生独立完成练一练展示结果

7、学生四人一组讨论交流

8、有兴趣的同学可以探

数学教案-完全平方公式

完全平方公式教学设计

《完全平方公式》七年级数学

《完全平方公式》北师大版七年级数学

初中数学完全平方公式教案范文参考

七年级数学下册《完全平方公式》教学设计

初中数学完全平方公式教学设计优秀范文集锦

完全近义词

完全的近义词

完全的反义词

完全平方公式课堂实录(精选6篇)

欢迎下载DOC格式的完全平方公式课堂实录,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档