下面是小编为大家整理的高职高等数学教学引入数学建模思想的探索论文(共含20篇),仅供参考,大家一起来看看吧。同时,但愿您也能像本文投稿人“wzq1972”一样,积极向本站投稿分享好文章。
高职高等数学教学引入数学建模思想的探索论文
摘要:数学建模是为改变传统高职高等数学教学中存在的内容陈旧和理论脱离实际的缺陷而产生起来的课程,它着重于学生能力和素质的培养、知识的应用和创新。在高等数学教学中引进数学模型,渗透数学建模的思想与方法,不仅能大大激发学生学习数学的兴趣,提高他们学习数学和应用数学的能力,而且能够提升教师的教学水平,丰富现有的教学方法,拓宽课堂教学的内涵,有效提高高等数学的教学质量。
关键词:数学建模;高等数学;教学方法
高等数学是高职理、工、经济、管理等专业的一门必不可少的基础课程,为其他专业课程的学习,以及将来的技术工作,奠定了必要的数学基础。然而各类高职院校学生高等数学的学习情况却不容乐观,多数学生反映高等数学太难,数学课枯燥,成绩不理想,有些学生甚至跟不上教学进度。要想改变这种状况,高职院校必须对高等数学教学的传统思想观念和教学方法加以改革,教师不仅要教会学生一些数学概念和定理,更要教会他们如何运用手中的数学武器去解决实际问题。数学建模就是将现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释和指导现实问题。数学建模对于提高学生运用数学和计算机技术解决实际问题的能力,培养创新能力与实践能力,培养团结合作精神,全面提高学生的素质具有非常积极的意义。
一、在高等数学教学中渗透数学建模思想的必要性
在高等数学教学中,帮助学生去发现问题、分析问题并想办法利用所学数学知识解决问题非常重要。在传统的高等数学教学中,学生基本处于被动接受状态,很少参与教学过程。教师在教学过程中常常把教学的目标确定在使学生掌握数学理论知识的层面上。通常的教学方法是:教师引入相关概念,证明相应定理,推导常用公式,列举典型例题,要求学生记住公式,学会套用公式,在做题中掌握解题方法与技巧。当然,在高等数学教学中这些必不可少,但这只是问题的一个方面。目前,高等数学的题目都有答案,而将来面对的问题大多预先不知道答案,这就要让学生了解如何用数学去解决日常生活中或其他学科中出现的实际问题,提高用数学方法处理实际问题的`能力。
在高等数学课程教学中积极渗透、有机融合数学建模的思想方法,积极引导、帮助学生理解数学精神实质,掌握数学思想方法,增强运用数学的意识,提高数学能力,对培养学生的数学素养,全面提升教育教学质量有着积极的实际意义。
二、在教学内容中渗透数学建模思想和方法的探究
事实上,高等数学中很多概念的引入都采用了数学建模的思想与方法,比如,从研究变速直线运动的瞬时速度与曲线切线的斜率出发引入导数的概念,从研究曲边梯形的面积出发引人定积分概念,从研究空间物体的质量出发引入三重积分概念等。教师在讲课过程中要适时、适当、有意识地加以引导,考虑到学生实际的数学基础,在授课前应有针对性地结合现行教材的各个章节,搜集相关内容的实例,尽可能将高等数学运用于实际生活。讲授内容时适当介绍相关的一些简单模型,不仅能丰富大学数学的课堂内容,而且能很好地活跃课堂气氛,调动学生的学习积极性。以下就在高等数学实际教学中应用数学建模思想的实例加以说明。
1.微分方程
微分方程数学模型是解决实际问题的有力工具,在了解并掌握了常见的常微分方程的建立与求解后引人人口模型:人口增长问题是当今世界最受关注的问题之一。著名的马尔萨斯模型是可分离变量的微分方程,很容易求解,其解说明人口将以指数函数的速度增长。该模型检验过去效果较好,但预测将来问题很大,因为它包含明显的不合理因素。这源于模型假设:人口增长率仅与人口出生率和死亡率有关且为常数。这一假设使模型得以简化,但也隐含了人口的无限制增长。Logistic模型也是可分离变量的微分方程。该模型考虑了人口数量发展到一定水平后,会产生许多影响人口的新问题,如食物短缺、居住和交通拥挤等,此外,随着人口密度的增加,传染病增多,死亡率将上升,所有这些都会导致人口增长率的减少,根据统计规律,对马尔萨斯模型作了改进。作为中长期预测,Logistic模型要比马尔萨斯模型更为合理。 另外,微分方程模型还有很多,例如与生活密切相关的交通问题模型、传染病模型等。
2.零点定理
闭区间上连续函数的性质理论性较强,严格的证明在一般的高等数学教材中均略去。零点定理是其中易于理解的一个,该定理有很好的几何直观。但其应用在教学中也仅限于研究方程的根的问题。“方桌问题”:四条腿长度相等的方桌放在不平的地面上,四条腿能否同时着地?这个问题是日常生活巾遇到的实际问题,在一定的假设条件下,该问题可抽象为数学问题。通过构造辅助函数,利用零点定理便可得问题答案是肯定的。教学中还可提出若桌子是长方形的,是否结论还成立?利用这个模型,学生们不仅了解了数学建模的过程,很好地掌握了闭区间上连续函数的性质,而且提高了学习高等数学的积极性。
此外,与生活实际相关的拉橡皮筋问题、巧切蛋糕问题、登山中的上山下山问题都可归结为零点定理来建立数学模型。这些模型的建立,对于学生消化理解零点定理甚至介值定理都有很大的益处。
3.极值与最值问题
最值问题是实际生活中经常碰到的问题,用导数解决实际生活中的最值问题是高等数学的重要内容,学好导数,重视导数应用是学好高等数学基础。在讲完导数应用的理论内容后,引人“光学中的折射定理”:光在由一种介质进人另一种介质时,在界面处会发生折射现象。折射现象造成的结果是所谓的“最短时间”效应,即光线会走最短的路径。经过一定的条件设定,这样最短时间效应对应的优化问题为求传播时间的最小值问题,经计算可得光学中著名的折射定理。该定理是学生在高中物理中学习过的重要定理,通过建立数学模型,并利用导数问题加以解决,加深了学生对折射定理的认识,并进一步理解导数应用问题。
另外,运输问题、森林救火费用最小问题、最佳捕鱼方案问题等都是生活中的实际问题,这些问题模型的建立、解决都能使学生对导数应用起到加深理解的作用。
4.几何概率
现实世界中充满了不确定性,我们所研究的对象往往受到诸多随机因素的影响,因此所以建立的数学模型涉及的变量是随机变量,甚至变量间的关系也非确定的函数关系,这类模型称为随机模型。几何概率模型就是涉及“等可能性”的概率问题。著名的蒲丰问题便是几何概率的一个早期例子:平面上画着一些平行线,它们之间的距离均为定值,向此平面投一长度小于平行线间距离的针,试求此针与任一平行线相交的概率。值得注意的是,通过对此问题建立概率模型,可以看到它与某个我们感兴趣的量――圆周率有关,然后设计适当的随机试验,并通过试验的结果来确定这个量。
随着计算机的发展,按照蒲丰问题的思路建立起一类新的方法,称为蒙特卡罗方法,并取得广泛应用。约会问题也是几何概型问题,即:两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时就可离去,试求两人能会面的概率。
合理安排理论教学恰当引入数学建模的思想和方法,主动引导学生运用所学数学知识去分析和解决实际问题,就能充分调动学生学习高等数学的积极性,让学生发挥学习的主观能动性,感受学习高等数学的乐趣。
三、在数学建模活动中提升学生的数学综合素质
数学建模活动主要包含数学建模课程、数学建模培训与竞赛等。参加过数学建模活动的学生基本能通过采集、整理和分析数据与信息,找出量和量之间的关系,针对问题合理的假设将其转化为一个数学问题,建立数学模型,利用计算机对所建模型求解,最后对结果进行分析处理,检验和评价,从而解决问题,最终完成一篇或报告。数学建模活动着重培养了学生下面几项能力:应用数学方法和思想进行综合分析推理的能力(创造力、想象力、联想力和洞察力)、数学语言与生活语言的互译能力、查阅文献资料并消化和应用的能力、使用计算机及相应数学软件的能力、的撰写能力和表达能力、团队合作的能力。
开展数学建模活动是渗透数学建模思想的最重要的形式,它既可以体现课内课外知识的结合,又可以满足普及建模知识与提高建模能力结合的原则,为培养学生综合运用数学知识分析和解决实际问题的能力提供了实践平台,有效地提升了学生的数学综合素质。
有关数学建模思想融入高职高等数学教学的探索与实践论文
引言
当前,高考第五批和中专对口升学学生成为高职院校的主要生源,高等数学在高职院校不仅是工科学生公共必修课,同时也为经济类的专业基础课,对学生学习后续专业课程非常重要。但学生数学基础相对薄弱,对学习不感兴趣,自制力差。而学生对线性代数抽象的概念定理及其冗繁的计算难以接受成为线性代数教学的突出表现,因此,在线性代数教学中融入数学建模思想方法是解决学生理解困难和实现教学目标的有效途径。
一、高职院校线性代数教学情况与建模发展概况
1.线性代数教学情况。行列式、矩阵和线性方程组是目前高职院校线性代数部分教学的主要内容,所用的教材是以理论计算为主体,教学偏重其基本定义和定理,过分强调理论学习,忽视其方法和应用,有关线性代数应用实例几乎不涉及。再者高职院校高等数学总体课时少,因此线性代数部分课时也非常有限,但其理论抽象,内容较多,教师在课堂上大多采用填鸭式的教学方式,导致该课程与实际应用严重脱离,造成了学生感觉线性代数知识枯燥,计算繁杂,学习它无用处,大大降低了学生的学习热情。
2.数学建模及其发展概况。数学建模的基本思想是利用数学知识解决实际问题,是对问题进行调查、观察和分析,提出假设,经过抽象简化,建立反映实际问题的数量关系;并利用数学知识和Matlab、Lingo、Mathematics等数学软件求解所得到的模型;再用所得结论解释实际问题,结合实际信息来检验结果,最后根据验证情况来对模型进行改进和应用,它使学数学与用数学得到统一。数学建模大专组竞赛开展已有,参赛的高职院校逐年增加,我院在多年的参赛中取得了一定的成果,但因数学建模难度大和学生数学基础薄弱以及高职院校学制的原因,参加数学建模培训的学生基本为大一新生,而且只有小部分,明显受益面小。
二、数学建模思想融人线性代数教学中的具体实施线性代数因其理论抽象,逻辑严密,计算繁琐,让人对其现实意义感受不到,使高职学生学习起来有困难,也就很难激发学生的.学习兴趣,因此,线性代数教学过程中就要求教师介绍应用案例应体现科学性、通俗性和实用性。
1.数学建模思想融入线性代数理论教学中。线性代数中的行列式、矩阵、矩阵乘法、线性方程组等复杂抽象的概念都可以通过实际问题经过抽象和概括得到,故而可以恰当选取一些生动的实例来吸引学生的注意力,通过对实际背景问题的提出、分析、归纳和总结过程的引入线性代数定义,同时自然地建立起概念模型,让学生切实体会把实际问题转化为数学的过程,逐步培养学生的数学建模思想。比如讲授行列式定义之前,可以引入一个货物交换模型,并介绍模型是由诺贝尔经济学奖获得者列昂杰夫(Leontief)提出,让学生拓展视野。引导学生分析问题,建立一个三元线性方程组来求解该问题,再以此问题引出行列式,使学生了解行列式应用背景是为求解线性方程组而定义的。从简单的经济问题入手,让学生了解知识的应用背景,使学生感受到学习行列式是为生产实践服务的,提高学生学习的积极性[2],明确学生学习的目的性。
2.数学建模思想融入线性代数案例教学中。选择简单的实际案例作为线性代数例题,给学生讲授理论知识的同时引导学生对问题进行分析,对案例进行适当简化并做出合理假设,再建立数学模型并求解,进而用结果解释实际案例,学生通过这样的学习过程容易理解掌握理论知识,同时也体会了数学建模的基本思想,更让学生认识到线性代数的实用价值,而且有利于提高学生分析问题和解决问题的能力。对于不同的专业,可以根据专业需要引入相应的数学模型,但专业性不能太强,由于大一学生还暂时没有学,因课时限制,在线性代数课堂教学中应该采用简单的例子。比如经管类专业的学生学习矩阵和线性方程组的相关例题时,可以分别选择简单的投入产出问题和互付工资问题的数学模型;而电子通信类专业的学生学习矩阵和线性方程组的相关例题时,可以加入简单的电路设计问题和电路网络问题的数学模型。
3.数学建模思想融入线性代数课后练习中。高职院校线性代数教学内容侧重于理论,课后习题的配置大多数只是为学生巩固基础知识和运算技巧的,对线性代数的定义、定理的实际应用问题基本没有涉及,学生的实际应用训练不够,因此适当地补充一些简单的线性代数建模习题,让学生通过对所学的知识与数学建模思想方法相结合来解决。我们从两个方面具体实施:
(1)在线性代数课程中加入Matlab数学实验,利用2个学时介绍与行列式、矩阵、线性方程组等内容相关的Matlab软件的基础知识,再安排2个学时让学生上机练习并提交一份应用Matlab计算行列式、矩阵和线性方程组相关内容的实验报告。
(2)针对所学的内容,开展1次数学建模习题活动,要求学生3人一组利用课余时间合作完成建模作业,作业以小论文形式提交,提交之后,教师让每组选一个代表简单介绍完成作业的思路和遇到的问题,其余队员可作补充,再针对文章的不同做出相应的点评并指出改进的方向。通过这种学习模式,不但提高学生自学和语言表达以及论文写作能力,而且利于培养学生团队合作和促进师生关系,教学效果也得以提升。
4.数学建模思想的案例融入线性代数教学中。案例1:矩阵的乘积。现有甲、乙、丙三个商家代理某厂家的A、B、C、D四款产品。四款产品的每箱单价和重量分别为A:20元,16千克;B:50元,20千克;C:30元,16千克;D:25元,12千克。甲代理商代理的产品与数量分别为A:20箱,B:5箱,D:8箱。乙代理商代理的产品与数量分别为B:12箱,C:16箱,D:10箱。丙代理商代理的产品与数量分别为A:10箱,B:30箱。求解三家代理商代理产品总价和总重量。模型假设:①在没任何促销优惠措施下严格按照单价和数量计算总价;②同款产品对即使不同级别的三家代理商执行同样的单价。模型建立:由已知数据分析可知,发往各代理商的产品类别不尽相同,通过用0代替,可以列成表。由此,分别将产品的单价和单位重量。
三、改革的初步成效
数学建模思想方法与线性代数的教学适当结合并灵活运用,这一教学改革提高了学生们的能力和素质,主要表现在以下几个方面:(1)熟练掌握Matlab等数学软件的使用,利用数学软件加深了数学理论知识的理解和应用;(2)学生学习积极性明显提高,启发学生初步产生用数学解决实际问题的意识;(3)学生已逐步形成一种建模思维,逐步形成良好的分析和处理问题的习惯。另外,适时应用数学建模思想教学,促进了线性代数教学方法的改进,提高教学水平和教学效果,利于高职高等数学的教学改革进一步推进和课程建设的长效发展。
总之,在高职院校高等数学各个教学模块中逐渐地融入数学建模思想方法,能使学生的数学素养有较大提高,并对教师教学理念的转变起到促进作用。
高职数学建模思想探讨论文
【摘要】在计算机技术飞速发展的今天,数学不再仅仅是一门抽象的学科,计算机技术与数学的结合,使得数学建模在未来的各个行业大有可为.数学作为高职院校中基础或必修课程,同时,高职数学教学应以解决当前实际问题为出发点,让学生既掌握课堂数学知识,又能在实际生活中更好地应用数学,所以,将数学建模思想融入高职教学课堂尤为重要,本文以让数学更好地提高高职高专生的水平为出发点,通过数学建模,来慢慢实现数学向应用型学科的转变.
【关键词】数学建模;高职数学教学;教学改革
在高职教育中,数学既是基础课程,又是某些行业的专业课程,但现在高职的现状,由于对数学在高职教育重要性认识不足等原因,使得大部分学生没有足够牢固的数学基础,通过近些年来对于数学建模进行培训的工作总结,认识到了数学建模的思维有助于培养和提高学生在实际中解决问题的能力.如今,如何在高职数学教学中将数学建模思想和方法融入进去,成为高职院校开展数学建模的重要课题之一.
一、为什么要将数学建模应用于在高职数学教学中
数学建模是把实际问题与数学联系起来的中介,实际问题的解决,依靠的是数学的思维思想方法.数学建模的中心思想,以解决实际问题为主线,以学生掌握为中心,以培养解决实际应用能力及创新能力为目标.通过数学建模,把课堂所学的数学知识用到实践中,有助于让学生能够直观地感受到数学的价值,进而使学生对学习数学产生兴趣,并且提高了学生运用所学到的知识的能力,提高学生应用数学的能力.
(一)培养学生的逻辑能力与发散思维意识.数学建模要求学生能够对于自己学到的数学知识和数学思想进行分析,充分发挥自己的想象力,创造力与发散的思维能力,最后总结出一个能最大限度地描述出现的实际问题的数学模型,在通过利用计算机与一些可以使用的数学理论与方法进行计算,得出结论,通过实践证明,现实中看似一些联系微弱的甚至毫无关联的实际问题,通过使用数学建模方法,最后会得到基本相同的数学模型.这就需要学生们灵活的应用所学知识,利用总结归纳,类比归纳,从一般到特殊等数学思想,同时也需要培养学生勇于创新,不甘于现状的优秀品质.
(二)培养和提高学生学习数学的兴趣.随着社会的进步,对技术性工作人员提出了更高的`要求,其数学素养要比较高.然而现在很多学生对数学的认识不到位,觉得数学不过是计算教材上的例题及应付考试的工具,甚至认为大学数学没什么用处.练习使用数学建模有助于改变学生的这种思维.因为通过数学建模和频繁地使用所学到的数学知识,就可以感受到数学的应用价值,从而使学生对学习数学产生兴趣.
(三)提高学生使用计算机的能力.随着社会的进步和计算机越来越普遍的应用,大数据时代的来临,以及科学技术的发展,现今有了很多计算功能很强大的数学软件,使得很多比较烦琐的数学计算变得简单了许多,也使得现在许多领域更广泛的使用计算机.而数学模型的求解,往往存在巨大的计算量,所以使用计算机和数学软件是很有必要的,学生通过使用数学建模,也有助于使学生能够更加熟练使用计算机和数学软件,对于提高学生使用计算机来解决数学问题的能力有促进作用,使得学生更具有竞争力.
二、如何在高职数学教学中渗入数学建模的思想
高职教学的目的是培养高等技能应用人才,这些人才都拥有一项或多项高等技能.学生参加工作后经常需要利用数学知识和专业知识技能,还有多方面的综合知识,通过建立数学模型解决实际问题.高职教育要在信息化如此之高的时代培养出具有强有力竞争的高技术应用型人才,面对的难度可想而知,因此,高职数学教学把数学建模引入其中已是势在必行.
(一)构建科学合理的高职数学教学体系和比较完善的教学大纲.一份好的教学大纲有助于提高数学教学质量,也有助于培养高等技能人才,是安排教学进度和任务的根据.制订科学的教学计划、设置合理的教学内容,有助于激发学生学习数学的兴趣.以为学生负责为出发点,我们要根据学校不同专业对于培养人才的需要与专业课教师一起讨论和制订数学课程的教学内容、目的和进度等的安排,从而形成有不同专业特色的数学教学体系.另外还可以根据不同专业,来分别设置公共模块和选学模块.
(二)编写一系列具有鲜明高职特色的教材,在教材中.融入生活工作有关的案例及数学建模思想和方法在教学中,教材是不可或缺的,起着引导教学方向的作用.高职培养的是技能型人才,而数学建模又是一项实践性的活动.高职院校数学教材的基础应该是生产实践,围绕着满足职业岗位需求的中心,把创新教育作为目的,把培养和提高学生综合素质作为教育观念,从而把进行数学建模的思想和方法表现出来.应该多把实践性,创新性的教学内容编入教材,尽可能地满足高职人才培养的需求.
(三)在数学教学中,使用鲜明有趣的案例有助于增强.学生对学习数学的兴趣和意识在进行数学教学过程中,对于每一个陌生的,学生未接触的公式、定理、抽象的概念等等,都尽量应用一些日常生活中存在的案例来举例以引导学生,在讲解每个知识点的时候,最好都能够使用知识点与实际生活和学生的专业紧密联系的实例,让学生能够充分地感受到数学渗透到了日常生活的每一个角落,无处不在,数学实际上就是一个通过数学符号来描述世界的模型,并不仅仅是对于理论的推导,枯燥而没有实际意义的工作.例如,微信红包、卫星发射轨迹、借贷偿还问题,以及经济学中分析的边际效用的这些例子.这些不仅能让学生学习到数学知识,而且能让他们体会到数学与日常生活的联系以及将数学知识与实际生活相结合的乐趣.数学建模有助于培养学生应用数学能力,值得在高职院校中大力推广.
(四)进行数学实验,培养学生的动手和动脑能力.数学建模的关键步骤之一就是通过使用计算机来求解模型,在数学建模过程中,数学实验是其重要组成部分之一.因为通过进行数学实验,可以使学生能够更加透彻的理解数学概念,学生学习数学时感觉更加简单,进而使学生在学习数学时更加积极.数学实验为学生提供了一种通过使用计算机进行相互学习的环境,学生能够根据自己大脑中大胆的设想,通过动手做实验来验证自己的想法.通过这样的教学方式,能够提高学生学习数学的积极性和主动性,另外,也可以培养提高学生的观察能力、归纳能力、思维能力以及动手能力,进而极大地提高了学生的综合素质.
(五)通过使用数学建模,在教学中培养学生运用数学的能力利用数学解决实际生产生活问题,利用数学来提高工作效率作为高职院校数学教育的根本任务,对于目前高职院校进行数学教学是关键的一环,能够运用数学,对于学生来说也是一种能力.因为它与数学的计算方式和思维方式以及空间想象力等都紧密相关.另外,数学建模也被引用到其他方面,使其应用范围非常广泛.
三、结束语
在高等数学的改革中,把数学建模的思维方式与方法加入其中,这是不可避免的,因为它顺应了时代的需求.我们应该抓住教育改革这一契机,对改革的深度与力度进行适当的加大,首先通过数学建模来提高高职的教学水平,从而提高高职院校学生的综合素质与综合能力,进而培养出拥有高等技能的优秀人才,为社会发展建设做出更大的贡献.
【参考文献】
[1]毛建生.高职数学与数学建模相结合的应用研讨[J].泸州职业技术学院学报,(3):17-21.
[2]李建杰.数学建模思想与高职数学教学[J].河北师范大学学报(教育科学版),(6):93-94.
高等数学建模思想研究论文
摘要:对于高职院校的学生来讲,数学在其教学过程中起着基础性的作用,对于学生后续的学习相当关键。但是从现阶段高职院校数学教学的基本情况来看,数学教师的教学方法以及教学策略都相当落后,对于学生数学兴趣的提升造成了不同程度的影响。在这样的背景下,相关专家提出了数学建模的方式,希望以此提升高职院校高等数学的教学效率。本文结合数学建模在高职高专人才培养当中的意义和作用入手,对于其中的应用策略进行全面的分析,希望为相关单位提供一个全面的参考。
关键词:数学建模;思想;高等教学
1引言
随着我国社会的发展,经济产业结构日益升级,因此高等院校的人才需求日益扩大,对于高职教育的发展提供了前所未有的契机。在这样的背景下,从数学建模入手,将其思想融入到高等教育的数学教学当中,对于其中的策略和方法进行全面的研究应该是一项具有普遍现实意义的工作。
2数学建模在高职高专人才培养过程中的意义
从近些年的发展来看,参加过数学竞赛的学生在科研能力等方面都具有比其他同学更强的优势,因此数学建模在提升学生创新能力、提高学生知识水平以及调动学生的学习兴趣都具有十分重要的意义。比如在解决实际问题的时候,数学建模通过利用各种技巧,可以使得学生分析问题、创造能力得以全面的提升,进而使得学生在摒弃原始思考问题方式的基础上,敢于向传统的知识发出挑战,对于学生的综合能力的全面提升相当关键。其次,数学知识本就源于生活,因此在建模的基础上学生就可以带着问题去思考,这对于数学知识整体性的发挥以及解决问题能力的提升都具有十分重要的意义。最后,面对传统数学的解决方式,很多学生望而生畏,因此主动分析问题的欲望就会受到遏制。在这样的背景下,通过数学建模方式,学生会发现数学方法的灵活性,进而使得他们解决问题的能力得以全面的提升。
3数学建模方式在高等数学中的应用
3.1制定切实可行的教学大纲,从而使得教学进度得以保障。教学大纲在高职教学当中起着十分重要的作用,这对于教学内容的合理性以及提升学生学习的针对性都具有十分重要的意义[1]。比如在教学高等数学(一)的选修模块时,教学大纲的制定应该结合学生的专业,从而使得学生的数学学习真正取得实效。比如可以为理工类的学生选择无穷级数以及傅里叶变换的内容;机械类的学生选择线性代数以及解析几何作为教学内容,从而使得学生的综合能力得以全面的提升。3.2开展“三段式”的教学模式。数学建模在以解决实际问题为核心的过程中,使得学生分析问题以及组织问题的能力得以全面的提升,这种方式的本质为素质教育,因此不能和现行的其他教学模式分割开来,这就需要相关部门开展“三段式”的教学模式,使得学生的数学兴趣得以全面的提升。其中,第一段需要还原数学知识的原创过程,使得学生明确数学知识的产生过程,进而让学生从生活案例当中发现数学的价值,比如知道极限是由人影的长度变化引起的,导数是由于驾车的速度引入的,使得学生发现知识的价值,进而就会大大提升自己的学习兴趣和探究意识。第二段:讲解数学知识。数学建模是在实际问题当中引入的,因此要通过具体数学知识的讲解使得学生明确数学建模的真正价值,比如在讲解微积分的过程中,可以以“极限-微分-积分”为主线,使得学生对于数学的分析能力真正得以提升[2]。然后在为学生积极引入大量数学图表的基础上,为增强学生的感性认识,进而提升学生的综合能力奠定坚实的基础。第三段:数学知识的运用。随着社会的发展,数学的应用在各行各业都发挥出巨大的作用,因此对于高等数学在实际生活当中发挥出来的作用进行全面的探究是实现这种知识价值的真正途径。在这样的背景下,高等数学教师要将每个知识点的运用真正灌输给学生,比如指数增长在银行计息当中的应用、定积分在学习曲线当中的.应用、再生资源在数学开发以及管理当中的应用等等。从而使得学生数学学习中的创新意识以及应用能力得以全面的提升。3.3开设数学实验,提升学生的综合素质。数学建模为学生提供了一种真正的“数学实验”,在这种实验的过程中,学生对于数学知识的发展以及由来过程都会得到进行全面的考虑,这对于他们数学探索意识的提升具有十分重要的意义。另外,在计算机辅助实验的过程中,学生的动脑能力也会得到全面的提升,这对于学生主动的学习数学相当关键。因此在教学过程中,教师要积极利用这种方式对于学生进行全面的培养。
总之,随着我国经济水平的不断提升,社会对于高职院校的重视力度日益提升,因此对于高职院校当中数学建模思想在高等数学教学当中的应用进行全面的分析是实现学生综合素质得以全面提升的关键措施,这对于学生的长远发展也相当关键,相关教育工作者要加大在这方面的研究力度,力求将高职院校的学生培养成为新时代所需要的人才。
参考文献:
[1]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教学中的探讨[J].景德镇高专学报,,(4).
[2]张卓飞.将数学建模思想融入大学数学教学的探讨[J].湘潭师范学院学报(自然科学版),,(1).
数学建模思想探索与实践论文
摘要:运筹学与数学建模2门课程联系密切,在运筹学教学中,适当融入数学建模思想,能大幅度提高学生应用数学解决实际问题的能力.从运筹学教学中教学大纲的改革、教学环节的设计等方面进行了探索与实践.教学实践表明,将数学建模思想融入到运筹学教学中能提高课堂教学的效果,锻炼学生的动手实践能力.
关键词:数学建模;运筹学;教学实践
运筹学是信息与计算科学专业的一门重要的专业课,它是一门应用科学,广泛地应用现有的科学技术知识和数学方法,解决实际中提出的专门问题,为决策者选择最优决策提供定量依据.在解决问题的过程中,为制定决策提供科学依据是运筹学应用的核心,而针对实际问题建立正确的数学模型则是运筹学方法的精髓.数学建模是利用数学工具解决实际问题的重要手段,从一定意义上来讲,数学建模属于运筹学的一部分,模型的正确建立是运筹学研究中关键的一步.所以说,二者有着密切联系,在运筹学教学中应适当地融入数学建模思想[1],能够培养学生理论应用于实践的能力,提高教学效果.
1运筹学教学中融入数学建模思想的必要性
数学建模和运筹学2个课程联系密切,也各有特点,但在实际教学中却不能很好地结合起来[2].运筹学教学中只注重讲授理论和解题方法,而忽略了与实际问题相联系,导致了学生在遇到实际问题时,不知从何处入手;在数学建模课程中则强调建模思想和方法的运用,注重的是建立起什么样的模型,而对模型的求解讲授得过少,导致很多时候学生在处理实际问题时虽然能够建立模型,但却不知如何求解.所以,在运筹学教学中要注意突出数学建模的思想,增强学生的数学应用意识[3].在运筹学教学过程中贯穿数学建模思想,使得教学过程不再是着力于单纯的知识灌输,而是注重培养学生应用所学知识解决实际问题的能力,结合教学特点,充分发挥学生的动手能力,积极调动学生的学习兴趣[4],使传统经典教学理论与最优化教学理论统一服务于教学实践,这是教学改革的方向.尤其是现代教育技术发达,使得课堂的容量增大,课堂上借助多媒体可以减少理论方法讲解的时间,适当运用规划软件可以大幅度降低运算所耗费的时间,这样节省下来的时间就可以更多地用来培养学生应用理论知识解决实际问题的的能力.因此,要在运筹学课程的教学中对运筹学教学内容进行精心处理,不能只偏重理论和解题方法的讲解,要积极地渗透数学建模的思想,从而在课堂上着重引导学生应用理论方法去解决实际问题,培养学生的建模意识.运筹学中数学规划、网络、图论和排队论等内容是数学建模一部分思想方法的汇集,在运筹学教学中渗透数学建模的思想,既能让学生对运筹学中枯燥的理论和方法有了深刻的理解,又能对后续数学建模课程的学习起到促进作用.
2数学建模思想融入运筹学的教学改革
国内外大量教师学者都通过实践对运筹学教学中数学建模思想的渗透进行了深入研究.如王定江[5]根据教学实践,阐述了运筹学教学中如何突出数学建模教育的思想;杨冬英[6]根据运筹学课程的特点,结合教学实践经验,提出了实行运筹学教学改革的一些建议和措施,指出数学建模活动是培养学生应用数学能力的重要手段,在运筹学教学中融入数学建模思想可以培养学生的创新能力和综合应用能力.山东大学数学系在打造运筹学国家精品课时将二者有机地结合起来,收到了很好的教学效果[7].2.1教学大纲的改革.在运筹学大纲的修订中,着重从2个方面来突出建模思想的融入.2.1.1设置课后上机实验.运筹学的学习,一方面让学生运用运筹学的理论和方法对实际问题进行抽象概括,找出其内在规律,构造出相应的数学模型;另一方面能通过逻辑推理或分析和计算,求解所建立起来的数学模型.而运筹学研究的优化算法能用来通过手工计算解决问题的规模是很小的,绝大多数根据实际问题建立起来的数学模型,约束和变量都很多,在求解过程中,如果不借助计算机,很难求得问题的解[8].计算机能为数学模型的求解提供可靠的平台,因此,设置课后上机训练.在上机内容的安排上,特别注意将纯粹的数学问题尽可能地转换成学生感兴趣的.实际问题,通过搜集大量优化模型的实例,选取与大纲内容相关的实际问题,供学生在课后上机实验中进行训练.学生在动手实践中既加强了对优化算法的理解,也锻炼了应用建模思想解决问题的能力.2.1.2改革考核方法.在成绩的考核上,传统的大纲中,从平时、期中和期末3个方面来考核,比重分别是20%,20%和60%.而期中和期末都是以试题的形式对学生进行考查,考查的内容以学生对基础知识、基本理论和方法的掌握程度为主,而对学生的知识应用方面考核的强度不大.因此,在考核方式上进行了调整,成绩考核分为2个部分——平时和期末,各占50%.在平时考核中,除了考查学生出勤、作业、课下上机实践的完成情况外,还特别选取一些往届数学建模竞赛中典型的优化模型试题给学生作训练,分组实践,完成课程论文,而且加大对学生创新和动手实践方面的考核力度,激发学生应用数学知识解决实际问题的热情.2.2教学环节的改革.2.2.1将数学建模的优化思想渗透到运筹学相关环节的教学中.把数学建模的优化思想渗透到运筹学相关环节的教学中,在实际教学中,尽量多地采用案例教学,从实际问题出发,精选具有充分的代表性且源于实际问题的建模案例.在讲解线性规划问题解法时,以奶制品的生产与销售[9]为例,通过分析问题,选取适当的方法建立最优的数学模型,然后分析线性规划的特点,引入求解线性规划问题行之有效的方法——单纯形法.进而再以此为例,加入整数约束,引出整数规划问题,讨论其与线性规划求解的区别,加深学生对知识的理解.通过逐步地掌握用运筹学算法去求解模型,让学生看到完整的过程,而不是仅仅了解枯燥的算法流程和优化理论,以此激发学生的学习兴趣.2.2.2将动式教学法引入课堂教学.要摒弃一堂灌的讲授式教学,将动式教学法引入课堂教学,适当安排教学计划,预留出一些学时,将课堂时间进行划分.针对运筹学模型的特点,选取学生易于接受的模型,课前给学生分配任务,课上给学生讨论分析的时间,发挥课堂上学生的主体作用,让学生积极主动地参与教学中来.在学习运输问题[10]时,课前先布置任务,给几个实例,让学生查阅资料,尝试建立相应的数学模型并进行求解.课上讨论和分析这些实例的特点,引入运输问题,进而让学生讨论问题求解所采用的方法,分析优缺点,结合运输表的特点引出表上作业法,并将其与单纯形法对比,发现方法的实质.这样通过不断的启发,充分调动学生的学习积极性,使学生不再被动地接收知识,达到培养学生分析问题和解决实际问题能力的目的.
3运筹学教学中融入数学建模思想的教学改革成效
信息与计算科学专业有2个方向,一个是软件与科学计算,一个是统计与优化,这2个方向都开设运筹学,在课程内容上都会着重学习优化算法,针对实际问题建立相应模型,设计相应算法.毕业生在就业面试和考核中,用人单位往往会提出一些实际问题,让学生分析,给出优化方案,以此考核学生解决实际问题的能力.以往很多学生对此手足无措,如今遇到类似问题,学生能参考平时训练的思路,能够动手实践,不再无从下手.因此,通过将数学建模与运筹学2门课程融合训练,学生的综合素质有了显著提高.从参加每年全国大学生数学建模竞赛和东三省数学建模竞赛的获奖情况来看,成果显著.—,在“高教社杯”全国大学生数学建模竞赛中共获黑龙江赛区的一等奖6组,二等奖12组,三等奖14组;东北三省数学建模联赛中共获得黑龙江赛区的一等奖2组,二等奖5组,三等奖4组.通过教学实践,让学生在解决实际问题中不仅提高了动手实践的能力,而且培养了其综合素质.
4结束语
运筹学教学改革实践说明,运筹学教学以数学建模的实际案例为背景,建模与优化算法二者并重,既可以培养学生运用所学知识解决实际问题的能力,又保证了学生具备扎实的理论基础,符合新时期人才培养的要求.运筹学教学与数学建模相结合的教学改革不但丰富了运筹学课程的教学内容,改变了课程的教学形式,也提高了学生的学习兴趣,取得了显著的教学效果.
参考文献:
[1]刘仁云.数学建模方法与数学实验[M].北京:中国水利水电出版社,
[2]周喜华.运筹学教学中融入数学建模实验的研究和实践[J].高教学刊,(11):89-90
[3]邓廷勇,张姮妤.运筹学教学与数学建模思想的融合[J].宜春学院学报,2014(9):129-131
[4]姚香娟,段滋明,王萃琦.如何提高学生学习运筹学课程的兴趣[J].学园,2014(12):59
[5]王定江.运筹学教学与数学建模[J].大学数学,(12):19-23
[6]杨冬英.从数学建模谈山西大学商务学院运筹学教学改革[J].科技情报开发与经济,(4):181-182
[7]胡发胜.国家精品课程运筹学的教学改革与实践[J].大学教学,(7):9-10
[8]宇世航,张水胜,张良勇.数学建模思想在运筹学教学中的运用[J].高师理科学刊,,29(11):89-91
[9]姜启源,谢金星,叶俊.数学模型[M].4版.北京:高等教育出版社,2011
[10]胡运权.运筹学基础及应用[M].6版.北京:高等教育出版社,2014
高职数学教学探索论文
摘要:为了培养学生的创造性思维能力、学习能力,培养符合社会与企业发展需求的应用型技能型人才,文章首先分析了当前高职数学教学现状,然后提出了提高高职数学教学有效性的具体对策,包括树立正确的教学理念;创新教学方法;创新教学评价方式。
关键词:高职院校;数学教学;思维能力
不同于普通的本科教育,高职教育具有高等教育与职业教育的双重特征,旨在培养符合社会与企业发展需求的应用型、技能型人才。一直以来,高职教育高度重视提高学生的动手操作能力、可持续发展能力,而数学教育的特殊性对于提升学生的综合素养具有不可替代的作用,在职业教育中的作用至关重要[1]。由于高职数学教育改革已迈向深水区,如果不加快改革步伐,将严重影响教学质量。接下来,笔者谈谈对高职数学教学改革的几点思考。
一、高职数学教学现状
(一)教学目的简单,在能力方面缺少具体要求。现阶段,很多高校数学教学目标很简单,大部分仅要求学生掌握基本知识点、拓宽知识面,很少有关于提高学生综合素质能力的要求。(二)教学过程枯燥、教学方法单一。在传统的应试教育体制下,高校数学课堂以“满堂灌”“填鸭式”理论教学为主,缺少必要的实践课程,导致学生无法将所学的知识转化为实际能力。其次,大部分数学教师在课堂教学中,以PPT展示理论知识为主,这种方式很难吸引学生的注意力,更不用说激发学生学习兴趣与热情。(三)对于学生学习的考核方式过于简单。大部分高校仍然采用传统的、单一的考核方式,具体来说,就是综合学生的期末考试成绩、平时成绩得出最终成绩,忽视了对学生运用所学知识解决实际问题能力、综合素质的考核。面对这种考核方式,大部分学生都是采用被动的学习方式、考前突击去应付考试,无法从根本上提高学生的综合能力[2]。(四)学生综合能力得不到充分锻炼。现阶段,很多大学数学课堂仍是教师的舞台,教师主动讲授、学生被动接受,教师与学生之间、学生与学生之间的课堂交流非常少。如此一来,根本无法培养学生的实际操作能力、团队协作能力,导致学生综合能力得不到充分锻炼,阻碍学生的长远发展。除此之外,高等教育仍然存在诸多问题,如教学模式不科学、课堂氛围不活跃;学生理论与实践的脱节;自主创新能力、团队协作能力的不足;教师没有对学生予以正确的引导等。都影响着高职数学教学的开展,影响学生的全面发展,以及数学素质的提升。
二、提高高职数学教学有效性的具体对策
教师必须树立正确的教学理念,立足于班级学生的实际情况,创新教学方法及教学评价方式,从而实现学生的全面发展。
(一)树立正确的教学理念。
一直以来,高职教育与普通本科的人才培养目标存在很大的差别,导致教学理念也应具有针对性。高职教育的教学目标都是培养应用型、技能型人才,在教学过程中,教师应高度重视理论与实践教学的统一。所以,在开展数学教学过程中,教学目的不在于让学生去证明那些公式、定理,而是让学生能熟练运用这些数学知识去解决实际问题[3]。因此,教师应明确高职数学教学目标,将培养学生数学综合素质、提高运用数学知识解决实际问题的能力作为教学目标,从而规范教师教学行为,最终提高教学的有效性。
(二)创新教学方法。
第一,创新教学方法,培养学生创造性思维能力。传统的高职数学采用“灌输式”理论教学,课堂上,教师以讲解理论知识为主,学生被动接受,很容易产生厌烦、抵触心理,从而大大降低教学有效性。所以,在高职教育体制改革的背景下,教师必须创新教学方法,充分尊重学生的教学主体地位,根据教学内容、学生实际情况来运用启发式教学、问题导向式、小组合作式等教学方法,教学内容由浅到深、由易到难,从而充分调动学生学习积极性,培养创造性思维能力。
第二,开展分层教学,提高课堂师生互动性。高职学生在学习能力、数学基础等方面都不如普通本科生,且每位学生的实际情况又存在差异。针对这种情况,教师不能对所有学生采用同一标准、同一要求,而应根据学生的不同情况来开展分层教学、有针对性地教学。在教学前,充分掌握班级学生的实际情况,在讲课时,大部分时间应针对中等生讲解,最后几分钟针对优等生进行拔高,在课后安排一定时间来帮助困难生,如此一来,能有效提高全体学生学习质量,达到共同的教学目标[4]。同时,教师应增加与学生的互动,引导和鼓励学生积极发言、大胆质疑,自由表达,培养学生的`思维能力。在讲解一些与实际生活息息相关的知识时,应采取小组合作探讨的学习模式,让学生充分表达自己的观点,调动学习的积极性和主动性,从而提高教学质量。
第三,充分利用多媒体教学资源。一直以来,高职数学的教学内容都涉及一些抽象的理论、复杂的图形,在一定程度上加大了讲解、学习的难度。随着“互联网+”时代的到来,现代化教育手段有效解决了这些问题。教师在教学过程中,应充分发挥多媒体教学直观、形象、生动的优势。如在讲解“极限”“定积分”“导数”等知识点时,教师可以利用计算机软件来向学生进行动画演示,让知识点更加直观,大大降低学生的理解难度。但是,需要注意的是,多媒体教学只能作为一种辅助手段,不能成为教学的主角,因为多媒体教学也存在很多的弊端。如学生过分关注屏幕而忽视自我思考、忽视做笔记等;并且有些数学解题方法的训练只能通过板书才更加有效、更加突出、更加容易理解和掌握。所以,教师在开展课堂教学时,必须把握好这个度,充分发挥多媒体设备在教学过程中的优势,规避其中的弊端。
(三)创新教学评价方式。
传统的高职数学教学考核多侧重中理论知识的记忆,以期末笔试为主,且题目大多以书本原题为主,导致学生平时不努力,在临近考试时突击背诵,对提高学生思考、分析和解决问题的能力,创造性思维能力的提高毫无帮助,甚至有些学生对于书中的题目换个数字就不会了。所以,这种传统的考核方式无法有效提高学生的综合素质。新形势下,随着高职教育体制的改革,高职数学教师可尝试开卷考试,出一些书本之外的、学生必须通过查阅相关资料、完全掌握相关知识才能解答的题目,从而全面考核学生数学综合素质、解决实际问题的能力[5]。另一方面,可通过布置一些作业、试验等方式来考核学生的平时成绩。实践证明,大部分高职院校的学生数学成绩普遍不理想,因此,在今后的评价过程中,教师不仅要关注学生的学习成果,还要密切关注他们的动态、变化。对于不同专业、不同水平的学生,应制定不同的考核标准,创新评价方式。
三、结语
实践证明,加快高职数学教育改革能有效提高高等数学教育教学质量,在激发学生学习兴趣与热情的同时,培养了学生的创造性思维能力、学习能力,对于实现高职教育体制改革具有不可替代的促进作用。随着社会的快速发展,社会对人才的要求越来越高,作为高等数学教师,必须积极响应国家号召,让高职数学教育教学改革更彻底、更成功。
参考文献:
[1]赖展翅.基于专业服务的高职院校高等数学教学改革研究[D].咸阳:西北农林科技大学,.
[2]王海龙,韩田君,徐爱华.高职数学教学改革的实践和思考[J].教育与职业,2013(21):117-118.
[3]龚雅玲.数学建模思想在高等数学教材中的渗透[J].北京教育学院学报(自然科学版),,10(3):4-8.
[4]施宁清,李荣秋,颜筱红.将数学建模的思想和方法融入高职数学的试验与研究[J].教育与职业,2010(9):116-118.
[5]王瑾.高职院校高等数学教学改革探讨[J].吉林广播电视大学学报,2011(12):36-37.
基于数学建模的高职数学教学论文
什么是数学建模?数学建模就是把实际问题用数学方法和数学语言建立起与该问题相应的模型,通过MATLAB、SPSS等数学软件并结合一定的数学方法求解,最后将得到的结论应用到生活中。当前,随着计算机的发明和计算机技术的飞速发展,数学的应用日益广泛,数学建模的作用也越来越重要,而且日益渗透到各种领域,由此可以看出数学建模在现实生活中的重要性。数学建模贯穿到实际教学中,不仅有利于培养学生解决实际问题的能力和创新精神,而且会使学生对数学有更深的理解力,从而加深学生学习数学的兴趣与爱好。这符合高职教学改革的目的。纵观当下,几乎所有的高职教学都是以培养应用型人才为培养目标。
虽然基于这一目标,很多学校都在教学内容、教学方法、以及教学手段等方面进行了改革,但是实际效果却不是很好。尤其是在数学教学中,仍然有大量学生对于学习数学有很强的厌恶情绪。基于现在高职学校的实际情况,高职数学教学也存在各种各样的问题。主要归结为以下几个方面:
第一,高职学校的学生大多数都是高考成绩较低的学生,有些甚至是没有参加高考的,这就导致高职院校的学生普遍基础就比较薄弱,而且大部分学生从小就对学习有抵触情绪,尤其是对数学的抵触情绪,再加上进入大学,远离了父母,约束减少,更是容易对学习缺乏兴趣。
第二,虽然高职院校以培养技能应用型人才为培养目标,但在实际教学上,仍然是重视书本知识的传授,而缺乏对学生实际数学技能培养。这种培养模式显然有悖于高职院校的人才培养目标。总的来说,高职院校的教学方面仍然存在着很多不足,
首先,教学内容比较陈旧,跟不上时代的发展步伐,在数学教学中具体表现为:重视传统理论知识的教授,而忽略这些知识与实际生活的联系,这样的教学模式不利于学生应用数学知识能力的培养。
其次,在数学教学中,仅仅是立足于数学学科本身,而不注重与其他学科之间的联系,这样的授课方式,很容易让学生觉得学数学没用的念头,不利于调动学生学习数学的积极性。
再次,教师在实际讲授知识时,过分注重知识本身的传授,而忽略数学知识与实际生活的联系,注重解题技巧的传授,而忽视数学思维的培养。
最后,在数学课程的设置上,几乎都是以理论讲解为主,很少有在数学课中加入实践课程,这大大的限制了学生数学能力的培养,在很大程度上导致了数学与生活的脱节。基于这些情况,对高职数学的教学改革主要是加强数学与实际生活的联系,提高学生运用数学知识的能力,让学生体会到学数学是有用的,从而提高学生学习数学的积极性。正好将数学建模引入到实际的数学教学中,就能在很大程度上达到这样的效果。因为在数学教学中贯穿数学建模,这就不得不要求学生在上数学课时,在老师的引导下,查阅资料,收集信息,运用所学知识解决问题。并且在这一过程中,学生通过互相合作,在与伙伴的共同努力下,不仅获得成功的喜悦,也加强了伙伴间的团队合作能力。当然,教师在选择数学建模题目时,要选择与学生生活贴近的,并且要稍有难度的,但又不能过分超过学生的能力范围,这样才能调动学生的积极性,学生通过对老师提出问题的探索,认真分析,建立恰当模型,在这一过程中,可以培养学生解决问题的能力,以及遇到困难坚持不懈的精神。
为了提高高职数学的教学质量,适应时代的发展需要,我们应该用什么样的方法将数学建模的思想引入到高职数学教学中。在这个问题上,我认为分环节、专题式的上课模式,是将数学建模思想渗透到数学教学的有效途径。为此,我们将数学建模思想渗透到高职数学教学中分为以下几个环节:
第一环节:开设数学建模课程,结合高职院校的数学教材,以生活中的数学题为突破口,培养学生运用数学建模方法的意识。这一环节,主要是为了让学生将上课所学习的数学知识应用到实际问题中,从而培养学生解决问题的能力,体会数学与现实生活的紧密联系,调动学生学习数学的热情。当然,在这一环节是该方法实行的.初始阶段,学生也是开始接触这让的教学模式,所以这就要求教师在问题的选择上要尽可能的不要太超过学生的能力,否则会打击学生学习的积极性。这一环节的主要任务是让学生对于数学建模有一个较为明确的认识,加强学生的理解能力和将现实问题转换成数学问题的能力。
第二环节:基于数学所受数学知识的内容,对学生进行数学建模专题培训。在这一环节中,教师要放手让学生自己分析问题,自己利用所拥有的资源查阅资料,将实际问题转化成数学问题,利用自己所得到的信息,建立模型。在这一过程中,学生通过自己的努力解决问题,从而体会到成功的快乐,提高了学生的自我效能感。
第三环节:教师制定适当的建模目标,把学生分成几个小组,以小组为单位进行数学建模活动。经过了前两环节的训练,学生对于数学建模已经有了清楚的认识,并且对于把实际问题转化成数学问题也积累了一定的经验。在此基础上,这一环节的主要任务是进一步加深学生将所学知识应用到解决实际问题中的能力。为了实现这一任务,可以将数学建模与学生的专业课联系起来。在这一过程中要有意识的培养学生独立解决问题的习惯,让学生学会自己搜集信息,根据自己搜集的信息,建立数学模型,借助数学软件,解决问题。最后,要培养学生自主检验自己得到的结果,通过反复的修正,最后以论文或报告的形式上交。
通过以上三个环节的训练,学生对于整个数学建模的过程已经有了很清楚的认识,并且也具备了一定的自主解决问题的能力。大大提高了学生学习数学的兴趣与积极性。同时在这一过程中,不仅加强了数学与专业课之间的联系,同时也回答了“数学有什么用?”这一问题。当然,数学教学的改革,不仅仅是对教学方式的改革,考核评价的改革也是不可或缺的。为了进一步加强数学建模思想在高职数学教学中的渗透,我认为在考核评价的改革上应该从这些方面转变,传统的高职数学考试基本上都是笔试,考试试题也大多都是课本上的例题或是课后题。这种考试不仅容易导致学生机械的套用数学公式和数学定理解决问题的习惯,而且也不能客观的考察学生的数学能力。
基于高职学校的人才培养目标,将对学生的考核分为三个部分:
第一部分是平时成绩,这一部分占总成绩的30%,这一部分主要包括,平时的上课表现,作业完成情况,以及上课出勤率。
第二部分是论文报告完成成绩,这一部分占总成绩的30%,这一部分主要是考核学生解决实际问题的能力,教师可以事先给出题目,让学生以数学建模的方式进行,方法可以灵活多样,学生可以单独进行,也可以以小组为单位进行,学生可以利用自己拥有的资源,查找自己需要的资料,最后将结果议论文或者报告的形式上交。
第三部分就是传统的闭卷考试,这部分占总成绩的40%,这部分主要考察学生对于书本知识的掌握,如对于基本概念和基本计算能力的掌握。这种考核方式,不再是单一的只是考核学生对于书本知识的掌握情况,通过不同部分的考察,检验学生对不同能力的掌握,尤其在第二部分,它可以提高平时学习成绩不好的学生的学习积极性,同时也可以锻炼学生的团队合作意识,在团队合作中体验学习数学的乐趣。
通过以上从教学方式到评价方式的改革,让学生清楚的感受到数学与生活的密切联系,提高学生学习数学的兴趣与爱好。同时这样的改革,也大大提高了对教师自身素质的要求,所以作为一名高职院校的数学教师,要努力提高自身素质,拓展自己的知识面,这样才能在实际教学中游刃有余。
高职《高等数学》教学的优化探索
在高职<高等数学>的教学中,应围绕以应用为目的.、以够用为限度的基本要求,探索氛围轻松、形式多样、激发兴趣、富有成效的教学方法,以促进教学目标的实现.本文结合教学实践,对高职<高等数学>的教学进行了一些优化探索.
作 者:朱云生 作者单位:云南锡业职业技术学院,云南,个旧,661000 刊 名:职业教育研究 英文刊名:VOCATIONAL EDUCATION RESEARCH 年,卷(期): “”(12) 分类号:G71 关键词:高职 高等数学 教学方法 教学改革数学建模是指利用数学符号对数学实践问题以公式形式表述出来,再通过相关计算解决实际问题。数学建模可以为学生创设适宜的学习条件,让学生在假设、研究、分析、比对中形成学习结论。教师要借助教学内容展开渗透操作,利用实际问题为学生创设实践机会,根据教法改进渗透建模思想,从而促进建模思想的全面渗透,提升学生的数学核心素养。
一、借助教学内容渗透建模思想
在数学教学过程中,教师要对教材内容进行筛选和剖析,找到文本思维和生本思维的对接点,让学生顺利介入数理讨论学习之中。教师利用教学内容对学生渗透数学建模思想,利用教辅手段创设教学环境,可以有效唤醒学生的数学思维。利用多媒体创设教学情境,运用数学公式进行数学推演操作,都涉及数学建模思想的渗透。因此,教师要积极整合教学内容。借助教学内容渗透建模思想时,教师要结合多种教学调查情况展开相关操作。筛选教学内容时,教师需要观照不同群体学生的不同学力基础。如解读定积分概念时,教师可以通过推导曲边梯形的面积公式,鼓励学生对曲边梯形进行分割、归类、求和、取极限等实际操作,建立定积分数学模型,并让学生在实际操作中完成对物体体积和质量的具体计算。这些数学模型具有广泛性,学生在实践中再遇到类似情境时,也会运用相关模型进行实际操作。推演数学公式时,教师可引入建模思想,让学生参与问题的设计、推演、验证,并利用推演结果反过来解决实际问题,给学生带去全新的学习体验。教师根据教学内容渗透数学建模思想,能够为学生提供更清晰的学习渠道,能够促使学生运用现成的数学模型来解决数学问题,进而加深对知识的理解。
二、利用实际问题渗透建模思想
教师在数学建模教学实施过程中,需要有接轨生活的意识。数学来源于生活,教师结合生活实际问题渗透建模思想,可以有效提升学生的数学概念意识,并使学生在假设、推理、验证过程中形成数学能力。利用生活实际问题渗透数学建模思想,符合学生数学认知成长的`实际需要,教师要结合学生的数学知识掌握情况展开设计,让学生利用已知数学等量关系解决实际问题,这势必能促使学生形成数理认知基础。高职数学教学中,教师不妨鼓励学生展开质疑活动,让学生列举疑惑问题,对这些问题进行整合优化处理,并结合数理知识进行实践探索。这些也属于数学建模思想的渗透。如教学“假设检验”时,教师可让学生展开假设创设,并通过多重操作实践进行检验。另外,教师设计课外作业时,也可渗透数学建模思想,让学生运用建模思想解决实际问题,以提升学生的数学综合素质。数学建模思想不仅是一种数学认知理论,还是一种解决数学问题的方法和措施。学生结合生活实际和学习认知基础展开相关操作,自然能够促进数学基本技能的提升。高职数学具有较强的抽象性,教师要针对学生的学力基础,为学生布设适宜的学习任务。结合学生生活实际提出问题,利用建模思想解决问题,需要关涉很多专业理论,教师应该进行示范操作,让学生有学习的榜样,这样才能提升数学课堂教学效度。
三、借助教法改进渗透建模思想
教师要重视数学学法的传授,增加教学的灵活性、针对性和实践性。由于高职学生学力基础、学习悟性、学习习惯等存在差距,所以教师需要做好学情调查,降低数学学习难度,运用简单通俗的语言解读抽象的数学概念。这样,学生才能听得明白、学得好。渗透建模思想时,教师需要鼓励学生主动参与数理讨论互动,这不仅能引导学生展开质疑、释疑活动,还有利于学生树立数学建模理念,形成良性学习认知。教师打破传统教法束缚,采用先进的计算工具、数学软件、多媒体等教学辅助手段,或者利用网络搜集平台展开教学设计,都可以为学生提供难得的学习契机。高职学生通常拥有一定的信息技术应用能力,教师可借助信息媒体展开教学设计,与学生的生活认知接轨。如翻转课堂的适时介入,便属于数学建模典范设计。多数学生都有智能手机,可以随时随地参与网络信息共享活动,因此,教师应具备信息共享和网络互动意识,为学生布设相关学习任务,让学生在多元互动操作中逐渐达成学习共识,进而建立数理综合认知体系。将数学建模思想渗透到教学过程之中,每一个环节都有可能,教师要做好全面考量,针对学生实际进行科学设计。教师要加强对数学建模思想方法的研究,并将这些方法与学生学习实践相结合,从而调动学生的数理学习思维,提升学生的数学应用品质。总之,高职数学教学中渗透建模思想时,教师需要具备整合意识,对建模资源信息展开搜集整理,对学生学力基础进行全面判断,为建模思想的顺利渗透创造良好条件。数学教学设计应不断更新,教师教学水平也亟待提升,而建模思想的全面渗透,给教师的教学带来了全新契机。教师要根据教学实际展开创新设计,有效提升数学课堂教学效率。
参考文献:
[1]李建杰.数学建模思想与高职数学教学[J].河北师范大学学报,(06).
[2]刘学才.高职数学建模教学的现状及对策[J].湖北职业技术学院学报,(07).
高职数学教学模式探索论文
高职教育作为一种培养高技能、应用型人才的新型教育方式,在社会经济和文明进步的背景下,由“徘徊期”进入了高速发展期,在迅速崛起的高职教育下,以教育对象的学习特征为主的高职数学教育备受人们关注,在高职教育中过分注重技能培训,而对于数学基础性、工具性知识的学习较为薄弱,这是一个较为普遍的现象,为此,需要深入调查和分析高职学生的数学学习状况,立足于学生的视角,对高职数学教学模式进行改革和探索。
一、高职数学教学的教育对象学习现状分析
在高职学生的数学课程学习之中,学生普遍感到不能适应数学教学状态,感觉数学学习枯燥无味,产生了一定的厌学情绪,在高职数学课堂上普遍,主要表现如下。
(一)数学教学模式过于单调。在高职数学教学课堂中,教师基本上是在唱“独角戏”,学生没有进入到数学学习思维状态之中,主要还是采用注入式的数学教学模式,没有进入到数学知识的正迁移状态,这种过于单调的数学教学模式难于激发学生的数学学习积极性,无法使学生的数学素养达到“必需、够用”的要求。
(二)数学教学方法先进性不够。在高职教育教学方法中存在教学手段不足的现象,这就容易造成学生思维上的“惰性”,学生容易产生数学学习疲劳,而无法吸收新的数学知识,造成新的知识缺陷,这对于学生的数学自主独立探究能力和创造能力的培养极为不利,学生的数学基本素养也难以生成。
(三)高职数学教学课程没有层次差别,无法满足学生的应用需求。高职数学教学课程基本上都是按照统一的专业目标和进度,进行统一的考核,致使一些学生“吃不饱”、一些学生“吃不下”,这种统一化的高职数学教程忽视了不同专业、不同层次学生的数学学习要求,对于教育对象的未来多样化出路也没有过多考虑,弹性不足,难以满足教育对象的应用需求。
二、基于教育对象特征的数学学习分析
(一)高职教育对象的数学学习心理分析。数学学习过程应当是一种特殊的认知过程,它要与数学教学目标和计划相结合,进行数学情境的感知、思维、想象和记忆,在数学学习中,教育对象的心理因素起着不可忽视的重要作用,为此,需要对高职教育对象的数学学习心理特征进行分析,这些心理因素包括有:感知觉、记忆、思维、想象、情感、意志、动机、兴趣、个性品质等,这些心理因素总体来说,可以归结为认知因素和非认知因素,它们对教育对象的数学学习起着增强、推动和调节的功用。高职学生在长期的应试教育下,整体素质不高,缺乏数学学习动机,对数学学习缺少兴趣,数学知识缺漏严重,缺乏良好的'数学学习习惯,对于客观事物的一般性和概括性的感知和思维水平还不高,不能抓住数学内在的联系,缺乏数学知识迁移的能力。(二)高职教育对象的数学学习方法分析。高职学生在数学学习方法的运用过程中,学习效率不高,表现为单一、被动的数学学习方式,自主探究的积极性不足,数学学习态度也需要加以改善,需要通过有意识的数学教学方法的训练,提高学生的数学学习主动性、独立性和问题性,转变高职学生的数学学习方法,引导学生主动学习。
三、基于教育对象特征的高职数学教学模式改革路径
(一)激发高职学生的数学学习动机。在高职数学学习过程中,数学学习动机是必要前提条件,教师必须要加强对学生的数学学习目的性教育,使学生意识到数学知识不仅是专业基础知识,而且是学生未来生涯中解决实际问题的重要工具,要端正高职学生的数学学习态度,意识到数学知识与未来生活的联系,体会到数学知识在生活中的价值和意义所在,从而产生一种远景性的数学学习动机,保持长久的数学学习积极性。
1.融入生活化内容,激发学生的数学学习动机。教师要多举与实际生活密切相关的数学事例,使学生感觉到数学知识就在自己身边,从而激发学生的数学学习兴趣,产生数学学习的动机。例如:在高职数学教学内容“常微分方程”中,不用急着从这个知识的数学概念入手,而可以先引入日常生活中的常见事例,从生活中常见的微分方程事例入手,让学生对数学内容产生亲切感和真实感,从而进入到数学学习之中。
2.融入专业实例内容,激发学生的数学情感。数学知识也是一种工具性技术,它的运用极为广泛,它在与其他专业学科知识相融合的过程中,可以产生知识的巨变,成为推动专业科学发展的重大动力和支撑,在对专业知识学习和理解的过程中,数学知识也成为解决专业问题的核心技术,在数学知识教学中,也可以与专业课教学密切融合,使学生感受到数学知识与专业知识的相融性实际价值,从而激发学习热情,产生数学学习的动力。例如:在高职电类专业的学生之中,学习数学知识的“级数”内容时,可以让学生了解和认识到,对于非正弦周期电路的专业分析知识的基础,就涉及到数学知识中的“富里哀级数”内容,可以说,在电路分析的教学章节中都与数学知识相关,学生在充分意识到数学知识与专业知识的相联性之后,产生积极的数学情感,从而产生积极、主动学习数学的热情。
3.融合数学史内容,增强数学知识的趣味性。在高职数学知识教学中,还可以适时引入数学史和数学思想的内容,使学生感到数学知识的趣味性特征,于潜移默化中生成数学精神和数学思想。例如:在学习高职数学知识内容“牛顿―莱布尼兹公式”时,可以让学生了解微积分的历史,体会数学家艰难、曲折的发现历程,并意识到数学知识源于生活,源于现实需要,从而进入到数学知识的学习之中。(二)创设探究型数学教学模式,培养学生的数学思维学习能力。高职数学教学要将数学知识点作为主要课题,提供教学的问题情境,引领学生在问题情境下进行数学问题的探究和解决,在数学问题情境创设之后,教师可以让学生独立探究,也可以组织学生进行分组探究,探究的途径可以采用实验观察的方式,或者类比归纳的方式,提升学生学习的积极性,并培养学生数学知识迁移的能力,促进学生数学知识的迁移和内化,提升学生的问题发现和问题解决的能力。(三)基于互助式教学模式下的高职数学设计。在高职数学教学改革中,可以采用互助式教学模式,最大限度地激发学生的自主互助性,这种互助式数学教学模式,不仅让学生把握数学知识,还要注重学生自主互助的交流学习,体验和享受自主互助的学习乐趣和过程,从而提升学生的自主学习和探究能力。
四、结语
综上所述,在高职数学教学模式创新改革过程中,要根据教育对象的特征和数学学习状态,进行数学教学方法的改变,以学生为学习的主体,创设相关数学问题情境,采用探究式教学模式和互助式教学模式等方式,激发学生的高职数学学习兴趣,产生主动参与、积极独立思考的意识,并在自主参与和探究的过程中,提升学生的数学基本素养和能力,教师要在学生自主探究、合作互助的学习过程中,给予必要的辅助和指导,并对学生的数学学习探究结果进行合理的评价,转变学习方式,更好地解决数学问题,增强数学应用能力。
作者:张丹 单位:吉林电子信息职业技术学院
【参考文献】
[1]姚松峰,毛玉蓉,齐梅芬.如何在高职数学教育模式下融入数学史教育[J].新课程研究:高等教育,
[2]柴彦红.大学生创新思维培养视角下的高职数学教育模式研究[J].教育与职业,,36:113~114
[3]周晓燕.基于创新教育的高职数学教育模式研究[J].神州,2011,7:111
[4]刘姣.PBL数学模式在高职数学教学中的应用研究[D].华南师范大学,2011
高职专科院校数学建模教学的探索与实践论文
【论文摘要】本文指出了专科院校《数学建模》教学改革必要性,分析学校情况,对教学目标、教材编制、课程设置、教学内容及方法上都根据专业不同采用分层教学,突出专科特色和专业特色,达到了较好效果。
【论文关键词】数学建模专业特色分层教学
数学建模课程的教学研究是数学应用教育的一个重要课题,它是一种崭新的教学模式、教学方法,是培养学生数学应用能力、创新能力和科研合作能力的一个较好的平台,高职专科学校的数学开设时数、难度、广度与理工院校不同,学生基础情况也不同,所以要研究具有高职专科特色的数学建模教学模式。
1教学模式内容
1.1确立数学建模教学目标(目标分层)我校具有师范类数学专业、理工科专业、经济类专业等专业开设数学课程,在数学建模教学中对于不同专业设立不同的教学目标。
1.1.1师范类数学专业的教学目标树立“数学具有广泛应用性”信念和数学应用意识,具备一定的数学建模能力,使学生将来从容胜任中小学数学建模教学。
1.1.2理工、经济类专业教学目标树立数学应用意识,具备数学建模能力,培养数学应用能力和创新能力,使其毕业后能更好地应用数学为其从事的本专业的研究与工作服务。
1.2教材要适合不同培养目标,具备专科特色和专业特色
1.2.1教材来源现在教材多是综合各类大学或理工科大学(多为本科学校)的教材,由于我校是专科类学校,数学课程开设的门类少、学时少,难度、广度远比不上这些本科院校;学生的数学基础和接受能力也不能与这些学校相提并论,所以教材不能采用不符合实际照搬照抄方式,我们采用以下方式:
1)借鉴:精心鉴别吸收本科院校数学建模教材以及其他文献中符合专科特点的数学建模材料。
2)研究吸收补充新素材根据生产生活实际,把学生感兴趣的现代社会生活热点问题吸收进来;选取自然界中奇妙而令人感兴趣问题;选取身边人们习以为常且容易忽视而结果又出乎意料问题;把近几年来全国大学生数学建模竞赛题(专科组的竞赛题)也逐步补充进来。
1.2.2根据不同专业情况选用素材,内容呈现多层面和多元化
1.2.2.1师范类数学专业师范类《数学建模》增设了中学数学建模内容,包括教学方式、方法以及历年中学数学建模竞赛题目选讲内容。师范学生要想在日后胜任中学数学建模教学工作,他们不但要掌握系统的数学建模方法与技巧,还要掌握一套较为科学、有效的中学数学建模教学与学习方式和方法,还要熟悉近年来中学数学建模的题目。
1.2.2.2理工类、经济类各专业选取的素材多为生产工程领域和经济类的数学建模问题,这些问题涉及各个专业的问题,突出了多学科的交叉和综合,开拓学生的视野,扩展他们的知识面。
1.3根据专业确立《数学建模》课程设置,采用不同方式进行教学
1.3.1师范数学专业我校规定师范数学专业的《数学建模》课程为必修课,它包括《理论学》和《实训课》,课时比为1∶1,目的是注重学生实际建模能力培养,为此提供时间和空间。理论课中的教师为主导,学生为主体,以教材为主线,围绕教材章节,教师归纳讲解不同类型数学思维方法和常用的数学思维方法,讲解数学建模的步骤。教师起到引导和示范作用。实训课程中注意培养学生的实际建立数学模型的实战能力。学生分为小组活动,一般三个人一组。教师在理论课提前布置与本节相关数学建模题目,在课后由这些小组成员共同查资料,互相启发、共同讨论并撰写出论文。上实训课时,围绕某一数学建模问题,各小组可以踊跃发表见解,介绍本组的解题思路和方法,其他组可以补充、修改,或提出质疑,也可以另辟新径采用不同的建模方法。最后由教师点评各种方法的优势和不足。
1.3.2理工科、经济类各专业我们采用选修课形式开设《数学建模》课程,深入浅出讲解各种数学思维方法在生产实际中的应用,主要是开拓学生视野,激发学生学习数学的热情,使学生感受到生活生产中数学无处不在,培养学生应用数学方法去分析解决问题意识和能力。教师精选学生力所能及的数学建模题目,由学生在课余时间完成。
1.3.3开辟数学建模的第二课堂,建立数学建模实验室每年我们吸收各个专业的学生到数学建模实验室进行研究工作,选拔培训学生参加全国大学生数学建模竞赛,让学生也进行高水平的数学建模实践演习。不同专业的学生组成一组进行实训和竞赛,不同专业的学生的知识和能力可以互补,发挥了每个学生的特长,如计算、分析、编程、写作等;各门学科的交叉和综合运用,开阔了学生视野、扩展了知识面,激发了他们探索和研究的兴趣和欲望,也使得他们分析问题和解决问题的思维触角更加敏锐、灵活,思维空间更加广阔。
1.4采用灵活多样的评价成绩方法数学建模教学改革以往评价学生成绩的方法,评定成绩的方法分为三部分:一是平时小组成绩;二是平时队员表现;三是论文成绩。评价学生更加注重对学生分析和建立模型过程考查,采用平时以小组为单位,小组成员荣辱与共的小组计分法。这种方法可以促进小组成员团结协作互相启发,互相质疑、共同提高;同时教师可以考查同一小组不同成员在平时建模能力表现,例如建模方法、灵活性,是否勇于创新、敢于标新立异,鼓励学生另辟新径,用多种角度去分析问题,对于勇于质疑,勇于提出不同方法的学生加分。最后在学期未教师布置数学建模题目,给出几天时间由学生建立数学模型并形成论文形式上交,教师按一定标准记入成绩。
1.5改革以往教学方法,注重数学知识来源、发现和探究过程,注重对学生的创新意识和创新能力的培养。以往数学课程注重数学逻辑体系、定理规则及计算技艺,而忽视了数学知识它的来源,发现和探究过程。我们的学生面对考试可能是佼佼者,但面对活生生的实践问题可能就束手无策。项武义教授称之为把姜女西施置于X光透视,所看面的只能是一幅骨头架子,毫无美可言,学生连看的兴趣都没有,认为数学太枯燥、抽象,没实际应用价值,它离我们生活生产很遥远,谈不上更好地学习数学,更谈不上兴趣和创造。我们改革以往教学方法,注重数学知识来源、发现和探究过程,注重对学生的创新意识和创新能力的培养。
1.5.1我们在数学建模教学中,讲解数学思维方法时都要从实际问题中导入,讲清楚每个数学分支的思维方法的背景和特征,注重知识的来源和应用范围。
1.5.2在建模教学中教师引导学生从多角度去观察和分析问题,探索发现新的解决方法,激发学生的'好奇心,点燃他们胸中的求知欲望,使他们感受到数学家发明研究时的火热的思考。教师制造平等的讨论研究氛围,鼓励学生互相讨论探究,互相启发、互相补充、互相置疑,不断修改补充数学模型,学会分析和评价模型。教师鼓励学生大胆猜想,敢于另辟新径、标新立异,培养学生的创新意识和创新能力。
2实施效果
2.1通过数学建模的学习,学生对数学认识发生了质的变化,具备了应用意识和创新意识。通过改革教学方法,注重建模的收集资料、分析思维过程的演练和运用讨论探究式学习,学生对数学产生深厚兴趣,认识到数学处处在我们身边,利用好它可以解决许多生产实际问题,学生从数学建模中体验到从来未有过的当初数学家发明创新时火热的思考,这种返璞归真的探究过程培养了学生的应用数学的意识和能力。建立模型过程中面对活生生的实际问题,教师鼓励学生从多角度观察问题,并用多种数学方法解决问题,培养了学生的创新意识和创新能力。
2.2根据不同的专业设置不同的数学建模教学模式,使得不同专业学生呈现不同的特色。数学专业学生在毕业论文写作中都得益于数学建模学习中论文写作,很多学生做论文题目就是数学建模方面论文,具备了建模能力和论文写作能力;师范类数学专业不仅具备了数学建模的能力,还熟悉中小学数学建模题目类型和教学方法,使得学生毕业后能从容胜任中小学的数学建模教学工作。非数学专业学生接受了数学建模培训和锻炼,开扩了他们的视野,使他们领略到了各门学科交叉和综合运用的价值,为他们提供了培养创新能力和科研合作能力的一个较好的平台。通过数学建模,这些学生的毕业设计、毕业论文中能自觉地应用数学思维方法分析,解决问题,论文的写作能力得到提高。
2.3我校是同类院校中最早参加全国大学生数学建模竞赛并获奖学校之一,从至今,每年组织学生参赛,曾获国家级二等奖、省级一等奖、二等奖、三等奖,每年都有获奖学生。
【参考文献】
[1]李明振,庞坤.关于高师院校“数学建模”教材建设的思考与探索[J].数学教育学报,
[2]潭欣欣,韩彦铎.地方综合大学数学建模教学与实践[J].工程数学学校,
高职数学建模分析的论文
【摘要】高职院校中的数学难免存在一些复杂抽象化的现象,在教学和学习中存在难懂和混淆之处。数学建模能够用数学语言描述出实际现象,从而转变成易懂和简单化的问题。数学建模在高职院校数学中的应用,也逐渐受到了广大师生的重视,值得广大教育者进行探讨和研究。
【关键词】高职院校;数学建模;学习
数学建模的应用,能够使学生更加直观了解和分析问题,还能开发学生的思维方式,用轻松愉快的心情去学习数学课程。可以让学生在互相交流沟通中培养自身的团队合作意识,可以让学生在学习中拓展自身的学习视野,养成良好的学习习惯,促进全面发展。
一、数学建模的含义以及重要性
数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,建立一个数学模型的全过程。当人们在研究和分析一个实际的问题时,需要对此进行深入调查、分析含义、对了解到的信息进行简化,从而能够用数学的语言和符号来表达。数学建模教育模式能够帮助学生将来更好地适应工作岗位,发挥学生的知识技能,培养学习上的创新意识。传统的教学方式理论知识与实践严重脱节,阻碍了学生潜能的发挥。数学建模的教学方式能够贴近学生实际生活,激发学生的学习兴趣,让学生养成良好的学习习惯,构建一个完整的学习模式,进行自主探索式学习。数学建模的教学方式新颖,涉及的学习知识范围很广,有助于学生学到更加丰富的知识,不断开拓自身的学习视野,在学习中互相沟通交流,提升自身的团队合作能力。
二、高职院校中教学存在的不足
教师方面存在的不足。在数学建模的广泛运用过程中,高职学校的老师并不能全部了解数学建模在数学教学方面的影响,因此做出片面的判断。在整个教学团队当中,没有积极向上的学习氛围,没有基本的理论知识储备,采用传统落后的专业知识对学生授课,根本没有发挥数学建模实际应用的作用,在很大程度上浪费了这一有效资源,没能挖掘更大的优势。大部分高职教学的内容比较落后,教师缺乏实践经验,不能跟上时代发展的步伐,也不能对新事物有挖掘的眼光。教师缺乏实际的工作经验,在实际操作方面存在很大的漏洞,只会单方面地去讲解所学的内容。由于数学建模的题目难懂,篇幅过长,教师在传统的思想下也无法完成实际的应用,对其中的实际操作也不熟练。学生方面存在的不足。学生的学习意识不够高,对数学建模的应用重视度不是很高。学生适应了传统的教学方式,思想和行为出现“懒惰”,对此产生依赖,不能顺应社会发展的需求,不能做到自我更新,自我发展。对学习的目的不够明确、学习的认真程度不够高、自控能力比较差等问题,严重影响了学生的学习。学生在学习过程中,没有一个良好的团队意识,都是“孤军奋战”,也不会起到很大的作用。学生在经历了高考之后,认为已经跨过了人生最大的难关,在大学中就不用再学习那些令他们痛苦的数学、语文、英语等课程,只要学好自己的专业课程,将来能找一份稳定的工作就行。这一错误思想间接影响了高职学生对数学课程的重视度,忽略学习数学对自己的帮助。高职学生的整体水平不是很高,对一些难懂的数学问题也应付不来。学生没有一个明确的学习目标,对学习也会失去兴趣。
三、提出相关解决方案
1.教师应当在日常教学中逐渐渗透数学建模的思想。只有教师在日常的学习中不断渗透数学建模的思想和方法,学生才可以在潜移默化中受到知识的熏陶,提高自身学习的能力。高职学生在数学学习当中有很多难以理解的数学知识和公式定理,这些复杂的知识学习都需要通过数学建模的运用才能更好地掌握。所以教师就要转变学生的传统学习观念,让学生带着问题参与到数学学习当中,从而在日常生活中转变学生的思维方式。高职学生在初步认识数学建模时,没有一个正确的理解方式和完整的概念理解,所以教师就要发挥出自身的积极作用。通过数学建模的比赛、宣传活动、教育演出等方式进行宣传,让学生深入体会到数学建模对数学学习的重要性,并且让学生对数学建模这种教学方式产生浓厚的兴趣。当学生有了浓厚的兴趣爱好时,并且深信数学建模对自身学习数学有所帮助,就会积极投入数学学习当中。
2.改善教师的教学方式。首先,作为老师应该提升自己的教学水平和综合素质,不断向其他老师多学习和研究数学建模的应用,从而能够很好地利用多媒体和信息技术的方式,向学生传授丰富有趣的教学内容,能够用实践能力向学生传授知识。其次,要不断提升自己对数学建模教学应用的意识,转变传统教学的观念,做到教学理念与教学思想的意识更新。最后,了解学生的实际情况,尽量用简单易懂的教学方式向学生传授教学知识,让学生对学习数学建模产生浓厚的兴趣。教师在开展数学建模教学活动中,要分阶段地改善教学方式。根据学生的学习情况,要求学生进行模拟训练,掌握学生学习的'程度。学生在教师的引导下进行自主实践,发现难题并不断解决问题,才能让数学建模在教学活动中逐渐实施。教师也要制订合理的培训计划,让学生的数学建模水平能够有所提高,对学习技巧能够熟练地掌握。
3.培养学生的兴趣爱好。培养学生的兴趣爱好,在每个班级中成立一个学习小组,定期让学生组织一些数学建模教学活动,利用自己的实际操作能力和创新思维方式去探索学习。在数学课堂中,学生应当堂完成习题,通过查阅相关资料增强理解新知识的能力。在数学模型探讨过程中,学生会有自己难以理解的问题,要积极地向老师求教,虚心地学习。学生能够主动发挥创造力,大胆地思考和实践,不断地积累学习经验,提高自己对数学建模的学习能力,对数学学习有自己的看法和观念。
4.加强数学实践。教学方式不仅仅只是局限于课堂教学当中,还要与实际生活结合起来。高职数学教育就要凸显其中的特色,教师在教学中特意培养学生的动手操作能力,让学生在实际问题中不断总结学习经验,提高学生的实践能力。通过比赛的学习方式,让学生通过实践调查、方法研究、数学模型的建立,对学习方式有一个初步的了解,将数学的理论知识结合到实践生活当中。数学建模运用到高职数学教学活动当中,可以让学生适应学习,适应社会的发展。数学建模的教学方式能够很好地培养学生的学习兴趣,并且做出大胆的推测和实验,使学生的学习方式得到改善,提高学生的学习能力。数学建模在高职院校数学的应用探索中,还需要广大师生的全力配合,不断向前迈进,提高数学的教学效率,提升自己的综合素质。
参考文献
[1]米军利.嵌入式人才培养融入数学建模思想的探索[J].科技创新导报,(21)
[2]徐永梅.高职院校高等数学有效课堂教学的实践[J].学园,(1)
分析高职数学教学中渗透数学建模思想的必要性论文
数学建模是联系数学理论和实际问题的桥梁和纽带,是数学学科与社会的交汇,是解决实际问题的一种方法。数学建模是从数学角度出发,对所需研究的问题作一个模拟,舍去无关因素,保留本质因素,把现实原型作抽象、简化后,使用数学符号、数学式子、数量关系简化而成某种数学结构。
当前高职数学课程教学中,由于课时少,教师多采用填鸭式的教学法,过分注重训练学生的逻辑思维能力、解题技巧,过分强调教学要求、教学进度的统一,缺乏层次性多样化,不能适应不同专业的要求,考试形式也几乎是清一色的笔试,而没有着意讨论和训练如何从实际问题中提炼出数学问题,以及如何用数学来解决实际问题,从而造成不少学生认为“学高等数学没用”,大大影响了学生学习数学的积极性和数学素养的提高,以及后继专业课程的学习。
而现行教材上又很少接触实际问题,如果教师照本宣科,学生就根本体会不到数学的广泛应用。因此,若教师能在实际教学中渗透一些数学建模思想,理论联系实际,不仅能激发学生学习数学的兴趣,帮助学生理解和掌握教材中的定义、定理,而且可以培养学生应用数学的意识,提高其解决实际问题的能力。
一、重视数学概念背景模型的引入,启发学生对数学公式、定义的理解与认识一切数学概念和知识都是从现实世界的各种模型中抽象出来的,利用建模的思想进行教学是理论与应用相结合的重要手段。
让学生从模型中切实体会到数学概念是因为有用而产生的,从而培养学生学习数学的兴趣。例如,在讲极限的定义时,如果把定义直接灌输给学生,学生会感到数学概念犹如空中楼阁,看不见,摸不着。如果我们换一种方式,从求圆周长讲起,向学生提出分析和解决这个问题所用到的数学思想方法,从而引出极限的概念。再如讲导数的概念,先从求变速直线运动的速度、产品成本的变化率、切线等问题为背景引入,再从这些应用入手,有意识地挖掘它们,进一步提出或构造一些比较浅的数学建模问题。
这样借助于数学知识与实际问题的联系引入数学概念,加强“数学源于现实”的.思想教育,容易牵动学生的数学思维,加深对概念的理解,从而提高学习数学的兴趣。
二、在高职数学教学中渗透数学建模思想,有助于提高教学效果针对教材中实际应用问题较少的现状,教师在数学教学活动中,可以精选一些学生感兴趣的简单的实际应用问题,进行建模示范,帮助学生理论联系实际。
比如有的学生数学基础可能不太好,但他爱好体育、经济、化学、计算机等,教师就可以从这些方面引入一些简单的相关题目,引起他们的兴趣。比如让有体育特长的学生分析“香港赛马比赛的奖金分配情况”,爱好化学的学生分析、抽象“化学方程式配平”的数学模型,爱好计算机的学生学会“编制解决数学模型的程序”等等。这样做可以激发其学习的积极性,发挥学生的个性,往往会收到意想不到的结果。在学生对数学建模感兴趣的基础上,能激发学生对数学学习的积极性,使得学生被动地“学”、老师被动地“教”,改变为学生主动地“学”、老师“灵活”主动地“教”。学生的学习主动性调动起来了,老师的工作热情就会高涨,就能达到提高高职数学教学效果的目的。
三、培养学生应用数学的意识,提高其解决实际问题的能力在教学实践中,专业课教师认为学生的数学基础不扎实,不能灵活运用在具体问题上,而对于学生自己,则表现为不能通过自学来获取新知识,对教师过于依赖等。
在学生毕业以后,不会或者意识不到可以应用数学工具去解决他们各自领域的问题。在数学教学中渗透数学建模思想,可以适当选编一些实际应用问题,引导学生进行分析,通过抽象、简化、假设、确定变量、参数、确立数学模型,解答数学问题,从而解决实际问题。这样既让学生掌握一些数学建模的方法,又有利于学生遇到实际问题时,在所学过的课程中找到适当的模型,依据模型的有关性质或解题思路去考查现有问题,使学生深刻体会到数学是解决实际问题的锐利武器,也有利于在教学中贯彻理论与实际相结合的原则,逐步提高学生分析、解决问题的能力。例如,向学生介绍函数模型、微分方程模型、优化模型、Malthus人口模型、Logistic人口模型、跟踪问题模型等。微分方程来源于实际,微分方程模型是常用的数学模型,许多数学问题可通过建立微分方程,解微分方程来解决。比如传染病模型,人类虽已跨入21 世纪,但一些险恶的传染病,如淋病、艾滋病等在许多国家蔓延,通过分析受感染人数的变化规律可以预报传染病高潮的到达时间。在讲解导数、微分、积分及其应用时,可编制“商品存储费用优化问题、批量进货的周转周期、最大收益原理、磁盘最大存储量、交通管理中的黄灯、红灯、绿灯亮的时间”等问题,都可用导数或微积分的数学方法进行求解。在概率与统计的应用教学中,“医学检验的准确率问题”、“居民健康水平的调查与估测”、“临床诊断的准确性”、“不同的药物有效率的对比分析”等实际应用问题都可以用概率与统计的数学模型来解决。在线性代数的应用问题中,可以建立研究一个种群的基因变异,基因遗传等医学问题的模型,使数学知识直接应用于学生今后的专业中,有效地促进了学生学习高等数学的积极性,提高了数学的应用意识。
总之,高等数学教学的目的是提高学生的数学素质,为进一步学习其专业课打下良好的数学基础。教学中渗透数学建模思想,不但促进高职数学学科建设,推动教学改革,更重要的是能激发学生学习数学的兴趣,帮助学生培养和提高想象力、洞察力和创造力。
论高职数学教学中渗透数学建模思想的必要性论文
数学建模是联系数学理论和实际问题的桥梁和纽带,是数学学科与社会的交汇,是解决实际问题的一种方法。数学建模是从数学角度出发,对所需研究的问题作一个模拟,舍去无关因素,保留本质因素,把现实原型作抽象、简化后,使用数学符号、数学式子、数量关系简化而成某种数学结构。
当前高职数学课程教学中,由于课时少,教师多采用填鸭式的教学法,过分注重训练学生的逻辑思维能力、解题技巧,过分强调教学要求、教学进度的统一,缺乏层次性多样化,不能适应不同专业的要求,考试形式也几乎是清一色的笔试,而没有着意讨论和训练如何从实际问题中提炼出数学问题,以及如何用数学来解决实际问题,从而造成不少学生认为“学高等数学没用”,大大影响了学生学习数学的积极性和数学素养的提高,以及后继专业课程的学习。而现行教材上又很少接触实际问题,如果教师照本宣科,学生就根本体会不到数学的广泛应用。因此,若教师能在实际教学中渗透一些数学建模思想,理论联系实际,不仅能激发学生学习数学的兴趣,帮助学生理解和掌握教材中的定义、定理,而且可以培养学生应用数学的意识,提高其解决实际问题的能力。
一、重视数学概念背景模型的引入,启发学生对数学公式、定义的理解与认识
一切数学概念和知识都是从现实世界的各种模型中抽象出来的,利用建模的思想进行教学是理论与应用相结合的重要手段。让学生从模型中切实体会到数学概念是因为有用而产生的,从而培养学生学习数学的兴趣。例如,在讲极限的定义时,如果把定义直接灌输给学生,学生会感到数学概念犹如空中楼阁,看不见,摸不着。如果我们换一种方式,从求圆周长讲起,向学生提出分析和解决这个问题所用到的数学思想方法,从而引出极限的概念。再如讲导数的概念,先从求变速直线运动的速度、产品成本的变化率、切线等问题为背景引入,再从这些应用入手,有意识地挖掘它们,进一步提出或构造一些比较浅的数学建模问题。这样借助于数学知识与实际问题的联系引入数学概念,加强“数学源于现实”的思想教育,容易牵动学生的数学思维,加深对概念的理解,从而提高学习数学的兴趣。
二、在高职数学教学中渗透数学建模思想,有助于提高教学效果
针对教材中实际应用问题较少的现状,教师在数学教学活动中,可以精选一些学生感兴趣的简单的实际应用问题,进行建模示范,帮助学生理论联系实际。比如有的学生数学基础可能不太好,但他爱好体育、经济、化学、计算机等,教师就可以从这些方面引入一些简单的相关题目,引起他们的兴趣。比如让有体育特长的学生分析“香港赛马比赛的奖金分配情况”,爱好化学的学生分析、抽象“化学方程式配平”的数学模型,爱好计算机的学生学会“编制解决数学模型的程序”等等。这样做可以激发其学习的`积极性,发挥学生的个性,往往会收到意想不到的结果。在学生对数学建模感兴趣的基础上,能激发学生对数学学习的积极性,使得学生被动地“学”、老师被动地“教”,改变为学生主动地“学”、老师“灵活”主动地“教”。学生的学习主动性调动起来了,老师的工作热情就会高涨,就能达到提高高职数学教学效果的目的。
三、培养学生应用数学的意识,提高其解决实际问题的能力
在教学实践中,专业课教师认为学生的数学基础不扎实,不能灵活运用在具体问题上,而对于学生自己,则表现为不能通过自学来获取新知识,对教师过于依赖等。在学生毕业以后,不会或者意识不到可以应用数学工具去解决他们各自领域的问题。在数学教学中渗透数学建模思想,可以适当选编一些实际应用问题,引导学生进行分析,通过抽象、简化、假设、确定变量、参数、确立数学模型,解答数学问题,从而解决实际问题。这样既让学生掌握一些数学建模的方法,又有利于学生遇到实际问题时,在所学过的课程中找到适当的模型,依据模型的有关性质或解题思路去考查现有问题,使学生深刻体会到数学是解决实际问题的锐利武器,也有利于在教学中贯彻理论与实际相结合的原则,逐步提高学生分析、解决问题的能力。例如,向学生介绍函数模型、微分方程模型、优化模型、Malthus人口模型、Logist ic人口模型、跟踪问题模型等。微分方程来源于实际,微分方程模型是常用的数学模型,许多数学问题可通过建立微分方程,解微分方程来解决。比如传染病模型,人类虽已跨入21 世纪,但一些险恶的传染病,如淋病、艾滋病等在许多国家蔓延,通过分析受感染人数的变化规律可以预报传染病高潮的到达时间。在讲解导数、微分、积分及其应用时,可编制“商品存储费用优化问题、批量进货的周转周期、最大收益原理、磁盘最大存储量、交通管理中的黄灯、红灯、绿灯亮的时间”等问题,都可用导数或微积分的数学方法进行求解。在概率与统计的应用教学中,“医学检验的准确率问题”、“居民健康水平的调查与估测”、“临床诊断的准确性”、“不同的药物有效率的对比分析”等实际应用问题都可以用概率与统计的数学模型来解决。
在线性代数的应用问题中,可以建立研究一个种群的基因变异,基因遗传等医学问题的模型,使数学知识直接应用于学生今后的专业中,有效地促进了学生学习高等数学的积极性,提高了数学的应用意识。总之,高等数学教学的目的是提高学生的数学素质,为进一步学习其专业课打下良好的数学基础。
教学中渗透数学建模思想,不但促进高职数学学科建设,推动教学改革,更重要的是能激发学生学习数学的兴趣,帮助学生培养和提高想象力、洞察力和创造力。
高职院校的高等数学教学探讨论文
摘要:文章指出了高职高专高等数学课开设的现状及现阶段存在的问题,并从教学目标、教学方法和考评等方面提出一些改革的设想和措施。
关键词:高职高专高等数学改革
0引言
随着我国高等职业技术教育的大力发展,好多综合院校纷纷设立了成教职教学院,高职招生人数大幅度上升,一大批学生走进高等职业学校进行学习。而高等数学又是教育部指定的大专院校工科类各专业必修课程之一,也是高职高专各专业的一门重要的基础课。它不仅为学生学习后续课程和解决实际问题提供必不可少的数学基础和数学方法,也是培养学生创新思维能力和分析解决问题能力的重要途径。可以说,高等数学知识掌握的好坏,直接影响到后续课程的教学以及高质量人材的培养。怎样利用较少的教学时间来获得较好的教学质量,以发挥高等数学在高职高专教学中的作用,是从事高等数学教学的工作者应积极思考的问题。
1要明确高职高等数学课程的教学目的和要求
高等数学课程对于高职学生来说,往往难度很大,由于学生在中学阶段数学基础不一样,进入大学后数学水平参差不齐,致使学生的接受水平和接受能力不同。因此,有必要对传统的教学模式和方法进行改革,以适应素质教育和培养学生综合能力的需要。我们在设计教学时,力求体现以“必需、够用”为原则,淡化系统性和严密性,加强实践环节,运用现代技术的理念。所谓淡化系统性,是指不强调教学内容的连贯与衔接,没必要做到面面俱到;所谓淡化严密性,就是针对学生抽象能力的薄弱,不追求逐字逐句的严格描述;强调思维性,就是关注数学的思维方式,体现数学素质的修养,提升数学思维能力。总之,在教学中任课教师应集思广益,有效地调动学生的学习兴趣,促进学生积极思考,主要培养学生的数学素质,建立完善的数学思维体系。
2改善教材内容与改进教学方法。
2.1用生动实例导入概念,回避难度较大的理论证明高数是一门理论课,概念抽象、严谨,学生不容易理解,每次上课都应该注意新课的导入,用具体实例引入抽象概念,同时注意循序渐进的原则。我们应该在设计教学以实例引入使概念尽可能不以严格“定义”的形式出现,而是结合自然的叙述,辅以各种背景材料,顺势引入减少数学形式的抽象感。对难度较大的基础理论不作论证,只作简单的几何说明;删减一些繁琐的求导和积分运算。如讲数列的极限、函数的极限,都是先举例,通过画数轴表示出数让学生观察它们的变化趋势,指出极限实际是它们在一定条件下的变化趋势,然后再进一小给出极限的形象定义,就很自然地容易理解有关函数极限的ε语言定义。证明题的内容应删去不讲。每个概念都不能生硬地给出,而是先举例子或观察直观的图形,让学生有直观的感受,再给出概念。这样能够激发学生的学习兴趣,变抽象为具体,使学生能理解抽象、精确的数学概念。又如在介绍基本定理的时候,不拘泥于“定理―证明”的单一模式,也不是简单地删去证明了事,而是尽可能的在通俗易懂的叙述中渐入主题,既交代了来龙去脉,又冲淡了抽象成分,让学生有一种“水到渠成”之感。这样做能充分调动学生的学习积极性,激发学生的思维活动,起到承上启下的作用,这是教学中的一个重要环节。
2.2合理把握知识的深度结合高职高等数学教学目的及学生的特点,采取灵活的教学方法。高职学生数学底子差,不擅长逻辑思维,所以教学中尽量降低论证的要求,侧重学会数学知识的'运用,但要注意并非取消证明。课堂讲解尽量做到通俗易懂,教学语言形象生动。教学中要着重讲解解决问题的思维过程,揭示问题解决的思想和方法,同时注重精选典型的例子引入,并通过例子逐步展开理论,引导学生思考得出相关结论。另外避免面面俱到的讲授教学内容,要改变讲得过多过细,给学生的思维留出时间和空间,避免学生养成依赖教师的心理和思想懒惰的习惯。
2.3讲和练相结合,注意循序渐进高职学生不同于本科学生,课后学习主动性较差。尤其是高等数学课内容前后衔接紧密,因此,教学中我们应该尽可能让学生在课内掌握必要的基础和技巧。数学是前后衔接紧密的学科,前面没掌握好,后面便无法很好的理解,甚至是一片混乱。所以教师在教学中绝不可只讲不练、教师满堂灌。适当时机要安排合适的练习,作到讲练结合,让教师的教与学生的学同步进行。教师若能有效指导学生学习,学生具备了一定的解决问题的能力,就能激发学生的求知欲望,产生学习数学的兴趣,使学生变被动接受知识为主动求知,即教与学有机地结合起来,才能收到好的教学效果。
2.4加强学生创新意识的培养高职数学的教学,不能只停留在单纯向学生传授必要的解决实际问题的知识和手段以及培养数学能力这一层面上,更应该注重培养学生主动探究的精神和创新意识。教师无论在概念教学还是解题教学中,应当给学生创造观察的情境和一定的思考余地、时间,给学生发表观点的机会,对这个过程中暴露的问题和错误,积极引导鼓励学生质疑、争辩、讨论,找出问题的症结所在,通过对学生批判性思维的训练,加强学生创新意识的培养。平时每章结束时先让学生写一个小结,加强学生的理解,又能使知识系统化,同时增强学生的自学能力。
2.5数学课要与专业课相融合在职业技术院校的数学教学中,应该加强数学与专业学科之间的横向联系,扩大专业学科向数学的渗透,填补数学教材中专业知识的短缺,拉近数学与专业学科的距离,是数学课与专业课相融合。
2.6考试方式,形式多样化根据高职学生的特点,其高等数学课程适宜采用以考核学生理解课程为主的开、闭兼容的考试,考试方式要灵活多样,相互补充,不能只局限于传统的考试方式,一卷定成绩的方式。一方面考试可以以考察基本数学知识为主,另一方面,可通过写篇小论文的方式,来考查学生对数学思想的理解深度或数学在各领域中的运用能力,让学生就高等数学中某一认识较深或较感兴趣的问题,抒发自己的见解;也可以由教师指定题目进行分组讨论合作完成。最后在题型上可引入开放性题型。开放性题型既能培养学生的创新精神又能充分发挥学生的想像力,在解答的过程中提高他们的发散性思维能力。
3结束语
高职高专教育作为一个新兴的高等教育教学层次,它的发展还有许多值得我们探讨和研究的地方,如何采用恰当的教学方法,提高学生的数学能力,使高职高专数学更好地为专业服务,是我们不断探索的目标。我们也将不断地学习和借鉴其他同行的先进经验,及时总结和创新,为国家和社会培养高素质的人材而尽自已的绵薄之力。
参考文献:
[1]姜大源.职业教育学基本问题思考.职业技术教育.(4)
[2]丁玉敏.高职院校的高等数学教学探讨.山东省农业管理干部学院学报.(6).
[3]顾沛.文科数学的教学改革.中国大学教学.2004(8).
大学数学建模思想研究论文
【摘要】在当今社会背景下。信息技术的发展日新月异,大学数学课程越来越朝着信息技术方面发展,在这种形势下,强化大学数学建模思想在其数学教学过程中的应用具有重要意义和作用,既有利于激发学生的学习兴趣,又能够有效提高教学质量和效率。基于这种背景,本文对大学数学建模思想进行了相应分析和探讨,以期能为相关人员提供借鉴和参考。
【关键词】大学数学;建模思想;探索
数学是一门应用性较强的学科,与实际生活具有紧密的联系,而数学建模主要是指将人们的现实问题演变为学生的数学学习问题的过程中,这种思想在教学过程中的有效应用,有助于培养学生的数学思维能力和创新能力,有效提升数学教学质量。所以对于数学建模思想在大学数学教学过程中应用的探索具有重要意义。
一、建模思想在大学数学教学中应用的重要性
(一)激发学生的学习兴趣
建模思想在大学数学教学中的应用,对于激发学生的数学学习兴趣具有重要作用。文中提到,数学建模主要是指将人们的现实问题演变为学生的数学学习问题的过程中,通过这种教学方式,能够将数学教学过程中的数学理论与学生的具体生活实践有机结合,有利于学生对于数学理论知识的理解和把握,激发了学习兴趣,增加了学习的主动性和积极性,提升了学生解决实际问题的能力。
(二)推进教学改革
在实际教学过程中,大学数学教学越来越注重理论性知识的教学,导致数学教学内容比较抽象,使得学生对数学知识的理解变得越来越困难。但是建模思想在数学教学中的应用,有效破解了这一问题,将抽象的知识融合到解决实际问题中,提升学生对于难点知识的理解,促进学生吸收知识和消化知识。这种教学模式是传统教学方法和教学手段的新突破。并且这种教学模式还打破了传统的大学数学教学模式,对于推进大学数学教学工作的改革具有重要作用。
(三)培养学生的数学能力
一方面利用建模思想进行大学数学教学时,通过将学生的实际生活问题引入到教学之中,可以搭建起学生与数学知识之间的情感共鸣,激发学生探究数学知识的兴趣,使学生主动地融入到课堂教学之中,从而培养学生的探索能力和创新精神。另一方面这种教学模式有利于学生吸收知识,消化知识,提升今后工作或学习中运用所学的数学知识解决实际问题的能力[1]。
二、建模思想在大学数学教学中的应用探索
(一)注重引导学生的自主学习
实际应用建模思想进行大学数学教学工作时,教师要注重引导学生进行自主学习,以提高学生的实际学习质量和效率,培养学生的探索精神和学习意识。当前我国的大学数学教学中主要有微积分、线性代数和概率论以及数理统计等三门主干课程。在实际教学中,教学框架和教学模式比较固定,数学教学概念比较抽象,数学公式的推导比较严谨。所以在应用建模思想进行大学数学教学时,就需要在总体教学框架下,对教学内容进行适当改进,注重对学生自主学习的引导。
(二)注重激发学生的学习兴趣
合理激发学生的学习效果对于促进建模思想在大学数学教学中的应用具有重要作用和意义。在实际教学过程中,教师可以针对学生感兴趣的话题或数学知识点,导入相关的数学知识,以激发学生的学习兴趣。例如:教师在进行大学数学的数学概率及其相关知识的实际教学工作时,可以引入学生比较感兴趣的缘分话题,引导学生进行择偶最佳法则的推导。通过这种教学模式,既能够满足学生的学习兴趣,同时又能够将学生的数学知识应用到实际的生活之中,可以起到事半功倍的教学效果,对于促进建模思想在大学数学教学中的应用具有重要作用。
(三)注重改进教学考核形式
在大学数学教学中应用数学建模思想,教师还应注重对教学考核形式的`改革。当前大学的数学教学考核形式大都采用传统的闭卷考试的考核形式,这种考核方式严重不利于教师对学生整体学习情况的了解,同时也没有突出对学生的实际数学应用能力和解决问题能力的考核。所以在应用建模思想进行大学数学教学时,要注重对教学考核形式的改进。例如:教师在实际教学时可以突出学生的平时成绩考核。教师可以对学生的课堂表现以及对数学问题的探索等进行记录,将其作为学生的考核依据,从而保障教学考核的有效性[2]。建模思想在大学数学教学中的引用,对于激发学生的学习兴趣,提高教学质量和效率具有重要作用。在大学数学教学大学未来发展中,要更加注重对建模思想的应用和探索,促进大学数学教学工作的未来发展。
参考文献:
[1]宋志广.对高校数学建模方法教学策略的研究[J].教育,(2):82.
[2]王洋.如何激发高职院校学生对大学数学的学习兴趣――以数学建模为突破口[J].时代教育,(7):249.
数学建模思想和方法研究论文
数学自诞生起目的就是解决实际问题,随科技日新月异的发展,数学对社会发展的巨大推动力日益凸显,在利用数学服务科技时,数学建模便成了必然选择。数学建模的思想和方法渗透并应用于经济、生物、航天等社会的方方面面。1994年起,教育部规定面向全国高校举办每年一次的全国大学生数学建模竞赛,全国高校掀起了数学建模热潮,目前全国大学生数学建模大赛已经成为全国大学生的四大竞赛之一,成为全国高校中规模最大、影响力最广的大学生课外科技活动,大大提高了数学教学中对数学建模思想和能力的培养,同时也促进了大学数学内容和方法的改革,笔者通过新疆地方高校的多年数学学科教学经历和大学生数学建模竞赛指导经历,结合对新疆地方高校的调查分析,对新疆地方高校数学建模教学的发展状况及对策建议进行探讨:
一、新疆地方高校数学建模的发展现状
(一)低年级大学生对数学建模知识认识欠缺
大学数学是理工类院校的重要基础课程,对专业课程起到了不可或缺的支撑作用,大学数学课程理论性强,新疆地方高校的学生本身学习起来就比较吃力,教师教学中更是无暇讲述和普及数学建模的思想和方法,所以相当一部分学生感到数学建模既神秘又高不可攀。
(二)新疆地方高校学生数学基础薄弱,大学数学课程的教学和专业学习存在脱节
受地域限制,新疆地方高校学生大部分来自于新疆各地州,包括汉、维、哈、柯、蒙等少数民族,数学基础参差不齐,相比较内地高校数学基础水平存在一定差距,学生学习数学兴趣不高,缺乏主动性,疲于应付考试,因此参加数学建模竞赛学生的比例比较低,导致理论知识与专业应用严重脱节,直接影响理工类专业学生的专业能力和培养质量。
(三)数学教学过程中,疏于数学教学建模思想和方法的渗透和培养
数学教学中渗透数学建模的思想和方法,要求授课教师不仅要有扎实的数学功底,而且还要有广博的知识面和丰富的数学建模经验。但实际教学中,由于课时的紧缺和教师专业方向的限制,完全仅限于所授课程知识的讲解,忽视了渗透数学建模的`思想和方法对学习大学数学课程的促进作用,尤其忽视其对数学理论知识和专业知识的贯通作用。
(四)新疆地方高校对数学建模教学的重视和投入有待提高
自20XX年以来,大部分新疆地方高校开始向应用型高校转型,工、农、医等应用型学科专业便成为各新疆地方高校的发展重点,在资金有限的状况下,数学类等基础学科便面临一个尴尬的境地,尤其是对数学建模的教育教学热情有所退却。但笔者以为,越是在向应用型高校转型之际,加强对数学类基础学科的投入,尤其重视数学建模思想和方法的渗透才能保障应用型学科高质量发展和新疆地方高校向应用型高校顺利转型。
二、新疆地方高校大学数学教学中融入数学建模思想和方法的建议与思考
(一)根据学生层次合理调整教学内容的侧重点
新疆地方高校大学生的多民族性、数学基础不等性特点对大学数学授课老师的经验水平提出更高要求,不但要了解学生的知识水平、民族学生的思维方式,还需要清楚中学数学的授课内容和欠缺知识点。根据本人近年民族教学的体会,结合学生入学成绩和知识层次教学中将新疆地方高校学生分为三个层次:1.“民考民”和“双语”学生,该层次学生入学成绩相对较低,汉语言水平不高,并且数学基础较差,该层次学生在大学数学授课中应侧重于对中学数学知识的补充和巩固,否则大学数学的知识和理论学生是无法理解的,而对大学数学的知识点就要侧重于基本概念、基本定理、基本方法的掌握与理解,那么对该层次学生进行数学建模思想和方法的融入,就要选择部分中学知识点和大学数学中较易理解掌握的知识点典型例题由浅入深,循序渐进的进行讲授。2.“民考汉”学生,该层次汉语言水平非常好,入学成绩也不错,与汉族学生混合编班,数学基础相比较同班汉族学生还是有差距,但该部分学生学习努力、态度端正,是任课教师需要重视的团体,可以偶尔选择晚自习辅导时间或其他时间对他们进行专门辅导,选择一些典型例题,由浅入深的进行数学建模的思想和方法的培养,从而也能激发他们的学习积极性,使之逐步赶超同班汉族同学。3.其他学生,新疆地方高校该层次学生主要来自于新疆各地州,入学成绩一般,数学知识差别不大,但基础知识还需要补充,个别的知识点,部分学生中学就没有学过,例如:参数方程、极坐标方程,反三角函数等知识点,但这些内容在大学数学教学中却是比较重要的知识点。
(二)在大学数学的日常教学中,改进教学方法和教学手段,有针对性的融入数学建模的思想和方法
能够适时选择授课知识点,针对学生所学专业讲述新课,同时融入数学建模思想和方法,例如:在“高等数学”第六章定积分的应用章节中,讲授利用“微元法”解决做功、水压力、引力等问题时,对物理学和工程类相关专业讲述数学建模思想和方法便是不错选择。例如:蓄水池抽水问题(如图1,图2)上图便是实际授课中课件,完全是定积分的内容,但这些例题具有非常典型的数学建模思想和方法,(1)题目符合实际生活问题,具有数学建模题型特点,完全是生活中的问题;(2)具有理工科专业特点,属于做功和热能问题;(3)解题过程本质就是数学建模的思想和方法,分析问题,建立数学模型,确定解题方法,给出结果,分析结果。只需经常性通过类似问题的讲解,使学生理解数学建模的主要过程:模型准备、模型假设、模型建立、模型求解、模型分析、模型检验和模型应用,学生不仅掌握数学建模思想和方法,而且认识到大学数学对于专业课学习的重要性[1]。大学数学教学中渗透数学建模思想和方法,归纳起来应注意以下几点:(1)要循序渐进,由简单到复杂,逐步渗透。(2)应选择密切联系学生专业、易接受、有趣味性、实用性的数学建模内容。(3)在教学中列举建模案例时,仅仅是让学生学习数学建模思想和方法的初步、举例等少而精,忌大而冷,否则会冲击了大学数学理论知识的学习,因为没有扎实的理论知识,也谈不上应用。(4)大学数学教学中,恰当的处理好理论与应用的关系,应该清楚理论和应用是相辅相成的。扎实的理论是灵活应用的基础,而广泛的应用又促进对理论的深刻理解[2]。
(三)组织鼓励各专业学生参加大学生数学建模竞赛,培养创新型人才
为了广泛开展数学建模活动,促进学风建设,提高学生学习兴趣和创新能力,自20XX年开始,我校开始组织学生参加“全国大学生数学建模竞赛”,经过近十年的学习与摸索,形成了我校特色的大学生数学建模竞赛培训模式,经大学数学任课老师推荐和动员,不同专业学生报名后,培训工作分为三个步骤进行:每年4月至6月的建模竞赛初级培训、暑期集训和赛前强化。
三个阶段培训内容均以数学知识模块化,分别由相应专业方向老师进行包干培训。知识模块主要分为初等数学模块、运筹学模块、概率统计模块、方程模块等。初级培训阶段主要培训理论知识,补充巩固不同专业学生大学数学理论知识;暑期集训阶段主要讲述不同模块的典型例题,促进理论知识的理解和灵活应用;赛前强化主要是选例题,让学生自己实践练习,进行赛前仿真模拟比赛。对参加过“全国大学生数学建模竞赛”的学生,我们经过统计发现:(1)参加过该竞赛培训和实践比赛的学生,在各自专业的学习过程中,专业课知识学习能力和应用能力明显高于其他同学,尤其毕业论文和设计的完成质量高于其他同学;(2)参加过该比赛的学生在此后的学习热情明显高涨,萌生继续深造提高的愿望,并且开始主动备战参加考研,考研成功率也高于其他同学;(3)该比赛中的各类生活科研问题,也激发了学生的创新性。
大学生数学建模竞赛中的赛题大都为生活和科技中的热门问题和前沿科学问题,具有一定的科研前瞻性,经过该竞赛的洗礼,激发了这些参赛同学的创新能力,很多同学在比赛后仍继续研究比赛中的该问题,并把问题作为自己的毕业论文和毕业设计,并能高质量的完成,甚至有同学以此为出发点,申报了“大学生创新创业训练计划项目”,锻炼了大学生的科研能力和创新能力。结语随着社会的发展、科技的进步,数学已经不再是抽象的理论,其应用已深入到人类生活的各个方面,科学技术数学化、数学应用普及化已成为一种趋势,许多自然科学的理论研究实际就是数学研究,就是数学建模以及数学理论的探讨。
一个国家的国民素质,很大程度上是体现在其数学素质上,数学是思维的体操,数学是科学的研究工具,数学建模是架于数学理论和实际问题之间的桥梁[3]。数学建模活动的开展促进了新疆地方高校的学风建设,提高了新疆大学生的综合素质。我校的数学建模组织活动、日常教学中的数学建模思想的渗透手段、规范的数学建模管理、方式多样的培训方案、学生参与的科研活动等已然逐步形成了新疆地方高校的数学建模思想和方法的渗透模式。新疆地方高校的特殊性也给新疆地方高校的教学模式提出了挑战,如何根据自身的特点搞好数学建模教学工作,是一项具有探索性的实践研究,本文仅是一个初步研究,还有很多问题需要深入的思考和实践。
参考文献:
[1]晁增福,邢小宁.将数学建模融入大学数学教育的研究与实践[J].ConferenceonCreativeEducation.:1136-1138.
[2]何志树,叶殷.数学建模思想在教学中的渗透与实践初探[J].武汉科技学院学报,,(11):242-244.
[3]简国明.地方高校数学建模教学模式的探索与实践[J].大学数学,2005,(02):35-38.
小学数学如何渗透数学建模思想论文
一、以建模思想推动教学新理念
(一)传统数学教学的局限性。数学建模与传统数学课程中的应用题在形式上比较接近,但在实际运用中,却有明显的优势,传统的数学应用题在形式上清楚明确,没有多余条件,且结论唯一,这就使数学化的过程被简单概括,导致学生很少思考是否需要进一步调整和修改已有的模型,从而忽视了数学建模的重点和难点。传统应用题多比较简单,不能完全体现数学建模的典型过程,所以存在较大的局限性。
(二)数学建模教学的意义用。建模方法来解决实际问题,其过程可以分为表述、求解、解释、验证等。首先,在小学数学中渗透数学建模的思想,能使数学知识与现实生活相结合,从而培养学生将数学知识应用于日常生活、社会实践的意识;其次,数学建模还要求学生运用数学语言和工具,对部分现实世界的信息(现象、数据等)进行简化、抽象、翻译、归纳,将数量关系用数学公式、图形或表格等形式表达出来,这样就可以锻炼和提高学生的表达能力;最后利用数学建模来解答了问题后,还需要用现实对象的信息进行检验,以确认结果的正确性。
二、小学数学建模常见步骤
(一)生活情境。要建模首先必须对生活原形有充分的了解,在课堂教学中,教师要通过信息技术或情景展示等手段,向学生提供现实问题情景。如果条件允许可以让学生亲自经历事情的'发生和发展过程,让学生主动获取相关的信息和数学材料。在提供问题的背景时,首先考虑这些背景材料学生是否熟悉,学生是否对这些背景材料感兴趣。我们可以创造性地使用教材,根据目前教材所提供的教学内容,结合学生的生活实际,把学生所熟悉的或了解的一些生活实例作为教学的问题背景,使学生对问题背景有一个详实的了解,这不但有利于学生对实际问题的简化,而且能提高学生的数学应用意识。
(二)引出问题。教师引领学生解读、分析生活情景,激活学生已有的生活经验,并利用学生已有生活经验来感受、发现、提出其中所蕴含的数学问题,从而建构新的认知结构。在这个过程中,教师要有机地进行引导,在引导时主要采取两种方法:一是针对情景“以问引问”,使情景和数学问题有机的整合起来,提高学生的提问能力;二是呈现多个情景有序地推进数学问题的深入。
(三)提出假设。根据情境核问题的特征以及解决问题的需要,对数学问题进行必要的简化,并用比较精确地数学语言提出解决问题的假设。(四)构建模型。让学生对发现的问题进行概括整理,从中寻找其普通的规律,并能抽象出数学模型,如:应用题的数量关系、公式、性质、法则等,这样学生才能进入到一个较理性思考问题阶段。在组织学生对数学问题进行探索时,有时让学生独立探索,有时让学生协作学习,有时是独立探索和协作学习相结合,要根据数学问题的难易程度,灵活选择探索方法,达到数学建模的目的。
三、数学建模教学与思维的创新
数学建模教学应把培养应用数学的意识落实到平时的教学过程中,即以教材为载体,以改革教学方法为突破口,通过数学内容的科学加工、处理和再创造,使学生达到在教学中做数学,在做数学中用数学的目的,从而习得数学思想和方法。根据建模对象的特征和建模的目的,对实际数学问题或现实情境进行观察、比较、分析、抽象、概括,进而作出必要的、合理的简化,用精确的语言提出合理问题,是数学模型成立的前提条件,也可以说是建模关键的一步。有时问题过于详细,试图把复杂的实际现象的各个因素都考虑进去,可能很难继续下一步的工作,所以要善于辨别问题的主要和次要方面,舍弃次要的、非本质的因素,抓住问题主要的、本质的因素,为模型的建构提供方向。例如:例如限速80km/h,许老师3小时行了240千米,超速了吗?学生有的说没有,有的说有。师让学生讨论,这时学生有的就说了有时比80高,有时比80低,充分理解240÷3=80(千米/小时)求的是平均速度。
综上所述,小学数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。
高职无机化学教学探索论文
1、高职无机化学教学要选用适合的教材
高职教学的培养目标是要培养出素质高,机能强,符合当今社会岗位需求的职业技术人才。所以在教学时候要以够用为主,要强调实践性。培养学生的自学能力。在将来走入工作岗位后可以根据需求,继续深造学习。针对这些特点,高职对无机化学的课程安排课时相对不多。而无机化学涵盖的内容又特别的繁杂。所以在选用教材的时候,需要精心挑选,能够自主编写教材为最佳。当然,在没有自主编写教材的时候,选用的教材不可能完全适合。这就需要教师在准备课程时,发挥作用。不能照本宣科。要把必需的,关乎实践和工作的内容精讲,花费较多的课程。对其它的内容就采用精简,删除的方式。
2、调动学生的积极性
无机化学课程有的内容的确是枯燥难懂,学生不愿意去学习。但是这部分知识又是不能忽视,不能跨越的,否则会影响后续课程的连续性。这时候就需要去调动学生的积极性。在枯燥中寻找生趣。在抽象中体现具体。比如,重金属元素。可引入中毒时,用牛奶缓解并急救的例子。从生活贴近研究。又可以引用原电池的各种应用,如此等等,不一而足。还可以集思广益,让学生来列举讨论生活蒸与知识点有关的生活常识。
3、教师走入企业,打造双师队伍
教师不能纸上谈兵,要培养能够走上岗位,成为合格技术工人的学生。就要求老师有过岗位工作经验,真正了解企业需要什么样的`人才,企业运转有哪些流程,工作人员扮演什么角色,承担什么任务。所以学校尽量给教师提供挂职锻炼的机会。可以利用假期,周末休息日。或者学期时间带薪体验岗位。让教师不仅仅是讲师更是技术精湛的技师。
4、多媒体教学方法与传统方法相结合,提高教学质量
运用现代教育技术、多媒体课件进行教学,由于多媒体集文字、图表、动画、声音于一体,可以刺激学生感官系统,调动学生学习积极性和主动性,可以拓宽教学内容,增大教学容量,提高教学进度。如在讲授杂化轨道、原子轨道空间伸展方向等时,我们利用多媒体课件进行讲解,直观简洁,学生容易理解,取得了较好的教学效果。同时,我们建设了无机化学教学网站,吸引了学生进行网上无机化学学习,使网络上的在线学习、在线测试与在线答疑成了学生的第二课堂,极大地调动了学生学习的积极性和主动性。
但是,考虑到使用多媒体课件授课速度过快,部分学生的思维速度跟不上,某些无机化学内容单纯用课件讲课效果较差等问题,我们在使用现代教育技术的同时辅助于传统教学手段。对于内容比较简单的章节,如氢和稀有气体、金属通论、p区金属等内容,采用“学生自学,教师概括总结”或“讨论课”的形式进行。对公式推导、计算举例仍然应用板书、讲解的传统方式进行教学,获得了良好的收效。因此,在无机化学教学过程中,注重多媒体教学方法与传统方法相结合,会收到事半功倍的教学效果。
建模教学下数学建模论文模板
1明确概念,了解内涵
我们所说的数学模型指的是用精准的数学语言去模拟和描述实际生活中的空间形式、数量关系等,其主要特点就是运用数学语言将客观现象或者事物的特点、主要关系表述出来,使之成为一种具体的数学结构。例如,小学数学问题中“5棵白菜与2棵白菜堆起来是多少棵”、“5只羊与2只羊加在一起是多少只”这样问“一共有多少”的问题有很多,如果每次都一遍遍数太麻烦,于是运用加法数学模型可以解决很多的类似问题。同时,当许多相同的数加在一起时,则可以运用乘法数学模型。又如,“小芳家的储藏室长16分米、宽12分米,如果使用边长为整分米数的正方形瓷砖来铺设储藏室地面(使用瓷砖都是整块的),边长为多少分米的瓷砖合适?其最大边长是几分米?”当小学生面对这样的问题时,也可以运用数学模型来解决。在小学数学建模教学过程中,不少人认为建模是学者、专家的事情,作为小学生来说只能运用模型或者找一个生活原型来加深对数学模型的认识和理解,而无法做到创建数学模型。然而笔者不这么认为,其原因主要有:第一,小学生也有创建数学模型的可能与机会;第二,一旦学生面临实际问题时,可能会出现没有现成的模型来套用的情况,因此学生自己必须通过探索研究,找到适合的数学模型,从而解决问题。此外,在小学数学建模的教学过程中,还需要依据不同阶段的学生特点,对其提出不同的要求,具体来说主要分为以下几个阶段:第一,学生以具体形象的思维主,此时较难掌握建模的方法,因此教师必须逐步培养其建模思维,逐步让学生运用数学知识来解决生活中的实际问题;第二,学生从具体形象思维向抽象逻辑思维过渡,此时教师应让学生充分感受到数学建模的过程,并逐步掌握建模要领,提升其运用建模知识解决实际问题的能力。
2体现过程,循序渐进
第一,准备模型,丰富问题情境,激活已有经验。众所周知,模型的建立离不开具体的现实情境,因此只有对问题的情境有了充分的认识,才能有效建模。因此,作为教师必须要善于开发学生丰富问题背景的能力,充分利用身边的生活素材来创建与实际生活相符的生活情境,从而为创建模型提供丰富的体验。比如在《确定起跑线》一课的教学过程中,某教室先播放了400米赛跑的片段,一一展示了跑道的整体状况、运动员起跑瞬间、比赛过程及最后的冲刺等情况。看完之后,学生会产生许多疑问:为什么运动员不在同一起跑线上?为什么跑弯道时,内道运动员能够超过外道运动员?然后学生就会提取相关的信息,比如:跑道是有弯道和直道两部分组成,有着相同的终点,外道比内道长,因此起跑线也就不同。此时教师需要做的就是用课件对学生的这些问题及答案一一予以证实。这种运用生活中熟悉的事物充分引入课堂教学内容中,以情境的方式展示给学生的方式,对激活学生现有的生活经验有着较大的帮助,学生有了丰富的背景作依赖,就能更好的解决本课的数学模型问题,即“相邻起跑线的距离差=直径差×π”。
第二,假设模型,把握本质特征,提出合理假设。在小学数学建模的教学过程中,可依据建模的目的及建模对象的特征来观察、分析、抽象、概括实际的数学问题,并用准确的数学语言来提出合理的假设,这一点很关键。此外,这一过程中还要求学生能够善于分别问题的主次方面,为建模提供正确的方向。
第三,建构模型,合理选择策略,亲历建模过程。在数学建模过程中,策略选择十分利则会对建模过程产生直接的影响。要知道,合适的策略能够帮助学生精准抓住问题的实质,因此作为教师而言,应立足与学生的认知特征和认知起点,充分让学生亲历运用合适策略进行建模的整个过程。
第四,应用模型,回归实际问题,拓展模型应用。大家都知道,建模的目的就是为了更好地对社会现象及自然现象进行描述,为此,建立数学模型的终极目的.还是要回归实际问题,从而更好的认识自然,改造自然。此外,在数学建模过程中还应将模型有效的还原成具体或者直观的数学现实,并教会学生利用建模过程中所运用的策略和方法来解决其他问题,只有这样数学建模教学才能走得更远。
3针对学情,把准目标
第一,正确处理数学知识与小学生认知水平的关系。小学阶段,学生的逻辑思维与感性经验有着较为密切的联系,有着明显的形象性。因此,需要密切联系生活实际进行数学建模教学,同时还要符合小学生的心理发展规律及认知特征,并逐步向小学生渗透建模的思想,培养其建模能力。
第二,正确定位建模的教学定位。对此,我们必须认识到,学生在学习数学建模方法的过程是一个不断深化、不断积累的过程。作为教师,应在教学实践中充分结合数学知识,反复对建模方法加以渗透,并帮助学生正确理解题意、解决问题,让学生充分感受建模过程的重要意义。
第三,正确处理建模教学的两面性。具体来说,主要表现为以下两点:一是形象、直观、简洁的一面,其对学生理解、掌握及运用相关的数学知识解决问题有着积极的作用;二是固定、模式化的一面又极大的限制了学生的思维。因此,在数学建模教学过程中,作为教师应时刻注意把握好形象、直观、简洁的一面,尽可能避免解决问题的模式化、固定化。
★ 高等数学教学论文
★ 数学建模论文范例