lte网络规划设计论文

| 收藏本文 下载本文 作者:吥多多

以下是小编为大家准备的lte网络规划设计论文(共含16篇),仅供参考,欢迎大家阅读。同时,但愿您也能像本文投稿人“吥多多”一样,积极向本站投稿分享好文章。

lte网络规划设计论文

篇1:lte网络规划设计论文

lte网络规划设计论文

1 LTE网络优化原则

(1)网络部门应提早介入,依据现网数据和要求,分析提出LTE室内外站址的规划建议,按照“以终为始”的原则,从源头上规避网络结构不合理的站点入网。

(2) 应按照LTE技术特点与设计要求对2/3G网分布系统进行LTE改造,避免简单合路建设,对TD-S弱覆盖室分系统进行整改,提TD-S覆盖效果,确保TD-LTE系统改造质量。

(3)按照集团的统一部署进行频率、时隙、LTE TA ECGI等网络参数设置,积极探索TD-LTE网络优化的方法。

(4)加强LTE基础优化工作,加强优化分析支撑手段,按照TD-LTE无线网络质量分析方法,对LTE关键无线指标进行重点分析,对LTE设备功能与网络质量存在的短板、网络结构不合理的LTE站点,提出整改方案。

(5)严格把关LTE入网验收,做到不验收不准入网,验收不通过不准入网,明确整改方案和计划,确保验收环节的真正落地。

(6)探索适合LTE的网络运维职责和流程,建立集中化的LTE质量评估体系,监控和性能管理体系,积累以省为集中化的运维经验。

(7)应配置足够的LTE维护、优化人员,组织实施必要的技术培训。LTE网络建成后,确保维护人员具备相应的专业技能,确保顺利接维TD-LTE网络。

2LTE网络优化概述

2.1LTE网络

2.2进行无线网络优化

网络优化是为了保证在充分利用现有网络资源的基础上,解决网络存在的局部缺陷,最终达到无线覆盖全面无缝隙,接通率高,通话持续,话音质量不失真,画面质量清晰可见,保证网络容量满足用户高速发展的要求,让用户感到真正的满意。通过网络优化使用户提高收益率和节约成本。

2.3无线网络优化的重要性

网络优化是一个改善全网质量、确保网络资源有效利用的过程。传统的网络在大批用户使用时会造成网络拥堵,用户的感知差,最终网络用户减少,导致运营商品牌形象受损。保证和提高网络质量,提高企业的竞争能力和用户满意度,是业务发展的有力后盾。

2.4 LTE无线网络优化的特点

2.4.1覆盖和质量的估计参数不同

TD―LTE使用RSPP、RSRQ、SINR进行覆盖和质量的评估。

2.4.2影响覆盖问题的估计因素不同

工作频段的不同,导致覆盖范围的差异显著,需要考虑天线模式对覆盖的影响。

2.4.3影响接入指标的参数不同

除了需要考虑覆盖和干扰的影响外,PRACH的配置模式会对接入成功率的指标带来影响。

2.4.4 邻区优化的方法不同

TD-LTE系统中支持UE对指定频点的测量,从而没有配置邻区关系的邻区也可能触发测量事件的上报,TD-LTE中要以通过设置黑名单来进行邻区的优化,邻区设置需要优先考虑优先级。

2.4.5 业务速率质量优化时考虑的内容不同

与TD-SCDMA类似,需要考虑覆盖、干扰、UE能力、小区用户数的影响,需要考虑带宽配置对速率的影响,需要考虑天线模式对速率的影响,需要考虑时隙比例配置,特殊时隙配置对速率的影响,需要考虑功率配置对速率的影响,需要 考虑下行控制信道占用OFDM符号数量对速度的影响。

2.4.6 干扰问题分析的重点和难点不同

TD-LTE系统会大量采用同频组网,小区间干扰将是分析的重点和难点。TD-LTE系统采用多种方式进行干扰的抑制和消除,算法参数的优化也将是后续工作的重点和难点。

2.4.7 无线资源的管理算法更加复杂

TD-LTE系统增加了X2接口,并且采用了MIMO等关键技术,以及ICIC等算法,使得无线资源的管理更加复杂。

3 LTE网络优化内容

TD-LTE无线网络优化中出现的问题有:覆盖问题、接入问题、掉线问题、切换问题、干扰问题。那么解决这些问题需要优化内容具体就有:合理规划、干扰排查、天线的调整及覆盖优化、邻区规划及优化、系统参数。下面就详细说明这些具体优化内容。

3.1合理规划

3.1.1应摸排现网站址、电源、天面、机房承重、空间等资源

有合适2/3G站址,则优先在2/3G基站上叠加LTE基站,当共站达不到LTE覆盖效果时,应及时新建LTE独立站。并提出明确传输需求,为LTE建设和规划做好准备。

基于2G和TD的MR扫频、ATU和网管数据的网络结构分析,以及LTE规划方案进行逐小区、逐基站的审核,确保LTE规划方案具备合理的网络结构,力争从源头规避网络结构问题。前期推出的基于现网数据预测TD-LTE网络性能把控LTE网络规划的方法,将固化算法,通过分析网络结构,最终评估出RSRP及RS-SINR是否达标。  3.1.3理想的网络结构

(1)密集市区的理想站间距:300-400米,一般市区的理想站间距:400-500米,县城理想站间距:600-700米,理想站高:30-40米。

(2)站高、倾角的`设置应与周边基站的站间距相匹配,当基站实际高度比理想高度超过42%时,该站覆盖不易控制,对周边区域带来了大干扰,应避免该类站点入网。

3.2干扰排查

TD-LTE干扰分类分系统内干扰和系统间干扰。系统内干扰:邻区同频干扰;系统间干扰:与WLAN间干扰,与CMMB间干扰,与GSM间干扰,与TD-S间干扰,与其它系统干扰。其中经过系统内与系统间的排查后,发现找出干扰问题,分析其产生的原因,找出解决方法最终解决问题。

3.3天线的调整及覆盖优化

网络问题:覆盖是优化环节中最重要的一环。针对该问题,工程建设前期可根据无线环境合理规划基站位置,天线参数设置及发射功率设置,后续网络优化中可根据实际测试情况进一步调整天线参数及功率设置,从而优化网络覆盖。解决思路:通过扫描仪和路测软件可确定网络的覆盖情况,确定弱覆盖区域和过覆盖区域。

天线参数调整。调整天线参数可有效解决网络的大部分覆盖问题,天线对于网络的影响主要在性能参数和工程参数两个方面。

3.4邻区规划及优化

网络问题:邻区过多会影响到终端测量性能,容易导致终端测量不准确,引起切换不及时,误切换及重选慢等。邻区过少,同样会引起切换,孤岛效应等。邻区信息误读直接影响到网络正常的切换。合理制定邻区规划原则:TD-LTE与3G邻区规划原理基本一致,规划时综合考虑各小区的覆盖范围及站间距、方位角等因素。

3.5系统参数

常规参数优化配置建议:目前阶段网络进行优化调整的主要覆盖和切换相关参数。

覆盖参数主要包括:CRS发射功率、信道的功率配置、PRACH信道格式。

切换相关配置参数主要有:事件触发滞后因子Hyxteresis、事件发持续因子Timetotrig,邻小区个性化偏移Qoffsctcell、T304定时器、T310定时器。

综上所述,我们可以看出无线网络优化是一项长期的,艰巨的,周而复始的持续性系统工程,这其中进行网络优化的方法很多,有待于进一步探讨和完善。需要我们在实践中不断地探索,积累经验。从而全面提高网络服务质量,争取更大的经济效益和社会效益。

篇2:校园网络规划设计论文

国家发布了《国家中长期教育改革和发展规划纲要》,里面重点提出了“加快教育信息化进程”,“推进数字化校园建设”的要求,并明确“制定学校基础信息管理要求,加快学校管理信息化进程,促进学校管理标准化、规范化。”等具体内容。这些充分体现了国家对于教育信息化的重视,强调了教育信息化的重要地位和作用,同时在推动高校校园信息化建设方面起到了积极的作用。

1 校园网建设的必要性

校园网的建设是现代教学、科研和管理水平的体现;是学习构建核心竞争力的必要条件;是学校提升及长远发展的基础。校园网建设的意义主要包括以下几点:

1.1 管理方式的改变

校园网建设使现实的校园环境在时间和空间上得到延伸,解决我校因地域分散、单位众多带来的管理方面的障碍。校园网建设既具备高职教育的管理和教学实体,还具有开放教育的教学实体,具备高校教学的完整功能。对于这样一个教育集团,现代化的管理手段是十分必要的[1]。

1.2 优化资源配置,提高管理效益

我校目前的资产管理手段还基本上处于传统手工作业阶段(部分实现了计算机辅助管理),由于信息不透明,数据获取难,很难在决策上做到科学化,造成大量的积压和浪费。比如在实训仪器管理上,学校无法及时掌握实训器材利用率以及使用状态。如果有统一的信息化平台,实现实训设备管理和采购计划的科学化,就可减少实训设备不必要的采购,节省大量的资金。因此,改变传统管理手段,对学校来讲是一件利在当代,功在千秋的事情[2]。

1.3 提供快捷渠道,实现数据共享

学校需要随时向用人单位提供学生在校期间的相关信息(如平时表现、学习进展、实训结果等),并随时与用人单位协商跟踪学生的相关处理事宜。因此,需要改变目前由于学校数据共享困难,相关部门很难为用人单位即时提供类似服务的现状,建设一个能够实现数据综合利用的信息化平台,实现相关信息的即时汇集、利用[3]。

2 校园网现状与分析

武汉软件工程职业学院由两个校区组成,总体来说,两个校区网络均已初步建立,在院本部校园网系统中除了已建成的校园网核心设备、汇聚设备、接入设备外,还配备了防火墙、IPS、防毒墙、网上信息实时监控系统、SAM 计费系统等安全保障系统。在网络出口线路租用上,校本部共租用了三条校园网出口线路,包括:电信100M的互联网出口线路;联通 100M的互联网出口线路;8M教育科研网线出口线路。另外学院在服务器、存储等系统方面的建设相对比较缺乏,主要表现为已建成的一些机架式服务器和低端磁盘阵列系统,主要运行着当前各校园信息化系统,大多现有的服务器、存储设备已比较陈旧、性能相对比较低下、功能也比较单一,而且在设备分布及管理方面相对比较分散。

从现有校园网建设及运行情况了解分析,当前校园网的建设主要存在着以下几个方面的问题:

2.1 设备陈旧、稳定性差

当前校园网中大多数网络设备使用年限已比较长(关山校园网核心交换机CISCO6506 交换机建设于 年(使用年限已 7 年),各楼栋接入交换机设备使用年限大多已接近或者超过 5 年),都已经超过了 IT 项目建设的正常生命周期,设备的稳定可靠性方面很难得到保障,而且在安全机制方面的支持也比较欠缺。

2.2 技术落后、负载过重

当前校园网核心设备品牌型号比较杂乱(有锐捷的、思科的等),大多数核心交换机技术也比较落后,支持比较常规的静态路由及动态路由协议,在网络安全机制、地址空间分配、组播安全、小包处理能力等方面缺乏严重的不足,而且当前设备的端口数量也比较缺乏,有的核心交换机端口已经基本用完,无法满足今后网络扩展接入的需求,已经很难满足新一代数字化校园应用需求。

2.3 校区之间尚未实现互联互通

当前我校关山校区、汉口校区、余家头校区尚未互联互通,无法感受网络带来的便捷,很多协作业务如公文流转等都需要定期到关山校区办理,从而对我校日常办公、人事管理及教学信息化产生严重的影响。

2.4 出口资源得不到充分、有效利用

当前校园网有2条以上的出口链路资源,从实际运行情况来看:一方面,出口资源的实际利用率相对比较低下,而且多链路之间经常会出现有的出口链路比较饱和,有的出口链路比较闲置;另外一方面由于校园网用户P2P等应用的滥用,大量占用有限的出口带宽资源,使得出口资源利用的有效性非常低下。

篇3:校园网络规划设计论文

校园网建设将有效重新组合学校的资源,为教师和学生的工作、学习提供开放、高效的平台,将重构学校的管理模式,同时为学校的教学改革提供支持[4],信息化校园将帮助武汉软件工程职业学院实现以下目标:

3.1 信息标准化

校园网的数据是比较复杂的,包含了学校各个不同部门的数据,比如:教务部门的课程、学生、教师、成绩等;财务部门的报销、资产、工资等;科研部门的课题、论文统计等;实训中心的设备、耗材等。这些数据必须采用统一的数据标准和接口,遵循统一的共享原则,减少重复数据的产生的问题;实现不同系统的数据使用。

3.2 资源数字化

在校园网建设中,为了提供高效信息化的服务目的,需要将学校管理、教学过程等重要环节中的非信息化资源转变成标准的数字化资源,使得校园网的覆盖范围和使用深度得以提升;校园网建设的优劣在一定程度上就是学校资源数字化、信息化、网络化程度的体现。

3.3 系统一体化

在校园网环境中,不同部门采用了不同的开发平台来开发本部门的系统,在校园网中应该统筹考虑使用的要求采用统一标准的数据中心、统一的身份验证、统一的接口,实现各部门各系统的集成和整合,提供一个综合的数据、身份一致的服务平台。

3.4 设施规范化

校园网设施包括布线系统、网络路由交换设备、服务器系统、存储系统、信息化基础设施安全保障系统等,通过对以上各系统进行整合,按照需求进行小型化建设,将会为实现更安全、更可靠、更高水平的校园信息化应用提供强有力的保障。

4 校园网设计方案

从分析现状来看,学院校园网当前采用 2台 Cisco 6506E交换机并配置防火墙模块作为校园网核心交换机(经费受限的情况下,可以暂先买 1台),两台核心交换机分别建于 年和,从使用年限来看已经达到或接近网络设备正常运行的生命周期,另外当前的汇聚交换机大都是采用单链路方式分别上联到两台核心交换机,所以虽然核心交换机是两台,却没有实现汇聚到核心之间链路的冗余连接,没有真正意义上确保校园网骨干的高可靠性。

设计新采购一台主流网络厂商的虚拟化多业务三层交换机作为校园网核心交换机(现有的采购核心交换机可以过渡为汇聚交换机或者冷备份交换机),两台核心交换机之间通过虚拟化交换技术实现两台交换机的引擎有效叠加,汇聚交换机通过千兆双链路分别上联到两台核心交换机,并实现跨交换机的端口捆绑,确保核心网络的高可靠性,同时两台交换机引擎的交换容量有效叠加后,双倍提高了核心网络的交换性能。

每台核心交换机上配置高性能防火墙模块,通过灵活设置虚拟化防火墙及防火墙策略,有效实现外网与校园网之间以及校园网与数据中心网络之间的边界保护,另外两台核心交换机上的防火墙模块通过虚拟化交换技术进行有效地集群,确保防火墙系统的高可靠性。

核心交换机的选型应当同时考虑需要支持无线控制器模块、入侵防护模块、广域网加速及负载均衡等业务模块,从而简化校园网的配置,提供校园网的安全性和性能,同时充分体现项目建设性价比。

5 结束语

综上所述,校园网建设是一个系统工程,我们需要从学校的实际情况出发,从功能、成本、发展预期等因素统一考虑,提出符合自身发展要求,具有数据标准统一、资源信息化强、应用系统广泛、网络安全规范的建设规划方案。

参考文献:

[1] 鲁立.浅谈网络安全技术与校园网络安全解决方案[J].湖北经济学院学报,2007(2):179-180.

[2] 黄琼珍.高校校园网教育资源利用现状调查与分析[J].中国电化教育,(4):75-80.

[3] 张俊兰,郭金平,刘翼.高校校园网设计方案[J].延安大学学报:自然科学版,2010(1):28-39.

[4] 杨炳任,谢舒潇,蒋雪珍,等.高校校园网、教学资源库的建立与思考[J].电化教育研究. (12):56-59.

篇4:干线网络规划设计系统研究论文

干线网络规划设计系统研究论文

1引言

随着数据量及业务量的大幅增加,这种传统设计方法已经力不从心。借助以资源数据库系统为基础的规划设计新工具解决干线网络规划设计困境,已经成为运营商面临的一项迫切需求。本文设计实现了一种以资源数据库为基础,以路由安排、资源分配、局站设计、资源呈现为核心功能的干线网络规划设计系统。首先,该系统打破传统数据管理模式,建立省际骨干网设计资源数据库,解决数据零散、不规范、难关联、取用困难、移植难、审校难的问题。其次,该系统设计实现了路由安排、资源分配、局站设备连接、资源统计呈现等网络规划设计核心功能,可有效提升干线网络规划设计效率。

2系统总体设计

2.1功能结构

该系统依据中国移动省际骨干传送网规划设计需求研制开发,系统功能结构如图1所示。该系统由四大体系、八大核心功能构成。四大体系包括:数据管理体系、工程设计体系、资源呈现体系和系统管理体系。数据管理体系主要完成数据库的常规操作,如资源数据导入导出、查询统计和数据维护等,系统通过POI技术实现Excel的读入和写出,以达到批量处理数据的目的。工程设计体系基于资源数据,实现路由安排、资源分配和局站设计。其中,路由安排功能可基于规划期、设计期、维护期等不同设计阶段的需求,采用不同约束策略及算法,为电路批量安排最优路径;资源分配功能可为已排好路由的电路分配合理的波道资源,同时为复用段配置冗余保护波道;局站设计功能可在网络设计结束后,自动计算设备连接方式,例如交叉、跨机架交叉、支路、预交叉等;实现支路端口自动分配和物料线缆统计,并最终生成系统连接表,指导采购与施工。拓扑操作体系可实现设计资源分层拓扑展示与操作,并输出设备组架图。系统管理体系实现项目管理、用户权限审批等辅助功能。

2.2系统架构

考虑到该系统的用户相对固定,且工程设计人员有户外工作、离线使用的需求,该系统设计为C/S架构(即客户机/服务器模式)。在户外无网络情景下工作时,用户可通过离线登录操作使用。系统架构如图2所示,客户端基于JavaSwing开发用户界面;使用RMI远程方法调用,在客户端与服务器之间利用远程对象互相调用,实现双方通信;使用Spring框架分层管理JavaBean、逻辑Service层以及数据交互DAO层,使用了Spring内置JDBC与数据库进行通信,实现数据资源交互。

3核心功能设计

3.1数据管理

干线网络规划设计系统数据模型分为3个层级结构:局站设备层、网络连接层、光通路层,库内各表相互关联且有层级关系,如图3所示。我们通过ID字段在数据库中建立主、外键关联,修改上级的'数据使得下级的关联数据同时得到修改。局站设备层从上而下包含省份表、城市表、局站表、机架表、机框表、机槽表和端口表,其中每一个对象都向上关联;网络连接层从上而下包含省份段、城市段、局站段、复用段、波道和时隙6张表,其中每一个对象都向上关联,并与局站设备层进行双端关联;光通路层从上到下包含电路表、主备路由表和路由通路表。移动省际干线传送网前期工程积累了大量不规范的设计资源数据。为完成资源数据标准化入库,定义了14张网络层、局站层输入输出Excel表格模版,系统使用Drools规则引擎对上传Excel表格进行校验,校验内容包括模版匹配、数据取值、数据冲突等,如有错误数据,系统给予提示,并提供错误数据模版下载;与此同时,系统可根据资源类型与传统习惯,在数据入库时为全部网络层及设备层资源定义唯一的、规范的、具有全局性及可读性的物理标识,为后续设计、施工、资源管理提供便利。此外,为了实现数据快捷、标准化入库,系统开发了数据字典功能,自动将不规范数据转化为标准数据。截至目前,系统已完成移动省际骨干网100Gbit/sOTN网络网络层及设备层数据规范入库工作。

3.2路由安排

在干线网络规划设计工作中,基于已有资源数据集,依据不同建设策略及约束条件,安排一条合理的电路通路是一项重要且繁琐的工作。在一期工程建设中,需要安排的路由数量通常多达数千条,而且业务需求频繁变换,人工安排电路工作量巨大。本文针对移动省际骨干传送网实际情况,面向规划、设计、维护等不同设计阶段,综合考虑路径长度、路由跳数、资源均衡、速率选择、保护规则等多种约束条件,基于Dijkstra算法、KSP算法,提出一种多因素约束分层路由算法,为不同设计阶段的大批量排路需求提供最优路由设计,提升排路效率及设计方案合理性。算法流程如图4所示,主要过程如下:(1)导入排路需求表或系统自动保存的临时数据。排路需求表中包含预排电路的基本信息、全网约束条件、单电路约束条件;系统也可读取系统自动保留的前期路由安排中间过程数据,继续上次工作。(2)校验排路需求表数据合理性,如通过校验则继续下一步,否则返回错误数据模版。(3)根据全网约束条件从数据库中读取符合要求的资源数据,如站点、复用段、波道等。(4)根据规划、设计、维护不同阶段约束策略筛选数据,规划阶段不做资源筛选,设计阶段筛选空闲及冗余资源,维护极端筛选冗余资源;同时,提供规则设置交互界面,给出不同阶段的不同约束因素的默认权值分配,用户也可自行修改,目前考虑的约束因素包括:路径长度、路由跳次、波道使用率、建设期、转接方式等。(5)为批量电路逐一设计路由。首先判断该电路是否存在符合要求的历史路由,如存在则基于历史路由分配复用段,还原筛选数据,本条路由计算完成;如不存在历史路由,且用户明确了参考路由,则基于参考路由完成路由设计;否则,根据综合代价值,采用分层D算法,首先计算最优城市段,然后计算最优局站段,最后根据速率需求选择复用段,完成路由设计。(6)对于1+1电路,可能存在主路由选择最优路径后,备路由无法排通的情况,此时采用KSP算法,重新为主备路由排路。(7)完成全部电路路由设计后,自动给出排路结果统计与评估,并显示排路结果,系统可提供路由拓扑图。(8)提供人工审核与调整界面,自动记录手动修改情况,并基于手动修改重新计算剩余路由。(9)导出路由表,完成自动路由安排工作。

3.3资源分配

路由安排功能为批量电路配置了最优路由并生成路由表,路由表中描述了每条电路所用复用段及其连接。资源分配功能主要任务是自动为电路路由分配可用的波道资源。资源分配主要流程如下所述:第一步,导入路由安排功能生成的“路由表”,如用户需要为某段路由预置时隙,可在路由表中直接增添;第二步,系统校验读取路由表信息,从数据库获取初始化资源,并组织数据封装对象;第三步,如路由表中填写了预置时隙,直接分配给相应路由段;第四步,整理波道资源,按电路速率及需求数对可用波道资源进行整理及拆分;第五步,根据电路速率及波道分配规则,为路由的每一跳分配具体的波道资源,并完成冗余保护波道配置。第六步,生成单端波道表及双端波道表并估算波道连接方式。

3.4局站层设计

干线网络规划设计系统局站设计模块主要任务是基于网络层设计结果,设计相关局站内设备端口连接,最终生成并导出系统连接表,用于指导施工。基于上述目标,本系统设计并实现了连接关系计算、全网设备编码、支路端口分配、ODF端子分配、线缆数量统计、系统连接表生成等功能。局站设计主要流程如下所述。(1)根据网络设计结果,自动估算统计本期工程所需支路端口量,为设备采购提供参考。(2)采购合同签署后,将设备表、子架表、组架表等资源数据入库,在局站各级资源之间、局站资源与网络资源之间建立关联;自动生成全部设备资源统一编码,包括机架编码、机框编码、机槽编码、端口编码等,为所有资源建立唯一的、具有全局性及可读性的物理标识。(3)根据业务和链路关系,遵循均衡原则,自动分配支路端口。(4)生成设备勘察需求表、支路端口ODF表,辅助设计人员勘察、反馈。(5)导入勘察反馈表更新资源数据。(6)生成布线计划表,统计各类线缆数量,并自动生成系统连接表及设备组架图,用于指导施工。现阶段移动干线传送网局站设计工作主要基于Execl表格计算,需要耗费大量人工,且设计质量优劣取决于设计人员经验。局站设计功能总结工程设计经验、工具化设计流程,可有效提升设计质量及设计生产效率。

4系统应用情况

目前,干线设备网络工程设计系统已完成中国移动省际骨干传送网100Gbit/sOTN网络资源数据的入库和标准化工作;V1.0版本已形成了干线设备网络工程设计能力,并在中国移动省际骨干十二期设计工作中投入应用,共完成规划阶段、设计阶段7个批次12887条电路路由安排工作,有效提升了网络规划设计效率。TPADS投入生产应用,将设计人员从频繁重复的路由安排、资源统计工作中彻底解放,并有效缓解了集团省际骨干大规模网路建设引发的资源数据管理难题和设计效率提升压力。

5总结展望

干线设备网络工程设计子系统(TPADS)突破了传统设计方式在数据管理模式和设计效率上的瓶颈,是大数据时代对传统CAD和Excel设计工具的重大变革,是应对网络资源全生命周期管理的必然选择。未来,TPADS工具软件的应用将对移动省际骨干传送网的设计组织形式、设计服务内容、设计的内涵和外延产生深远的影响,进而引领省际骨干传送网设计、施工和资源管理一体化的变革。

篇5:lte网络优化个人简历

lte网络优化个人简历模板

个人简历在求职者中起到的是敲门砖的作用,如果个人简历的分量足够大,则求职者就具有了面试的几乎,也就相当于求职成功了一半。而要个人简历起到既定的目标,不仅要写好,也需要投递好。

个人信息

yjbys

性 别: 男

年 龄: 30岁 民 族: 汉族

工作经验: 5年以上 居 住 地: 浙江台州 温岭市

身 高: CM 户 口: 浙江台州 温岭市

自 我 评 价

获取HCNP路由交换证书

求 职 意 向

希望岗位: 计算机-开发/应用-系统/网络管理员 计算机-开发/应用-系统维护员

寻求职位: 网络

希望工作地点: 浙江台州温岭市

期望工资: 6000 /月 到岗时间:随时到岗

工作目标 / 发展方向

希望能有更好的发展机会.

工 作 经 历

▌-01---01:中国联通

所属行业: 通讯、电信网络设备业(国有企业)

担任岗位: 机械(电)/仪表类/纺织机械工程师

职位名称: 专线维护与机房维护

职位描述:中国联通温岭分公司上班6年,从事网络与通讯行业多年,计算机网络专业毕业,熟悉电脑故障维修,网络搭建与维护及优化,持有信息产业部颁发网络管理员证书与网络安全工程师证书。在单位负责办公专线与设备维护,办公电脑与打印机维修,通信机房设备维护与运行,政企业单位,国营单位通讯专线维护。熟悉使用配置中大型级企业思科交换机,思科路由器,思科防火墙。能独立解决网络安全与网络优化和故障排除。熟悉计算机与网络等其他设备配置与维护。

▌2014-01--至今:钱江集团

所属行业: 其他(股份制企业)

担任岗位: 计算机-开发/应用/网络信息安全工程师

职位名称: 网络安全专员

职位描述:负责维护服务器和虚拟化VMware vSphere 思路路由 交换 ASA 火墙 深信服上网行为管理 锐捷APAC 等

教 育 经 历

-05--2014-04 襄樊职业技术学院 计算机类/计算机网络 大专

技 能 专 长

语言能力: 英语:一般(11111); 中文普通话:熟练

所在地方言:熟练;

计算机能力: Cisco职业资格认证CCNP

其它相关技能:

HCNP

拓展阅读:衡量个人简历质量的根本标准

个人简历在求职中起到非常重要的作用,所有的在职人员在求职的时候都写过个人简历,一般来说的求职者从大学刚毕业找工作开始就要有自己的个人简历。在求职中需要先通过个人简历然后才会有面试的机会,因此,个人简历在求职中就起到“名片”的作用。

而在写个人简历的时候,也需要讲究推销的原理, 能够将自己推销出去就是好的个人简历。有很多人都想要知道什么样的个人简历是高质量的,其实个人简历能够达到基本要求,就是衡量简历质量的根本标准,也就是说在写个人简历的时候要非常助于其基本要求。

1,个人简历上要无错别字

错别字在个人简历上可以算是最低级的错误,即便说在写个人简历上会用到一些生僻字,但是个人简历本身的内容就不会有很多,一旦出现错误很容易就会被发现。一方面说明求职者写个人简历不够用心,另一方面也说明求职者的能力有限。 因此,好的个人简历上一定不能出现错别字。

2,个人简历信息内容完整

个人简历上主要就是自己的`信息,虽然说个人简历要求是简洁,但同时也要求要完整。在个人简历上要有自己完整的信息,这也是基本的要求,尤其是求职者的联系方式以及求职目标等等,这些信息都不能缺少。

3,语言描写有逻辑性

个人简历大多数都是通过文字的方式来写出的,而由文字所写的个人简历,基本要求就是语句通顺不能过于口语化。更重要的是,个人简历上的语言描述要有逻辑性。


更多相关文章推荐阅读:

1.计算机网络技术专业的个人简历模板

2.计算机网络大专求职简历模板

3.网络工程本科个人简历模板

4.网络测试工程师求职简历模板

5.网络维护电子简历模板

6.网络销售应聘简历模板

7.网络公司应聘电子简历模板

8.计算机网络构建求职简历模板

9.网络安全管理个人简历模板

10.网络技术员简历模板

篇6:TD―LTE无线网络规划关键因素的识别探讨论文

一、TD―LTE网络的简单概述

TD―LTE即Time Division Long Term Evolution,翻译为中文为“分时长期演进”,它是新一代的移动通信网络技信,也是由阿尔卡特朗讯、诺基亚西门子通信、大唐电信、华为技术、中兴通讯、中国移动多家公司共同开发的第四代移动通信技术,此技术一经推出,就显现出了强大的市场优势,被普遍应用于全国的电信行业中。TD―LTE通信技术开发主要经历了三个阶段:第一阶段是到,技术在北京完成比较完备系统的技术验证;第二阶段是20上海世博会期间,TD―LTE示范网建成并投入使用,TD―LTE的产业链的初步具备端到产品能力得到了体现。第三阶段,至今,工信部开始打遭TD―LTE产业链和终端产品,籽TDLTE技术推向市场,开始了商业化运作进程。正是由于TD―LTE显现出了较强的市场潜力,因此,应加深对这一技术的研究、探讨与规划。

二、TD―LTE无线网络规划原则

1、分片连续覆盖

TD―LTE的使用主要是考虑其覆盖的区域与能够承接业务的容量。其覆盖区域的设定要考虑已有的网络站点的分布,整合使用配套原有电信资源,业务容量要尽量满足初期用户需求,信号的覆盖也要达到试商用要求的指标。

2、20M带宽同频组网

TD―LTE可以使用的频谱主要包括三部分,第一部分主要适用于室外,是与TD―SCDMA共用的F频段1880MHz~1915MHz;第二部分是2。6GHz独立使用的D频段2580MHz~2620MHz;第三部分是适用于室内使用的E频段2350MHz~2370MHz。通过对各个频段进行研究,最终得出同频组网谱效率是最高的,与异频组网相比,上行频谱效率高出44%,下行频谱效率高出50%。

3、确定用户的分布与覆盖

用户的分布与覆盖要借鉴2G和3G的数据业务的开展经验,利用这两项业务的特点,结合基本的网络指标要求进行建模,将公共信道的覆盖区域确定下来,再借助于对用户能够接受的不同业务类型进行分析,得出最切合实际的覆盖和容量规划方案。

三、TD―LTE无线网络规划关键因素影响分析

3。1 TD―LTE无线网覆盖规划设置分析

3。1。1 设备发射功率对覆盖的影响

常用的带苋配置方案中,1。4 MHz、3 MHz、5 MHz、10 MHz、15MHz和20MHz这6种都可以用于TD―LTE系统实现中。但是,在利用建设TD―LTE网络时,为了赢得市场,提高频谱效率和网络性能,会选择的方案至少达到10MHz,而当下的网络都在采用的多为20 MHz的带宽配置方案,那么基站的发射功率会达到40 w(46dBm)。

在网络的建设过程中,基站设备的发射功率越大,其幅射范围越大,技术的使用效果更好。但是由于TD―LTE网络采用的是同频组网方式,因此,设备的发射频率应适当,如果过大,反而会因附近基站的彼此影响,使网络的覆盖区域与容量下降,适得其反。所以,基站的发射功率在地理位置较小的范围内,不宜太大。

3。1。2 区域内的用户数量对覆盖的影响

区域内的用户数量会影响到TD―LTE技术网络的`性能,通常网络的容量越大越好,但是,容量越大,其投入的成本也就越大,网络规划时,一定要找到容量设置与资本投入的最佳平衡点,才能满足小区用户系统的负荷要求,当小区内用户数量有一定增加时,也不会对小区的网络使用性能产生过大的影响。例如传输速度不会下降明显,干扰水平不会太高等。

3。1。3 RB配置对覆盖的影响

RB是指网络系统为业务信息分配的资源单元,一个RB包含数量不定的RE(资源单元),包含12个频域上的子载波和时域上一个slot周期构成。它是用来描述物理信道到资源单元的映射。不同的网络会根据性能要求对RB进行配置。RB配置会对下行覆盖性能与上行覆盖性能产生影响。在TD―LTE系统中,基站设备的发射功率在RB是均匀分配的,由于RB的配置数量与有效全面幅射功率(EIRP)成正比的,与下行信道的底噪也是成正比的,那么,可以通过提高RB数量来提高EIRP,小区的覆盖半径也会增加。同样,RB配置数量增加也会使下行信道的底噪提升,如此一来,小区的覆盖半径就不会扩大了。而RB配置数量的增加会引起上行信道的底噪提升,但是,终端的最大发射率会受有上限限制,如果设备已经是最大发射功率的,那么,RB配置数量的增加就会减小覆盖半径。

3。1。4 GP(保护间隔)配置对覆盖的影响

分析GP配置对覆盖的影响,首先要了解TD―LTE系统无线帧的组成。无线帧可以分为两个半帧,每个半帧由4个普通帧和1个特殊帧组成,4个普通帧和1个特殊帧的长度都是1ms。

特殊帧由UpPTS、GP、DwPTS三个时隙组成,其中GP为特殊时隙内上下行转换点保护间隔。

小区覆盖距离与GP之间的关系如下所示:

R=C×GP/2

其中R为小区覆盖半径;

C为光速。

篇7:TD―LTE无线网络规划关键因素的识别探讨论文

3。2。1 带宽对容量的影响

如上所述,多种带宽配置适合于TD―LTE系统的建设。不同的带宽会影响到RB配置的数量,而RB配置的数量又会影响到峰值速率。带宽与RB配置的数量,RB配置的数量与峰值都是正比例关系。因此,进行TD―LTE网络规划时,要将带宽与网络容量之间的关系考虑进去,才能规划出标准的、科学的网络。

3。2。2、多天线技术对容量的影响

多天线技术(M1MO)被应用于TD―LTE系统中,这一技术的三种工作模式都会对网络容量产生影响。第一种工作模式是空间复用,它可在多信道中同时传输不同的信息,多信道同时传输,就可以将系统的峰值速率提高多倍,因此,这一技术被广泛的应用于城区集中、信号散射多的区域。第二种工作模式是传输分集,主要分为时间分集、空间分集、频率分集,这一技术可实现多信道中相同的信息同步传输,这种工作模式具有良好的信息收发可靠性和信息传播的覆盖性,如果覆盖区域是对信息传输可靠性要求较高的环境,则适合采用这一工作模式。第三种工作模式是波形赋形,它是通过一定的算法赋形将多路天线阵列转换为单路传输信道,结合对信道精确的分析,针对用户特点形成波束,可以有效的解决用户之间的干扰问题,提高了网络的覆盖面,提高了系统的信息吞吐量。

3。2。3、分组调度算法对容量的影响

在TD―LTE系统中,轮询调度算法、正比公平调度算法、最大载干比算法是常用分组调度算法,三者在系统的服务公平性、吞吐量、资源利用上各在优缺点。例如轮询算法虽然系统的资源的利用率低,吞吐量不高,但是网络服务的公平性较好。而正比公平调度算法则会平衡系统吞吐量与服务公平性。而最大载干比算法则实现了系统吞吐量的最大化,这样服务的公平性就很难得到保障了。因此,在进行网络规划时,要综合考虑不同算法的优缺点,具体情况具体分析,选择最佳的分组调度算法。

3。2。4、CP(循环前缀)配置对容量的影响

在TD―LTE系统中,CP的主要作用是解决符号间和载波间的干扰。CP的使用虽然解决了符号间和载波间的干扰,但是,却也会耗费一定量的系统资源。例如会占用一定的功率,造成功率的损失,使OFDM符号速率降低,如果信号的传输带宽没有交换,频谱效率会降低,就会使系统的带宽造成一定的损失。而CP的配置长度也要考虑系统的实际需要,既不可太长,太长会给系统带来太大的损失,而太短又会影响到功能的实现。

四、结束语

本文简要介绍了TD―LTE无线网络,并对影响网络的重要因素进行了分析。本文对如何规划好TD―LTE无线网络进行了调查研究,对影响网络规划的多方面因素进行了探讨。信息网络技术的发展与更新已进行了高速时期,因此,对新技术的研究与开发也将更加深入。

参考文献

[1]朱晨鸣,李新,TD―LTE无线网络组网性能研究[J]现代传输,(02)

[2]詹鹏,苏颖博,TD―LTE无线网络链路预算分析[J],邮电设计技术,(07)

[3]刘宝昌,胡恒杰,朱强,TD―LTE无线网络规划研究[J],电信工程技术与标准化,(01)

[4]余智,肖征荣,3G移动网络规划的覆盖和容量的计算[J],中国无线电,(01)

篇8:基于自组织网络的LTE RACH优化技术研究论文

基于自组织网络的LTE RACH优化技术研究论文

【摘 要】通过对基于自组织网络的LTE RACH自优化技术进行研究,包括RACH自优化的基本需求和影响因素、实现RACH自优化功能的自组织网络架构和RACH自优化处理方法,以提高LTE网络性能和降低运维成本。基于eNodeB和UE的统计及测量数据,可以在无人工干预的情况下自动触发RACH的优化。

【关键词】LTE RACH自优化 自组织网络 运维成本

1 引言

随着移动技术的演进和实际网络的部署,移动运营商在提高移动服务质量的同时面临着两方面压力:一方面是越来越高的人力成本;另一方面是越来越低的通信资费。因此,移动运营商不得不越来越重视降低OPEX(Operating Expense,运维成本)。通过技术来实现移动网络的自动化和智能化,减少运维过程中人工参与的力度和维度,成为移动运营商降低成本的迫切需求。为此,在由移动运营商主导的NGMN(Next Generation Mobile Networks,下一代移动通信网络)联盟上,一些国际主流运营商如西班牙的Telefonica、中国移动、英国的沃达丰等,提出了SON(Self-Organizing Network,自组织网络)的需求,并推动3GPP根据NGMN需求逐步实现标准化。

自组织网络的需求主要由四部分组成,分别是自配置、自优化、自治愈和网管自组织网络,每部分都包括多个需求用例,LTE的RACH(Random Access Channel,随机接入信道)负荷优化就是自优化的需求用例之一。本文通过分析基于SON的RACH自优化需求和影响因素、基于SON的实现架构和处理方法等内容,以自优化技术来降低运维成本、提高LTE RACH接入性能和优化上行链路资源。

2 基于SON的RACH自优化需求和影响因素

LTE随机接入信道是LTE的主要上行信道之一,用于建立UE(User Equipment,用户设备)和LTE基站之间的无线链路,实现上行同步和上行共享信道资源申请。为了实现随机接入信道的功能,LTE根据实际网络覆盖情况为其分配了专用的上行链路无线资源,而随机接入过程涉及物理层、MAC(Medium Access Control,媒体接入控制)层和RRC(Radio Resource Control,无线资源控制)层等多个协议层。

图1为LTE物理层定义的RACH前导格式,主要由三部分组成:长度为TCP的循环前缀(CP)、长度为TSEQ的前导序列(SEQ)和长度为TGT的保护间隔(GT),后者是为RACH分配的时隙长度或UpPTS与前导的时间差。

表1罗列了LTE定义的五种前导格式,包括对应分配的子帧数、CP长度、序列长度和保护间隔长度,每种格式都与扇区覆盖半径直接关联,较长的序列占用的上行无线资源也就越多,当然覆盖的范围也就越大。

在多扇区组网和多用户接入的实际应用场景下,RACH的相关参数配置对LTE系统性能产生重要影响,主要有两方面:首先可能产生RACH碰撞,接入碰撞会使呼叫建立延时、失败或上行失步,后者影响数据恢复延时、切换延时等,也直接影响呼叫建立成功率和切换成功率,因此影响LTE网络性能和用户体验;其次影响系统容量,由于上行链路需要为RACH保留无线资源,在有限的上行无线资源中,如果RACH占用过多,那么上行共享信道资源就相应减少。

LTE RACH优化实际是每个扇区的RACH配置参数优化,但影响每个扇区RACH配置的因素有很多,包括如下:

(1)扇区覆盖的'人口密度。人口密度越大,接入碰撞的可能性也就越大。

(2)呼叫到达率。到达率越高,接入碰撞的概率就越低。

(3)引入切换率。尽管影响切换成功率的因素很多,但如果切换第一步在目标扇区接入失败,后续切换过程则无从谈起。

(4)扇区是否位于跟踪区边缘。UE跨越跟踪区需要重新接入注册过程,因此接入边缘扇区接入频度高,当然碰撞的可能性也就越大。

(5)业务模式影响DRX(Discontinuous Reception,非连续接收)和上行同步状态,因为需要通过RACH的接入过程完成。

(6)网络配置影响。如天线倾角、发射功率设置和切换门限,在这些配置中,任何变化都影响最佳的RACH配置。例如,扇区的天线倾角变化,扇区的覆盖将改变,从而影响呼叫到达率和每个扇区的切换率,网络覆盖直接影响每个扇区的RACH配置,因此RACH优化与网络优化密切相关。

基于SON的RACH自优化的需求目标首先是性能方面,包括降低RACH接入碰撞的概率、提高接入成功率、减少呼叫建立时间、提高切换成功率等;其次是优化LTE上行链路为RACH保留的资源,提升系统上行链路容量,即增加上行共享信道资源。

3 基于SON的RACH自优化架构

根据实现功能所处在基站或OAM(Operation Administration and Maintenance,操作、管理和维护)上,SON架构主要分为集中式、分布式和混合式。其中,如果SON实现功能集中在OAM上,则是集中式架构;如果SON实现功能分布在各个基站上,则是分布式架构;如果SON实现功能既在OAM上也分布在各个基站上,则是混合式架构。

鉴于RACH自优化过程需要大量的相关性能统计数据和运算,为了降低基站系统的负荷及不影响基站性能,采用SON集中式架构来实现,如图2所示。集中式架构使RACH自优化功能集中在OAM上,而RACH自优化控制策略也由OAM导入;根据移动运营商的实际需求,一些人工干预的指令也是通过OAM导入;eNodeB负责收集和测量RACH性能参数,并接收OAM优化后的RACH参数。

基于SON的RACH自优化技术要求LTE系统支持自适应控制,并通过RACH的相关KPI(Key Performance Indicator,关键性能指标)和性能参数来触发自优化构成。不同的RACH自优化控制策略,相关的KPI及关键性能参数也不同,但宗旨都是在提升LTE RACH性能的基础上提高4G系统的容量。

影响LTE RACH自优化因素很多,即使相同的扇区在不同的时间段差异也很大,因此自优化过程不是一次性的而是长期过程,这就需要采集大量的性能数据作为下一步优化的基础。基于大量性能数据分析和处理,输出RACH优化性能参数将作为下一轮自优化的基础和前提。总之,LTE RACH自优化实际是周而复始的过程。

4 LTE RACH自优化的处理方法

SON的自优化功能实现主要是通过KPI或性能统计参数来触发,如果每个LTE扇区的RACH性能不满足其KPI指标要求,则可以进一步触发RACH的优化和校正。

RACH配置优化包括如下:

(1)RACH的资源单元分配优化。

(2)RACH前导拆分,涉及在专用、组A和组B之间。

(3)RACH的backoff参数值优化;RACH发送功率控制优化。

LTE RACH的自优化要基于相关性能统计数据,这些数据主要来源于以下方面:

(1)UE统计和上报。为此UE需要支持RACH优化信息上报,并通过RACH参数与eNodeB进行交换,UE收到轮询信令后需上报的信息包括:在成功RACH完成前发送RACH前导的次数和竞争解决失败的次数。UE支持接入试探次数上报,这与LTE之前的移动系统性能统计差别明显,而之前的系统很难统计到这方面数据,更多需要人工路测或经验值,因此LTE RACH自优化机制简化了RACH参数配置过程并降低了运维成本。

(2)eNodeB测量。将在单位时间间隔内每个扇区接收到RACH的前导数量作为覆盖区内的话务量统计,判断接入碰撞的可能性。

对于RACH的自优化过程,实际是RACH自优化功能对UE统计和上报的RACH数据以及对eNodeB测量的数据进行统计与估算,并通过优化策略判断是否自动触发RACH优化的过程。

图3为基于集中式SON架构的RACH自优化性能参数的闭环处理过程,各个网元的功能是:UE根据eNodeB的轮询信令上报相关RACH前导的统计信息;eNodeB收集UE上报的测量收据、测量收到的RACH前导数量;OAM中的性能管理功能是收集、存储和处理来自eNodeB的性能统计数据,根据RACH自优化控制策略,通过运算和数据挖掘,输出RACH自优化控制参数,并输出到OAM中的配置管理;配置管理负责将RACH自优化控制参数输出到eNodeB,最后完成了闭环RACH自优化过程,LTE基站系统在优化后的RACH参数下运行,提升网络系统性能。LTE RACH的自优化构成实际是RACH性能数据采集、统计、传输、存储、分析处理和重配置的周而复始过程。

图4是在同一个扇区中的测试数据对比,该扇区的显著特征是一天中在某些时间段用户较多、在某些时间段用户很少,接入成功率呈“凹”形。其中,未优化的接入成功率变化幅度范围很大,当接入用户数量很多时,接入成功率降低,而当接入用户数量很少时,接入成功率很高;基于SON自优化后的接入成功率变化幅度平稳,无论是用户多还是用户少,都不会大起大落,保证了较高的接入成功率。

5 结束语

基于SON的LTE RACH优化目的是降低接入碰撞并提高系统容量,而影响RACH性能提升的因素很多,涉及覆盖的人口密度、呼叫和切换成功率等;RACH自优化可通过基于SON的集中式架构或分布式架构实现,但触发RACH的自优化需要分别根据UE和eNodeB的大量相关RACH测量数据,并上报进行统计和挖掘,输出RACH性能控制参数实现自动RACH优化自动控制。总之,基于SON的LTE RACH优化是基于测量数据并在无人工干预的场景下自动完成,可在提升LTE网络性能的同时降低OPEX。

参考文献:

[1] 3GPP TS 36.211. E-UTRA; Physical Channels and Modulation[S]. 2009.

[2] 3GPP TS 36.300. E-UTRA and E-UTRAN, Overall description; Stage 2[S]. 2009.

[3] 谢大雄,朱晓光,江华. 移动宽带技术——LTE[M]. 北京: 人民邮电出版社, 2012.

[4] NGMN Alliance. NGMN Recommendation on SON and O&M Requirements[S]. .

[5] 朱晓光. 基于自组织网络的基站自优化节能技术研究[J]. 移动通信, (18): 93-96.

[6] 廖俊锋,朱晓光,周文端. 基于TCP的微波回程链路自适应优化技术研究[J]. 移动通信, (14): 32-36.

[7] 朱晓光. LTE基站系统的自动软件加载技术研究[J]. 电信科学, 2013(7): 131-135.

[8] 任倩男,胡楠. TD-LTE随机接入过程与网络优化[A]. Proceedings of 2011 Asia-Pacific Youth Conference on Communication (2011APYCC) Vol.1[C]. 2011.

[9] 金红军. 宽带战术通信系统架构设计与实现[J]. 通信技术, 2014(9): 1021-1026.

[10] 朱晓光,江华. LTE基站系统的PCI自配置技术研究[J]. 电信科学, 2014(7): 130-134.

篇9:网络数据挖掘规划论文

网络数据挖掘规划论文

1LTE网络规划体系

根据网络规划的要求,利用大数据可以从覆盖评估,干扰评估和价值评估三个维度建立基于大数据挖掘的LTE网络规划体系,通过对现网问题的全面、准确分析定位,预知LTE网络规划存在的问题,提升LTE网络规划的准确性。

1.1覆盖评估分析

良好的覆盖是网络建设的最基本要求,基站站间距过大,基站覆盖过远会造成部分地点盲覆盖或者室内深度覆盖不足;而站间距过小,重叠覆盖会带来较大干扰,同样影响用户感受,同时不必要的重复建站将会加大投资成本。理想的蜂窝网络结构应该在保证用户移动性的前提下使小区间的交叠区域处在一个较低的水平借助现网2G/3G实测数据,参考工参,扫频及MR等大数据,利用奥村-哈塔传播方程矩阵理论运算,根据不同频段自由空间传播模型损耗、模拟仿真覆盖及损耗矩阵,评估规划LTE网络的覆盖情况;同时构建贴合现网实际的小区传播路损模型,有效识别LTE网络的弱覆盖和过覆盖区域,实现“点、线、面”联合校准验证,获取真实、准确和全面的小区覆盖规划数据。

1.2干扰评估分析

干扰是影响LTE网络质量的关键因素,我们引入干扰贡献系数来评估无线网络重叠覆盖度。定义干扰邻区的能量之和与主小区的总能量的比值为干扰贡献系数,用其来评估主小区A,系数越大,说明该小区对外的干扰越大,需要整改的优先级越高。

1.3价值评估分析

传统规划主要从覆盖与干扰两个维度分析,不能完全识别出高价值站点,导致网络部署后出现建设偏离业务热点,超闲小区较多等问题。而基于大数据挖掘的LTE网络规划可基于话务热点、用户/终端及价值业务等多维度进行关联性分析。首先梳理出数据及话务热点、智能终端/数据卡渗透高区域,判定流量价值高的区域;其次发掘出数据业务使用率高,但实际速率低,话务需求被压制的区域;再次利用VIP/投拆用户列表导出数据业务投诉用户和VIP用户区域,更直观、有效的体现网络热点投诉、流量变化较大的重点小区数据,定位重要客户的高价值流量区域,聚焦影响用户感知的重要问题,发掘LTE潜在高价值区域,有效指导LTE网络规划效益,降低网络资源的管理成本。利用基于栅格的多维度价值得分评估体系,通过高流量小区选择,实现用户分布地理化关联,进行多维度地理化综合分析,得到多个小区构成的栅格的价值得分,得出高优先级建站区域。

1)统计各栅格流量、用户使用TD-SCDMA的速率、用户数量、终端分布、业务流量分布等数据,当某个栅格点上指标值大于全网栅格该指标平均值的k倍,即赋予该栅格价值点相应的分值。

2)栅格价值点相应的分值:栅格内指标值/(全网栅格点该指标平均值×k),k值建议为1.2,意义为在此栅格点的其中某一项因素大于该项因素的平均值的1.2倍,才会进行价值得分分析,小于该值则该栅格点的该项因素的`价值得分为0。

3)单个栅格总得分=权重1×热点得分+权重2×速率得分+权重3×终端得分+权重4×业务得分…。

4)统计基站覆盖范围内包含的栅格数量以及各个栅格上的分值,最终输出规划基站的总栅格得分排序,排序高低反映了该基站的价值高低。

1.4评估分析流程

评估分析一般在待建站点资源收集后,按照价值高低,基于基站覆盖范围和受干扰影响程度,选择建站顺序。根据实际情况,可一方面利用2/3G旧站址,一方面建议增加符合合理网络结构的新站点,达到良好规划的目的。

2大数据处理思路

LTE规划过程利用收集到的大量数据,包括工参数据、性能数据、经分口数据、MC口数据、投诉数据、测试数据等六大项13类数据,从中提取有用信息进行分析。

2.1基于大数据的打包清洗

根据大数据删冗去错机制进行数据清洗(见图7),保持数据的准确性。在规划中首先实现数据去冗,对话统过期数据、工参多余字段集中去除;其次是数据去重,去除相同路段多次测试的数据,排除话统及性能相同的数据,保证数据唯一性;再次是数据纠错,结合数据特性,对统计异常、工参错误等数据进行纠错,保证数据区间在合理范围。

2.2基于大数据的关联聚合

根据数据的特征、变量等进行“数据降维”,从覆盖,干扰和价值维度对数据进行投影降维,简化分析数据的复杂度。同时运用强关联聚合、相近聚合、相关聚合等聚合模型进行“关联聚合”,比如在覆盖评估中将道路测试、路测扫频、用户测量报告等信息按照关联强弱聚合,在价值评估中将业务分布、用户分布、终端分布等信息按照比例进行关联聚合。具体来讲,以用户的地理位置为索引,关联其所在位置的信号强度,干扰情况,终端支持类型信息,业务信息以及所在位置的周围基站分布情况,周围环境情况,人群流动情况等等,建立基于时间、位置、用户、终端、应用等多维度的用户行为聚合模型。根据用户行为模型,分析筛选得到绝对静态用户数(静态用户定义为单用户在某小区有5天产生流量且每天在该小区产生流量占当天该用户总流量的70%以上,且产生的流量大于10MB/周)全省共计3.8万人,涉及5798个小区。根据用户在占用静态小区时上报的用户自身所在位置的经纬信息(理论上精度平均误差在55m)结合基站位置关联,发现定位2G/3G数据业务成熟度高的区域。通过精确定位不同用户上网的地理位置,同时关联静态用户终端网络制式信息,用户上网习惯和用户流量,引导4G站点规划,指导指导定向推送4G营销业务。

3应用情况

基于大数据挖掘的LTE网络规划研究在山东公司LTE网络一期网络规划中得到了广泛应用。通过高价值区域定位、干扰问题分析、覆盖评估等维度综合关联性分析,借助2G/3G现网实测数据实现了“点、线、面”联合评估,真实、准确、全面地对4G网络的价值流量、重叠覆盖干扰、弱覆盖等进行了评估,同时输出了LTE工参信息、站址建设优先级,站址地理化呈现等一系列规划结果。通过黑、灰、白名单规则判断,输出了LTE网络不建议规划的黑名单小区、通过相关优化调整后可规划灰名单小区、直接可共址建设的白名单小区,共评估一期工程规划小区60653个,发现低价值用户流量少的黑小区3433个;易产生干扰黑色小区5021个,灰色站点1265个;覆盖问题黑色小区543个,灰色小区3501个。通过规划质量的提高,降低了后续优化调整的难度,共计节约资金11766×0.3=3530万(注:每个基站年优化费用约0.3万),而且原来人工规划、勘察基站的效率大大提升,解放人力成本带来的直接经济效益75×10=750万(注:人力成本节约75人,含外包,年人均成本10万),降低了全省网络规划优化的管理成本。通过TD-LTE的大数据网络规划分析,有效指导了4G网络规划,按照以终为始、聚焦价值、提高投资收益、建设精品网络的目标,提升了4G网络规划的准确性、合理性。

4结语

TD-LTE是中国移动的未来,是网络发展的方向,也是具有我国独立知识产权的技术,对“TD-LTE建设要全力以赴、保质保量保速度”。网络规划是网络建设的基础依据,应该坚持“以终为始”的理念,为网络建设与网络持续发展提供技术支撑。对于TD-LTE网络而言,网络结构对网络质量具有决定性的影响,因此网络规划对于TD-LTE网络的建设质量具有更为重要的意义,在TD-LTE网络规划中引入了大数据挖掘等新思路以保证网络规划的质量。高质量的网络规划为后期的网络建设、优化运营提供良好的网络基础,达到事半功倍的效果。该研究可实现工程建设“最前端———规划”与“最末端———优化”的有机结合,在规划期内有针对性地解决网络结构问题带来的网络质量隐患,是LTE与2G/3G现网共站址、共RRU、同天线的情况下进行LTE网优化的有力助手。通过对2G、3G等现网数据的分析,预测TD-LTE的网络性能和干扰解决方案,可以有效提高TD-LTE网络规划建设的质量,减少重叠覆盖和同频干扰,目前已在中国移动LTE一期、二期网络工程建设中全面使用、对推动LTE一期、二期网络工程建设保质保量保速度地完成任务起到了功不可没的作用。

篇10:生态小区规划设计论文

生态小区规划设计论文

一、规划选址

小区的规划选址很重要,尽量选择地下和周围环境良好的区位,避免因地形等特点造成的空气流动不畅或风速过大等问题。小区用地应结合地形特点,不应使建筑物正对迎风的湖岸或容易形成风道的山谷等地,最好选择避风向阳的坡地。

二、规划布局

在小区规划布局上,要充分考虑当地的自然环境,协调好住宅建筑与其他相关因素之间的关系。小区规划设计要综合考虑建筑物的结构、朝向、间距、周边环境等因素,运用建筑空间构图原理,合理安排住宅、公共建筑、道路、建筑小品等的相对位置,使它们组成一个井然有序的有机整体。

三、景观的营造

在景观的营造上,要进行人性化设计,尽量满足不同人群的生理、心理、交往等方面的要求。尽可能地利用住宅区地面作为景观用地,考虑住宅区周围环境背景的有利因素,给小区带来生气,增添小区的生活气息,创造真正具有较好生态效果的住区环境。有条件的小区应配备园林、喷泉、休闲广场、游泳池、健身会所等,创造一种自由漫步式的家园模式。

注重节能设计

我国的住宅需求量逐年增加,住宅建设也消耗了大量的能源。因此,现代化的.小区建设应充分节能,通过对小区的合理规划和布局,以及对建筑的合理设计,充分利用太阳能和风能等自然能源。

一、小区道路系统设计

小区道路也是小区的风道,道路布局应充分结合建筑物的布局和结构,应有利于小区的通风,并结合小区绿地空间,尽可能地把绿地中的新鲜空气引入小区,以提高小区空气质量,改善小区环境。

二、小区绿化及景观规划

良好的居住区绿化,不仅能美化小区环境,而且对于住宅建筑节能有重要作用。在炎热的夏季,浓密的树冠能够将35%的太阳辐射热吸收掉,植被的蒸腾作用和其根部的保水作用有利于小区降温。小区绿化可以有效调节湿度、降低气温、改善通风质量,从而减小城市热岛效应对小区的影响。

三、住宅单体的节能设计

首先,提倡建设节约型住宅,合理使用面积。其次,住宅室内平面布置应合理。合理布置卧室、起居室、餐厅、厨卫等功能空间,考虑空间的紧凑性。再其次,控制住宅层高,一般住宅层高以2.8米为宜,不宜超过3米。层高过高,会增加建造成本;层高过低,会减少室内的采光面积,并使室内通风不畅。最后,控制合理的窗墙面积比。

打造特色小区

现代化的小区,还应有自己鲜明的特色,要创新规划设计理念。对小区进行准确定位,通过多元化的组织手法和多样的居住空间创造方法,结合小区所在地段、城市大环境,建设特色小区。

可以运用灵活的组织手法,创造丰富的艺术生活空间。小区景观可以充分借用周围的景观,并巧妙应用过渡、渗透、对比等丰富的组景手法,打造主题鲜明、动静结合、软硬搭配的建筑结构空间,提高整个小区的文化品位。

还应重视小区规划与当地的历史文脉相结合,要与城市整体形象相协调。在规划设计上充分考虑当地的历史人文环境,使小区能够延续所在地区的历史文脉,体现出文化传统的积淀。

结束语

现代化的小区规划设计应充分考虑生态节能,实现人与自然的和谐相处,为人们提供更加舒适、更加亲近自然的生活场所。

篇11:探析电力光纤通信网络规划设计问题论文

探析电力光纤通信网络规划设计问题论文

关键词:电力网络规划设计论文

一、引言

随着电力系统运行对通信技术的利用及依赖程度的不断提高,整个电力系统的生产及运行对光纤通信网络的运行要求持续增加。其不但要求光纤通信网络具有足够的通信能力,而且还要求其运行具有足够的可靠性和安全性。

二、电力光纤通信网络规划设计的原则与建设特点

考虑到电力通信点多、覆盖范围广、可靠性要求高的特点,一般在网络设计过程中将之设计成为自愈环网,通常同时还设置有分支路站,用以克服线路迁移、改造以及自然破坏导致线路中断等问题。其次,考虑到计算机网络、通信以及远程监视等实际需求,加之需要满足路由、光缆芯数以及开放服务时间等需要,一般将网络结构设置成为环型、放射型等结构形式。再次,为了满足调度通信、计算机网络远程监视等需求,选择光缆过程中要采用不同芯数的光缆配置,当前一般以48芯、36芯、24芯、12芯等几种规格,不但能够满足技术要求,还节省资金投入,具有较高的性价比。

三、电力光纤通信网络规划设计过程中存在的问题及应对策略

在电力光纤通信技术应用过程中,应该避免一味的照搬技术、设备,要根据网络的实际应用情况对内容进行详细规划设计。

3.1路由的合理选择

当前,电力系统的各个主要供电公司一般都设置在市区近郊,而且大部分的光缆都是采用10kV、35kV、110 kV、220 kV配电杆路、电力电缆沟等,一般是与电力线进行同步辐射的方式。考虑到城市道路后续改造、发展等方面的影响,应该尽量将通信光缆敷设在已经埋设管道的'地方,避开繁华的商业街道,减少由于后续道路改造带来的通信成本增加、通信质量受损等问题。

3.2网络拓扑结构设计

通信网络的拓扑结构主要包括星形、树形、网格形、线形等几种拓扑结构形式。在确定SDH传输设备之后,一般以采用网格形、环形拓扑结构较好。与其他形式的网络结构相比,环形网络结构具有较好的保护性能,比一般的 1+1路由保护更加可靠。

另外,星型网络拓扑结构主要是采用点对点的结构形式,其主要特点在于结构形式较为简单,而且运行维护相对比较简单,具有较高的可靠性。

3.3设备选择设计

光纤通信传输设备一般分为准同步(PDH)与同步(SDH)两个基本类型。其中,SDH设备具有标准通信光接口、同步复用、网管性能强的特点,使得其在当前电力光纤通信中得到了更加广泛的应用。一般,SDH通信设备的容量包括155 Mbit/s,622 Mbit/s等几种形式,在应用功能方面包括分插复用型、交叉连接型与终端型几种。在网络规划设计选择传输设备时,首先要充分考虑电力传输网络建设及发展规划需要,在投资能力运行的条件下,尽量选择升级空间、容量扩大、配置灵活的设备。

3.4通信网络自愈切换技术处理

当前的电力通信网络一般都设置有“自愈网”,该种网络可以在没有人工干预的情况下能够从短时间的故障时间内自动恢复至正常的功能与通信水平,能够尽量降低由于网络通信故障造成的严重损失。例如,设置有2芯单向通道保护环的每各个节点能够同时进行两根光纤的通信输入。虽然两条光纤传输的内容基本相同,但是在接收端的设备可以根据质量优劣选择最优的通道。一旦通信发生故障,可以在两道通道中实现优劣转换,降低通信故障损失。

3.5施工线路架设技术

在设置好最佳的线路架设路线之后,首先要挑选素质高、建设水平好、施工设备精良的施工人员组成施工队伍,同时要做好路由实测工作,严格控制施工质量与安全。尤其是对部分自然条件恶劣的地区,例如沿海风大的区域,由于架空的ADSS光缆摆动幅度很大,若采用直接在杆塔上设置单挂点的方式,线缆可能会与杆塔发生摩擦,导致光缆受损,出现断芯等问题,影响通信质量。

四、结语

随着电力系统网络对通信技术要求的不断提高,在通信网络架构的过程中要对通信技术进行实时更新,以达到提高电力系统网络可靠性的目的。

篇12:LTE移动网络中的CDN关键技术研究的论文

1.1CDN节点下沉

传统的CDN网络边缘节点通常部署于城域网内,对移动用户而言,中间需要经过基站、核心网等多个网络设备,物理路径较长,容易影响用户体验,因此将CDN节点下沉至核心网/基站侧,可以很好地缩短用户访问路径,提高响应速度。在核心网、基站侧部署CDN节点的组网架构如图2所示。由于运营商基站数量较多,为节约建设成本,减少维护工作量,建议选择用户数量较多、容量较大的基站部署CDN节点,部署方式为“分光+透明缓存”方式。将透明缓存设备(如刀片插板)集成到基站设备中,通过端口镜像方式或DPI分光设备将用户流量引导至透明缓存设备,由透明缓存设备根据用户访问热度,自动缓存热点内容。当用户请求热点内容时,直接由透明缓存设备发送内容给用户;当用户请求非热点内容时,则由用户访问源网站获得内容。CDN透明缓存设备工作原理如图3所示。CDN透明缓存设备业务流程如下。①用户发送HTTP请求,访问内容A,经过DPI设备;②DPI设备对HTTP进行分析,将结果发送给CDN节点进行匹配;③CDN节点搜索本地是否已缓存内容A(由于内容A热度不够,并未缓存);④CDN将“未缓存”结果返回给DPI设备;⑤DPI设备通知用户继续访问源网站;⑥用户直接连接到源网站,请求内容A;⑦源网站返回内容A;⑧CDN节点统计内容A的访问热度,达到一定阈值时,向源网站请求内容A;⑨CDN将获取到的内容A缓存到本地;⑩当有其他用户再次访问该内容时,重复第①~③步,由于CDN已透明缓存该内容,在第④步返回给DPI设备的结果是“已缓存”,因此用户直接向CDN节点获取内容A;輯訛輥CDN节点返回内容A给用户。

1.2DNS缓存加速

用户在访问网页、视频、音频、图片等内容时,请求的URL通常是域名而非IP地址,例如www.taobao.com/XXXX…,需要通过本地DNS进行解析。在2G/3G移动网络中,DNS服务器通常部署于城域网内,每次DNS解析请求都要通过基站、核心网,因路径较长而造成DNS时延较大,如图4所示。在LTE网络中,随着CDN节点下沉到核心网或者基站侧,可在CDN节点中增加DNS缓存系统,对移动用户访问流量中的DNS协议进行监听。为保证DNS解析性能和可靠性,可设定一定的阈值,当本地DNS服务器运行正常时(例如响应时间低于阈值,解析成功率高于阈值),仍由本地DNS服务器进行解析;当本地DNS服务器运行异常时(例如响应时间高于阈值,解析成功率低于阈值),则由CDN节点的DNS缓存系统进行解析。CDN的DNS缓存系统需要定期与本地DNS服务器进行同步,更新域名和IP地址的映射关系。以图4为例估算,采用CDN的DNS缓存系统加速后,每次DNS解析均可节约80ms,8次DNS解析可节约0.64s,总体解析时间约为原先的2/3,可以有效地降低DNS解析时间,提升用户访问速度,优化服务质量和业务体验。

1.3内容源优化及终端适配

目前移动用户使用的终端通常为基于苹果iOS、谷歌Android等操作系统的智能手机,和电脑相比,具有屏幕尺寸小、分辨率低、CPU频率低、内存小、存储容量小等特点,而互联网的海量内容大部分都是为电脑访问设计的,并没有针对移动终端进行优化。因此,在LTE移动网络中,由CDN节点对内容源进行优化缓存,并且在移动终端中通过客户端或者插件进行适配,能够根据用户终端的情况,动态优化内容呈现方式,降低用户终端和基站、核心网间的数据流量,释放更多的空口资源。在CDN节点内部署内容优化模块或系统,该系统可配置白名单对用户经常访问的热门网站进行预处理优化和缓存,例如,针对网页、图片等元素生成多种屏幕大小和分辨率的备份内容。移动终端在请求内容时,可在URL里附加屏幕大小、分辨率、网络质量等参数,由CDN节点的内容优化系统进行分析并返回合适的备份内容。具体优化方法如下。跟踪系统调用发现哪些帧在处理上耗时较长,通过优化页面布局等,提升客户端页面渲染性能,减少客户端处理时间。减小接口数据返回,通过减少首页数据返回,以分页获取后续数据的方式进行优化,从而减小数据传输时间。针对部分功能项,如排行和分类列表等页面图片采用延迟加载。由于一屏只能展示4~5条数据,所以可以采用图片延迟加载,第一屏只下载要展示的相关数据图片,网络传输的数据大小将大为减小,后续图片在滚动页面时再进行加载。压缩列表页图标大小,在不影响用户的视觉体验下,通过对图标进行压缩优化,使图片大小减少。增加请求压缩,针对自升级等携带大请求数据的接口请求进行压缩处理,一方面可以节省用户流量,另一方面加快了客户端的响应速度。

1.4视频智能优化

根据互联网权威机构的分析,视频内容在4G时代将成为主流应用,其流量将超过Web浏览,在将占据60%以上的流量,因此,针对视频内容进行智能优化对LTE移动网络有着重要的意义。优化方法包括以下内容。

(1)视频转码技术,与终端智能适配CDN节点将热门的视频内容转换为多种封装格式、编码格式和分辨率的视频文件,例如,将FLV转换为MP4、TS等封装格式,将MPEG2转换为H.264编码格式,将1080P转换为720P、D5等分辨率等,结合2.3节中提到的`终端适配技术,当终端请求内容时携带相关参数,由CDN节点进行分析并返回适配的视频内容。

(2)视频动态缓冲,感知网络变化目前移动视频内容主要是基于HTTP,而且大部分采用的是HTTPProgressiveDownload方式,即渐进式边下载边播放方式,客户端会按照可用的最大速率请求下载视频内容直至完成。然而根据统计,有相当比例的用户只会观看视频的一部分,持续下载会占用空口资源。因此,在CDN节点中可采取视频动态缓冲技术,根据移动网络的变化情况动态调节,例如当网络繁忙时,控制用户下载速率,保证用户有10s以上的缓冲时间即可;当网络空闲时,让用户下载速率最大化,快速下载剩余的视频内容,尽快释放空口资源。

(3)HLS视频内容优化目前,移动视频内容部分采用了苹果公司的HLS(HTTPLiveStreaming)技术,即每个视频内容存在多种码率的副本,由客户端根据网络带宽情况动态选择相应的副本。视频内容的码率若是高清或者超高清可以达到10Mbit/s以上。对于LTE移动网络而言,一方面容易造成用户带宽过高占用空口资源,另一方面手机屏幕较小难以体现超高清视频优势,因此可以在CDN节点中对存储的HLS视频内容进行优化,分析HLS视频内容的M3U8索引文件,删除其中不适用的码率信息以及对应的副本文件。对HLS视频内容进行精简,可以优化用户带宽和空口占用率,并且节省了CDN节点宝贵的存储空间。

1.5计费系统改造

在2G/3G/4G移动网络中,计费系统通常部署于核心网,如果将CDN节点下沉至核心网,不会影响计费系统统计用户实际消耗的流量,但是如果将CDN节点下沉至基站,则用户的实际流量中有一部分是由基站的CDN节点缓存提供,未经过核心网计费系统,会造成运营商的直接经济损失。因此,需要对计费系统进行改造,满足CDN节点下沉到基站的需要。由于计费系统实现较为复杂,若将计费系统也下沉到基站,首先技术难度较大,其次建设和运营维护成本较高,可通过在基站CDN节点中部署子系统,统计用户的流量使用情况,并定期以话单格式上传至核心网计费系统实现同步。

2结束语

随着LTE移动网络的大规模建设和部署,由于LTE网络高带宽的特点,未来将出现大量大流量、高带宽的业务。对运营商而言,频繁扩容LTE网络会消耗巨额的建设资金和运营维护成本,性价比不高,基于已有的LTE网络进行流量优化,一方面可以提高LTE网络使用效率,节约扩容资金;另一方面可以提升服务质量,增强用户体验。本文对LTE移动网络中的CDN关键技术进行了深入研究,提出了将CDN节点下沉至核心网/基站侧,对DNS解析进行缓存加速,对内容源进行优化并和终端智能适配,对视频内容进行智能优化,通过话单同步实现计费系统改造等关键技术,能够有效降低LTE骨干网和核心网的流量压力,提高空口资源利用率,缩短用户请求的响应时间,改善用户的4G业务感知。本文介绍的方法对LTE移动网络改动较小,以较小的建设和改造成本带来较大的经济效益,具有良好的实用性,可为中国电信等运营商建设和部署LTE移动网络提供参考依据。

篇13:针对天线口网络规划设计的分析论文

针对天线口网络规划设计的分析论文

1ICO常规参数配置及优化

利用iBuildNet进入本项目工程中,点击工具栏“视图”中的“系统管理器”,在系统管理器窗口中右键单击系统名称GSM,选择优化模块中的“智能小区优化”,此时将弹出智能小区优化参数配置窗口,依次配置常规、目标、变量及结果选项卡。

(1)常规项常规项包括名称、优化模式及备注3部分,这里我们采用系统默认配置。

(2)目标项目标项需要设定覆盖、泄漏标,各指标参数配置如图4所示。首先点击目标中的覆盖项,设定覆盖区域中的目标值。覆盖比:设定指定区域的覆盖比例,这里设为95%。门限值:覆盖达标的接收信号门限值,这里设为-75dBm。测试点区间:这里采用系统默认值1m。覆盖区域:指定需要到达上述设定目标的区域,用户可以勾选一个或多个覆盖区域。为使模块能够运行,用户必须指定至少一个覆盖区域(泄漏区域没有该限定),这里选择了B1_F1_覆盖(通过区域工具对相关区域进行圈定),如图2红色框内区域。然后,设定泄漏区域的目标值,其中,泄漏区“B1_F1_泄漏”为图2红色框内区域。

(3)变量变量包括坐标、天线类型、发射功率、方向角、倾斜角、待优化天线设定项,变量(天线参数)配置窗口。坐标:在关闭的情况下,项目中所有的候选天线都会被激活,反之算法会自适应计算达到目标时需要的天线个数和位置,这里我们选择关闭坐标。天线类型:用户可以在下拉的天线库中选择备选的天线型号,这里我们选择全向天线、定向天线两类。发射功率:用户可以设定天线的输入功率可调整范围,这里设定发射功率范围为0~6dBm,步长为1dBm。方向角:当备选天线中存在定向天线时,用户可以设定定向天线可调整方向角的范围和步长。由于候选天线中选用了定向天线,在这里我们开启该功能项。倾斜角:用户可以利用该项设定定向天线可调整下倾角的范围和步长。这里未启用该项。待优化天线设定:若选择“按天线”项,则优化对象为当前工程中加载全部或部分天线;若选择“按区域”布放天线,优化时将不考虑当前现有天线影响,系统将自动在优化区域中添加,并确定最佳天线位置及数量。由于对原方案进行优化,我们选择“按天线”对原室内分布方案中的天线进行优化。

(4)结果上述参数配置完成后,点击“运行”按钮,在“结果”项中即可优化结果,如图6所示。在优化“结果”栏,用户可以查看最终优化结果,优化目标是否实现;在“天线”栏,用户则可以查看优化前后天线类型及功率值的变化等信息。若用户对优化结果满意,可以点击“应用”按钮,将优化结果应用于工程;若用户对优化结果不满意,可以继续点击“运行”按钮,重新计算,直至对优化结果满意。图6所示的优化结果为:优化后室内信号覆盖强度为-80dBm的区域达到了100%,室外泄漏区域的.信号强度超过-80dBm的区域降到了27.5%,室外信号泄漏控制目标(信号强度<-80dbm的区域小于8%)未实现。由此可以看出:尽管ico模块对天线的类型、方向角进行了调整,在当前天线数量、位置限制下,若天线口功率能达到目标值,则泄漏区域内信号强度>80dB可控制在27.5%。然而,受限于原室内分布方案采用的无源器件(功分器、耦合器),天线口功率可能无法达到目标值。接下来,我们利用iBuildNet的ITO模块,根据ICO的优化结果对天线口功率进行配平。

2ITO参数配置及优化

点击ICO“结果”选项卡中的“应用”按钮,应用ICO优化结果,然后对信号覆盖分布进行预测。进入系统管理器中的“智能拓扑优化”ITO模块,依次配置各类参数。

(1)常规项:用户可以对本选项卡中的“优化模式”进行设定,决定是速度优先还是精度优先。

(2)目标项:本选项卡需配置参数,输入功率差值:它定于了天线口功率与天线口目标功率之间的最大差值,我们采用软件默认值1dB。移动用户:用户可以选择进行优化的天线,系统默认配置为项目中所有天线;在“输入功率”栏中,用户可以对各个天线的需求功率值进行逐一输入设置,也可以点击“导入”按钮,打开ICO优化结果文件。这里为利用ICO优化结果,点击“导入”按钮,打开ICO优化结果中的天线口目标发射功率文件。

(3)变量:它可以分别对设备类型、线缆路由及器件进行。设备类型:点击“设备类型”下拉菜单,选择当前室内分布方案可以使用的器件。线缆类型:用户可以分别选择主用线缆及次用线缆的类型(如1/2馈线、7/8馈线)。器件:本栏列出了当前项目中采用的所有器件及数量,用户可以选择要优化的器件。

(4)结果:完成上面3个参数配置后,点击“运行”按钮,用户便可以在“结果”栏下查看ITO优化进程,在“设备”栏下查看优化结果。为ITO优化结果,根据优化结果,若实现ICO优化结果中的天线口目标功率值,需要将信源发射功率调整至14.4dB,并更换部分器件,器件更换部分如设备结果中绿色突出部分:将7dB耦合器换为6dB,二功分器换为7dB耦合器。点击“应用”按钮,将ITO优化结果进行应用。ITO优化前信号场强分布图,优化后的信号场强分布如图9所示。通过优化前后的比较发现:利用ITO对ICO优化后的天线口功率进行配平,室内信号外泄得到了更进一步的控制,同时室内信号覆盖良好,经过ICO与ITO模块优化后的室内分布方案可以有效控制信号外泄的问题。将原室内分布方案中的信号场强分布与iBuildNet优化后的信号场强分布进行对比发现:优化后的室内分布系统方案,在保证室内良好覆盖的情况下,室内信号外泄得到了很好控制,基于iBuildNet的室内分布系统中天线性能参数的优化是智能、有效的,它提高了室内分布方案的可行性。

3结束语

室内分布系统方案的合理性决定了室内网络性能。尽管室内分布方案的设计已取得了大量可借鉴经验,由于考虑因素众多,工程师凭经验设计室内分布系统很难保证室内分布方案的合理性。此外,随着LTE、多网协同技术的发展,网络规划优化工作已成为业界关注的焦点,智能化已成为网规网优未来的发展方向。润谱通信开发的无线网络规划优化软件iBuildNet实现了室内分布方案设计的自动化,iBuildNet软件的智能小区优化模块ICO及智能拓扑优化模块ITO等则实现了室内分布方案设计的最优化。总之,iBuildNet可以提高室内分布方案的合理性,促进未来智能网络规划优化设计的发展,实现室内分布系统设计模式的根本转变。

篇14:校园网络设计论文

校园网络设计论文

一、引言

校园网是指利用网络设备、适宜的组网技术与协议、通信介质以及各类系统软件和应用管理软件,将校园内各种终端设备和计算机有机地集成在一起,并用于教学、科研、学校管理等方面工作的计算机局域网络系统。最近几年来,随着网络技术的高速发展和高等教育改革的逐年加快现代高等教育正在朝网络教学、远程教学、教育资源共享的方向发展。校园网显现了以下关键特征,促使许多高校在对校园网及其信息应用进行不断的升级改造和完善,文章将以长沙通信职业技术学院校园网的升级做为实例探讨了校园网改造的设计与实现这一课题。

二、校园网升级改造的设计与实现

2.1长沙通信职业技术学院校园网的现状

长沙通信职业技术学院托隶属电信企业的优势,很早就组建了校园网,期间对一些关键网络设备和技术进行了更换和提升,近年来,随着学院发展速度的不断加快,建筑楼宇的不断增多以及信息化的需求加大,原有校园网在运行中暴露出许多问题,主要表现在:

1、网络覆盖:覆盖范围不够。随着新培训大楼和体育馆的建成及的实验楼的改造,原有规模的校园网设备的端口数严重缺乏,不能满足现有需求。

2、网络性能:性能不稳定。原有网络带宽和主交换机交换能力及服务器的配置均己经不能满足学院多媒体教学和开展远程教育等业务流量的需求。

3、网络管理:管理难度大。随着入网用户的增加,网络设备的维护和网络用户的管理难度越来越大。

4、网络安全:安全体系差。没有一套完备的网络安全体系;原有防火墙性能较差,大大限制了外网访问速度。

5、与外网互联方面。出口带宽较低,而且是单条专线接入互联网,远远不能满足需求,教育科研网与公众网间互联不尽人意,网络性能不太稳定。

2.2升级改造的方案设计

2.2.1网络拓扑结构

校园网一般采用三层层次模型,将整个网络划分成不同的层次,各个层次各司其职。网络由三个层次组成:接入层、汇聚层、核心层。接入层的功能:可以是直接连接桌面PC,也可以是建筑物楼内的交换机,做为网络接入安全控制和QOS策略实现的边缘点,可以实现接入用户的802.1x认证。汇聚层的功能:承上启下,提供负载平衡、快速收敛和扩展性;完成路由选择,汇聚接入层设备的流量,高速无阻塞地转发给核心层设备。核心层的功能:提供负载平衡、快速收敛和扩展性;连接各汇聚设备;完成数据流的高速转发。

2.2.2网络管理系统的总体设计

在校园网升级改造项目中,网络管理系统依照“技术管理为主,行政管理为辅”的方式,在行政上,通过委派有网管经验的网管工作人员,专职负责校园网设备的配置和管理,信息定期收集统计和分析,性能和安全性监控。在技术层面上,选用一款专业的网络管理软件,安装在网管中心,通过提升整个的校园网的管理水平。

2.2.3校园网安全系统设计

合适的安全产品选型和部署、完善的系统加固处理、良好的安全管理培训及快速的安全事件响应,才是安全有保障的解决之道。因此,要想很好地实现网络安全管理,需要从以下两个方面着手:1、部署合适的安全产品和防御系;

2、网络安全管理措施。

2.3升级改造的实现

2.3.1网络拓扑结构

根据单位现有的设备,以及以上这些设计要求,长沙通信职业技术学院的网络结构分为三级:

第一级是网络中心。网络中心选址在学校地域的中心建筑(实验大楼),布置了校园网的核心设备,如路由器、交换机、服务器(WWW服务器、电子邮件服务器、拨号服务器、域名服务器等),并预留了将来与本部以外的几个园区的通信接口。

第二级是建筑群的主干结点。校园网按地域设置了几条干线光缆,从网络中心辐射到几个主要建筑群,并在二级主干节点处端接。在主干网节点上安装的交换机位于网络的第二层,它向上与网络中心的主干交换机相连,向下与各楼层的集线器相连。学校校园网主干带宽全部为1000Mbps。

第三级是建筑物楼内的交换机。三级节点主要是指直接与服务器和工作站连接的局域网设备,即以太网或快速以太网交换机。网络中心设施是华三公司的H3C-7510交换机。H3C-7510交换机具有良好的虚拟网络支持能力,可以跨越各个建筑物的地理限制,在全校范围内建立必要的虚拟网络,从而为网络的应用、管理和维护带来极大的便利。网络中心用的各种服务器都可直接连接到中心的H3C-7510交换机速以太网端口上,以解决可能会出现的瓶颈问题。各建筑物楼内配置H3C-E126交换机,用于按地域将连续IP地址划分子网,建立虚拟局域网。各系或部门的服务器可直接挂在H3C-E126交换机上。所有这些H3C-E126交换机都连在第二级的主干节点H3C-E3610交换机上。

2.3.2网络管理系统部署

校园网的管理对保证网络平稳运行至关重要。校园网的管理分行政手段管理和技术手段管理。

1、建立一支高水平的网络安全管理队伍

要真正实现网络安全,各种制度、策略和技术措施只是前提条件,日常的管理和维护工作才是重点。要维护大规模网络的安全,需要有一批经验丰富的.专门的网络安全管理人员,让他们在有关信息安全部门的领导下做好重要系统的管理和监控、协助建设各类网络设施和系统、协助配置各类系统和设备、协助应用部门查杀计算机病毒、协助信息安全部门处理各种安全事件、在信息安全部门的授权下检查解决各类系统的安全漏洞和弱点等工作。

2、布署稳定实用的网络管理系统软件

在众多的网络管理系统中,有著名的IBMTivoli、HPOpenView等网管平台软件,也有CiscoWorks、HammerView等设备厂商提供的网元管理软件,更有美萍网管这种网上盛行的软件和免费软件。选择网络管理软件最重要的是适合网络业务的需求,我们根据学院本身的特点选择了安装上海北塔通讯网络科技发展有限公司完全自主开发的一套BTNM网络运维管理系统。:

2.3.3网络安全系统部署

校园网整体结构是一个通过千兆和百兆以太网链路连接的网络。从网络安全的角度来看,整个网络分为三大部分,第一部分为重点的安全保护区,即为校园网中的重要应用服务器群,同时该部分还可包含网络其它重要部门的网络设备与用户;第二部分为校园网普通网络区域,即为校园内除重点信息安全保护区外的其它网络设备和用户,第三部分为外部网络区域,即指与校园网连接的Internet网络和教育网。升级改造后主要通过以下几种技术的综合应用来部署网络安全系统。1、防火墙的部署;2、入侵检测系统的部署;3、漏洞扫描系统的部署;4、防病毒系统的部署;5、备份系统的部署;6、过滤不良网络信息等其它安全手段。

三、结束语

目前,解决方案己经在学校实施了,学院的网络系统已经处于一种稳定忙碌的运行状态和一个严密的安全管理和防范系统的保护之下了。

篇15:电力系统仓储网络规划研究论文

电力系统仓储网络规划研究论文

1建立统一的物资管理规范

1。1优化管理流程

应积极优化现有的管理流程,整合传统的分散管理模式。重新规划仓库布局,集中管理现有仓库,利用配送、转仓等方式,统筹管理所有物资。在仓库管理工作中,应将工作延伸到废旧物资的回收和维护、配送、采购以及项目规划等方面。同时要加强对各方面工作的统筹管理,实现管理流程的优化。

1。2强化采购计划管理

在强化采购计划管理的过程中,应从源头抓起,对预测本身、生产计划、订单管理以及强化预测等进行加强。在全年采购预算的制定方面,应由各个部门对月度采购计划进行上报,然后由物流中心统一出库或采购。通过强化采购计划管理,妥善处理库存物资资金占用,保证库存安全。

1。3设置合理库存限额和分类管理

基于仓库集中管理,进行统筹汇总,设置安全库存最高和最低点的预警标准。应详细计划、精心管理占用资金大、品种少的设备和物资,尽量将相应的库存数量控制到最低标准。平衡调节一般性生产物资的库存量,集中批量采购占用资金小、品种多的设备和物资,合理控制库存。

2合理规划仓储空间

2。1加强区域联合

在同一区域或同一投资主体的电力系统中,整合仓储资源,实行联合仓储的模式,降低仓储网络运行和维护的成本。在这样的仓储网络中,每个项目单位可将其他项目单位的库存资源等同于自己的库存资源,实现虚拟仓储,有效降低成本和风险。

2。2供应商库存管理

在电力系统仓储网络中,为降低库存,可由上游的供应商进行库存管理。如果电力系统的物资和设备库存量低于安全标准,则由供应商主动补货。这种方式通常用于标准的物资和耗材。由于需要在信息系统、供应商以及库存用户之间进行交互,因此供应链的选择应更加科学合理。

2。3仓储区域划分

在通常情况下,可将仓储区域划分为危化品存储区、立体库区以及库外存储区等。其中,危化品存储区主要用于存储有毒有害、易燃易爆以及有腐蚀性的物资。立体库区包括货车操作站台、室内操作区、平面存储区、恒温恒湿存储区、悬臂货架区、普通立体货架区以及自动化立体货架区等。库外存储区主要是露天存放物资。

3应用先进的仓储设施

基于科学化的仓储管理规范和合理化的仓储空间规划,配备适当的'设备在立体库区。可应用一些新型的数码自动识别系统、托盘以及货架等,实现对仓储物资的包装、加工和分拣。这些设备的应用,能为电力系统带来十分可观的回报收益,提升管理效率。同时,对于仓储自动化水平的发展和物流运作效率的提高具有极大地促进作用。此外,还能避免由人为因素造成的物资丢失和损坏,提升电力系统仓储网络的管理效果。具体来说,可在普通立体货架区采用标准化的货架、料箱和托盘,用于标准包装、大储量的物资存放。将杆状物料、绝缘子等异形物料、钢管等物资存放于悬臂货架。将工具、消耗材料小型备品等物资存放于小型货架。将有特殊存放条件要求的物资存放于恒温恒湿存储区。将辊套、磨辊、型材、钢材以及线缆等要求较低的物资存放于室内平面存储区。

4引入智能化仓储管理系统

在智能化的仓储管理系统中,应建立自动化立体仓库,管理信息化仓储,并且进行机械化搬运和包装,统一编码物料,物品信息利用条形码进行携带。通过集成信息的方式,实现配送、出库、收货、采购以及规划等过程的信息一体化。利用硬件信息采集器,快速进行入库操作。利用该项技术,还可实现货位管理、智能盘点、过期提示以及智能定位等功能。可利用RFID技术管理变压器等贵重物资,掌握其基本信息,实现在途跟踪,预测送货周期等。在仓储管理中,货架摆放可利用立体仓储,合理堆放物资,使系统能自动检查物资数量。在物资存取的过程中,实现仓储数量的自动变更。应用仓储管理信息系统,智能化管理物资的入库和出库,及时、准确地提供信息服务和货物的进出仓信息,进一步提高电力系统仓储网络的运行和管理效率。

篇16:网络规划方案

网络规划方案

创研港1号楼网络规划方案一、项目概述创研港1号楼为大中小企业提供办公环境,并提供网络服务,针对各个公司对网络的要求,对网络进行合理划分。二、技术介绍本次网络工程主要采用二层和三层交换机的vlan技术,二层交换机与三层交换机的vlan一一对应,这样可以实现宽带共享的功能。三、设备命名规则本工程用到的网络设备有路由器AR750S,二层交换机AT8000S,三层交换机X916。其中AT8000S作为楼层交换机使用,截止目前共用十四台。设备名为switch+楼层数+楼编号(主楼为a,副楼为b)。例如交换机名为switch12a,则是主楼十二层交换机;交换机名为switch3b,则是副楼3层交换机。其中X916作为核心交换机使用,截止目前共用一台。设备名为switchblade。其中AR750S作为防火墙使用,截止目前共用一台。四、接口命名规则接口命名规则遵循设备接口命名规则。AT8000S,RJ45接口名称为eX,X为端口序号。例如:e2,为交换机第二号RJ45接口。光缆接口名称为gX,X为端口序号。例如g2,为交换机第二号光接口。X916为模块化设计,接口名称为portX.Y.Z。X表示堆叠顺序,Y表示模块序号,Z表示模块上的端口序号。例如,port1.1.1为第一堆交换机的第一个模块的第一个接口;port2.3.4,为第二堆交换机的第三个模块的第四个接口。五、ip地址规划便于管理维护网络设备,对ip地址做如下规划:5.1设备管理地址二层交换机(AT-8000S)的管理ip为192.168.200.X/24,X为楼层交换机所在的楼层数。例如:192.168.200.10/24,则表示该交换机为10楼的楼层交换机。核心交换机(X916)的管理ip为192.168.200.11/24。防火墙(AR750s)的管理ip为172.16.1.254/24 5.2用户地址&vlan地址因为核心交换机(X916)的vlan与楼层交换机(AT-8000S)的vlan一一对应,所以vlan的ip地址决定了用户ip的网段、掩码、网关等信息。用户ip:172.16.X.Y/24。X为公司进驻的顺序+10;Y为大于1的任何数字(公司内部自定)。例如:172.16.11.2/24,这是创研港进住的第一家公司;172.16.25.1/24这是创研港进驻的第15家公司。用户的网关为vlan的.ip。六、vlan规划6.1三层交换机vlan规划vlan的编号以公司进驻的顺序+10;vlan的名称以公司所在的房间号为准;vlan ip:172.16.X.1/24,X为公司进驻的顺序+10。6.2二层交换机vlan规划二层交换机(AT-8000S)不能定义vlan名称和ip,只能定义vlan编号,所以编号为公司进驻的顺序+10。七、路由协议路由协议为配置在核心交换上的默认路由。八、网络安全当确定网络架构之后要更改二层交换机,核心交换机及防火墙的账户、口令。不要让无关人员接触到网络设备。定期进行网络设备的维护和检查。九、配置举例XX日,一家名为Lenovo的公司进驻创研港一号楼,是第56家进驻公司,在303房间办公。这家公司需要两个网口上网。在核心交换机上做如下配置:switch#configure t进入全局模式switch(config)#vlan database进入vlan模式switch(config-vlan)#vlan 66name 303创建66并命名为303 switch(config-vlan)#exit退出switch(config)#interface port2.1.2进入端口2.1.2 switch(config-if)#switchport mode trunk将端口模式改为trunk switch(config-if)#switchport trunk allowed vlan add 66将trunk应用到vlan66 switch(config-if)#exit退出switch(config)#interface vlan66进入vlan66 switch(config-if)#ip add 172.16.66.1/24给vlan201设定ip子网掩码switch(config-if)#exit退出在二层上也要做出相应设置:switch2a#configure进入全局模式switch2a(config)#vlan database进入vlan模式switch2a(config-vlan)#vlan 66创建vlan201 switch2a(config-vlan)#exit退出switch2a(config)#interface range ethernet e1-2进入e1,e2端口模式switch2a(config-if)#switchport access vlan 66将e1,e2加入vlan201 switch2a(config-if)#exit退出switch2a(config)#interface ethernet g2进入g2口switch2a(config-if)#switchport mode trunk将端口模式改为trunk switch2a(config-if)#switchport trunk allowed vlan add 66将trunk应用到vlan66至此,Lenovo公司就可以上网了。 学习的安奈特的。交换机

农田水利规划设计探索论文

矿山生活区规划设计论文

机场规划设计技术管理探讨论文

网络规划设计师论文范文

网络规划专业自荐信

网络论文

网络环境的教学设计论文

造林规划设计与造林技术探索论文

城市新城区发展战略与规划设计论文

水利建设项目规划及设计思路论文

lte网络规划设计论文(共16篇)

欢迎下载DOC格式的lte网络规划设计论文,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档