传输系统中的时钟同步技术

| 收藏本文 下载本文 作者:华晗躞

下面是小编为大家整理的传输系统中的时钟同步技术(共含8篇),仅供参考,大家一起来看看吧。同时,但愿您也能像本文投稿人“华晗躞”一样,积极向本站投稿分享好文章。

传输系统中的时钟同步技术

篇1:传输系统中的时钟同步技术

传输系统中的时钟同步技术

同步模块是每个系统的心脏,它为系统中的其他每个模块馈送正确的时钟信号。因此需要对同步模块的设计和实现给予特别关注。本文对影响系统设计的时钟特性进行了考察,并对信号恶化的原因进行了评估。本文还分析了同步恶化的影响,并对标准化组织为确保传输质量和各种传输设备的互操作性而制定的标准要求进行了探讨。

摘要:

网络同步和时钟产生是高速传输系统设计的重要方面。为了通过降低发射和接收错误来提高网络效率,必须使系统的各个阶段都要使用的时钟的质量保持特定的等级。网络标准定义同步网络的体系结构及其在标准接口上的预期性能,以保证传输质量和传输设备的无缝集成。有大量的同步问题,系统设计人员在建立系统体系结构时必须十分清楚。本文论述了时钟恶化的各种来源,如抖动和漂移。本文还讨论了传输系统中时钟恶化的原因和影响,并分析了标准要求,提出了各种实现技巧。

基本概念:抖动和漂移

抖动的一般定义可以是“一个事件对其理想出现的短暂偏离”。在数字传输系统中,抖动被定义为数字信号的重要时刻在时间上偏离其理想位置的短暂变动。重要时刻可以是一个周期为 T1 的位流的最佳采样时刻。虽然希望各个位在 T 的整数倍位置出现,但实际上会有所不同。这种脉冲位置调制被认为是一种抖动。这也被称为数字信号的相位噪声。在下图中,实际信号边沿在理想信号边沿附近作周期性移动,演示了周期性抖动的概念。

图 1.抖动示意

抖动,不同于相位噪声,它以单位间隔 (UI) 为单位来表示。一个单位间隔相当于一个信号周期 (T),等于 360 度。假设事件为 E,第 n 次出现表示为 tE[n] 。则瞬时抖动可以表示为:

一组包括 N 个抖动测量的峰到峰抖动值使用最小和最大瞬时抖动测量计算如下:

漂移是低频抖动。两者之间的典型划分点为 10 Hz。抖动和漂移所导致的影响会显现在传输系统的不同但特定的区域。

抖动类型

根据产生原因,抖动可分成两种主要类型:随机抖动和确定性抖动。随机抖动,正如其名,是不可预测的,由随机的噪声影响如热噪声等引起。随机抖动通常发生在数字信号的边沿转换期间,造成随机的区间交叉。毫无疑问,随机抖动具有高斯概率密度函数 (PDF),由其均值 (μ) 和均方根值 (rms) (σ) 决定。由于高斯函数的尾在均值的两侧无限延伸,瞬时抖动和峰到峰抖动可以是无限值。因此随机抖动通常采用其均方根值来表示和测量。

图 2.以高斯概率密度函数表示的随机抖动

对抖动余量来讲,峰到峰抖动比均方根抖动更为有用,因此需要把随机抖动的均方根值转换成峰到峰值。为将均方根抖动转换成峰到峰抖动,定义了随机抖动高斯函数的任意极限 (arbitrary limit)。误码率 (BER) 是这种转换中的一个有用参数,其假设高斯函数中的瞬时抖动一旦落在其强制极限之外即出现误码。通过下面两个公式,就可以得到均方根抖动到峰到峰抖动的换算。3

由公式可得到下表,表中峰到峰抖动对应不同的. BER 值。

确定性抖动是有界的,因此可以预测,且具有确定的幅度极限。考虑集成电路 (IC) 系统,有大量的工艺、器件和系统级因素将会影响确定性抖动。占空比失真 (DCD) 和脉冲宽度失真 (PWD) 会造成数字信号的失真,使过零区间偏离理想位置,向上或向下移动。这些失真通常是由信号的上升沿和下降沿之间时序不同而造成。如果非平衡系统中存在地电位漂移、差分输入之间存在电压偏移、信号的上升和下降时间出现变化等,也可能造成这种失真。

图 3,总抖动的双模表示

数据相关抖动 (DDJ) 和符号间干扰 (ISI) 致使信号具有不同的过零区间电平,导致每种唯一的位型出现不同的信号转换。这也称为模式相关抖动 (PDJ)。信号路径的低频截止点和高频带宽将影响 DDJ。当信号路径的带宽可与信号的带宽进行比较时,位就会延伸到相邻位时间内,造成符号间干扰 (ISI)。低频截止点会使低频器件的信号出现失真,而系统的高频带宽限制将使高频器件性能下降。7

正弦抖动以正弦模式调制信号边沿。这可能是由于供给整个系统的电源或者甚至系统中的其他振荡造成。接地反弹和其他电源变动也可能造成正弦抖动。正弦抖动广泛用于抖动环境的测试和仿真。不相关抖动可能由电源噪声或串扰和其他电磁干扰造成。

考虑抖动对数字信号的影响时,需要将整个确定性抖动和随机抖动考虑在内。确定性抖动和随机抖动的总计结果将产生另外一种概率分布4:双模响应,其中部表示确定性抖动,尾部为高斯响应,表示随机抖动分量。

抖动测量 ― TIE、MITE 和 TEDV

时间间隔误差 (TIE) 是通过对实际时钟间隔的测量和对理想参考时钟同一间隔的测量得到的。在给定时间 t,以一个称为观测间隔的时间间隔产生时间 T(t) 的时钟,其相对于时钟 Tref(t) 的TIE 可通过下面公式表示。(x(t) 称为误差函数。)

TIE 表示信号中的高频相位噪声,提供了实际时钟的每个周期偏离理想情况的直接信息。TIE 用于计算大量统计派生函数如 MTIE、TDEV 等。

最大时间间隔误差 (MTIE) 定义为,在一个观测时间 (t=nt0) 内,一个给定时钟信号相对于一个理想时钟信号的最大峰到峰延迟变化,其中该长度的所有观测时间均在测量周期 (T) 之内。使用下面公式进行估计:

MTIE是针对时间的缓变或漂移而定义的。当需要分析时钟的长期特性时,就需要对MTIE进行测量。MTIE 值是对一个时钟信号的长期稳定性的一种衡量。

图 4.TIE 的图形表示

TDEV 是另外一个统计参数,作为集成时间的函数对一个信号的预期时间变化的测量。DEV 也能提供有关信号相位(时间)噪声频谱分量的信息。TIE 图中每个点的标准偏差是对一个观测间隔计算的,该观测间隔滑过整个测量时间。该值在整个上述测量时间内进行平均以得到该特定间隔的 TDEV 值。增大观测间隔,重复测量过程。TDEV 是对短期稳定性的一种衡量,在评估时钟振荡器性能时有用。TDEV 属于时间单位。

高速传输系统中抖动和漂移的原因

最常用的一种时钟体系结构是,在备板上运行一个低频时钟,在每个传输卡上产生同步的高频时钟。低频时钟在集成电路内或通过分立 PLL 实现进行倍频以产生高频时钟。通过典型的 PLL 倍频,倍频后时钟上的相位噪声增大为原来时钟相位噪声的 20*log(N) 次方,其中 N 为倍频系数。此外,PLL 参考时钟输入上的抖动将延长锁定时间,且当输入抖动过大时高速 PLL 甚至无法实现锁定。在备板上采用一种更高速的差分时钟将比采用低速单端时钟具有更好的抖动性能。

由于 VCO 对输入电压变化较为敏感,因此电源噪声是增大时钟抖动的一个主要因素。输出时钟抖动幅度与电源噪声幅度、VCO 增益成正比,与噪声频率成反比。因导线电阻形成的电阻下降和因导线电感形成的电感噪声而造成的电源或接地反弹,会对上述输出时钟抖动产生相似的影响。在系统板上对电源进行充分过滤,靠近集成电路电源引脚提供去耦电容,可以确保 PLL 获得更高的抖动性能。

在系统板内,时钟和数据相互独立,发射和接收端在启动、保持和延迟时间方面的变化对高速率非常关键。因数据和时钟路径中存在不同有源元件而使数据和时钟路径之间出现传播延迟差异, 时钟路径之间的接线延迟差异,数据位之间的接线延迟差异,数据和时钟路径之间不同的负载情况,分组长度差异等等,均可能造成上述变化。在规划系统抖动余量时,必须将不同信号路径的变化考虑在内。

当在一段距离上进行传输时,在发射机和接收机中的很多点上存在抖动累积。在发射机物理层实现中,DAC 非线性或激光非线性等非线性特性会加重信号失真。在传输介质和接收机中,除了外部乱真源(大多在铜导线中)之外,因不同频率和调制效应而导致的光纤失真、因接收机实现(主要与带宽有关)和时钟提取电路实现而导致的信号相关相位偏离,会加重信号流的抖动。

图 5.来自 TIE 图的 MTIE 偏差

具体到 SDH(同步数字系列)传输,有大量的系统级事件会导致抖动。在将 PDH(准同步数字系列)支路映射为 SDH 帧并通过 SDH NE(网络组件)进行传输的典型传输系统中,在 PDH 支路于 SDH 的终端多路分配器解映射之前,将在每个中间节点处出现 VC(虚拟容器)的重新同步。有间隙的时钟用于将各个支路映射到 STM-N 帧和从 STM-N 帧解映射,发出与开销、固定填充和调整位相应的脉冲,因而造成映射抖动。采用调整机会位补偿 PDF 支路中频率偏移的方法会造成等待时间抖动。还有指针调整机制,用于对来自初始 NE 的输入 VC 与本地产生的输出 STM-N 帧之间的相位波动进行补偿。根据频率偏离,VC 在 STM-N 帧中前后移动。这将使 VC 提取点看到位流中的突然变化,导致称为指针抖动的类型抖动。所有上述系统级抖动都将加重总的确定性抖动。

尽管所有上述因素都会加重从源到目的地之间信号传播的抖动,标准要求仍

然规定在传输点需具有比理论值更低的抖动数值。这样,考虑到时钟倍频、电源变化、电-光-电转换、发射和接收影响以及其他致使实际信号恶化的失真信号的影响,在源处驱动信号的时钟将具有一个相对很低的抖动数值。

抖动对收发器的影响

理想情况下,数字信号是在两个相邻电平转换点的中点进行采样的。抖动之所以会造成误码,是由于相对于理想中点,它改变了信号的边沿转换点。误码可能由于信号流边沿变化太晚(在时间上比理想中点晚0.5UI(单位间隔相当于信号的一个周期))或太早(在时间上比理想中点早0.5UI)所致。当时钟采样边沿在信号流的任何一侧错过0.5UI 时,将出现 50% 的误码概率,假设平均转换密度为 0.5。7如果分别知道确定性抖动和随机抖动,可通过上述两个数字和将峰到峰抖动值与均方根抖动值联系在一起的表,来估计误码率。校准抖动,定义为数字信号的最佳采样时刻与从其提取出来的采样时钟之间的短期变化,可以造成上述误码。对于商业应用,源时钟和源发射接口抖动规范将远远低于 1UI。

发射接口抖动规范通常与接收端的输入抖动容限相匹配。对于抖动测量回路滤波器截止频率,尤其如此。例如,在 SDH 系统中,有两种抖动测量带宽,分别规定:一个用于宽带测量滤波器(f1 到 f4),一个用于高频带测量滤波器(f3 到 f4)。数值 f1 指可在线路系统的 PLL 中使用的输出时钟信号的最窄时钟截止频率。低于此带宽的频率的抖动将通过系统,而较高频率的抖动则被部分吸收。数值 f3 表示输入时钟捕获电路的带宽。高于此频率的抖动将导致校准抖动。校准抖动造成光功率损失,需要额外光功率以防各种恶化。因此限制发射机端高频带频谱的抖动十分重要。

漂移对收发器的影响

市场上销售的大多数电信接收机都使用了一个缓冲器,以适应线路信号中存在的随机波动。下面框图6详细表示出这一概念。恢复时钟将数据送入富有弹性的缓冲器,而系统时钟则将数据送出到设备的核心部位。

在准同步传输系统中,发射机和接收机工作在相互独立而又极为接近的频率上,fL和 Fs分别表示发射机和接收机的频率。当两者之间存在相位或频率差异时,弹性存储会将其消除,否则缓冲器将出现欠载或溢出(取决于差异的幅度和弹性缓冲器的大小),造成一次可控的帧滑动(基本速率传输)或一次位调整(高阶异步多路复用器)。

在准同步应用中,根据可接受的缓冲滑动对频率变化和缓冲器深度进行了标准化。最初的网络主要用于语音传输,在一定的频率门限之下不会造成语音质量下降。ITU-T 规范规定该变化为  +/-50ppm。但是随着网络开始传送压缩语音、传真格式的数据、视频以及其他种类的媒体应用,对于差错和重传以及刚刚兴起的同步网络,滑动使效率严重下降。

在同步传输系统中,系统时钟通常同步到用于接收更高时钟等级信号的接口的恢复时钟上。恢复时钟和系统时钟之间相位和频率的瞬时和累积差异将被弹性缓冲器吸收,否则将导致弹性存储器溢出/欠载(取决于缓冲器大小和变化的幅度),造成指针调整而延迟或提前帧传输、帧滑动或系统中某处出现位调整。

在同步系统中,所有网络组件工作在同一平均频率,可以通过指针机制消除帧恶化。这些指针机制将提前或延迟有效载荷在传输帧中的位置,从而调整接收和系统时钟中存在的频率和相位变化。SDH 收发器中的缓冲器比 PDH 收发器中的要小,而且对于 SDH 系统中可能导致的指针移动等不规则性有限制。因此,与 PDH 系统相比,同步系统的要求更为严格。由于网络发展的历史和不同网络之间的互操作连接,在某些阶段或其他阶段,这些同步网络会通过准同步网络来连接。因此 PDH 网络的时钟体系结构也要考虑在内。

MTIE 提供了时钟相对于已知理想参考时钟的峰值时间变化。在同步传输和交换设备的弹性缓冲器的设计中将用到 MTIE 值。在弹性存储中,缓冲器填充水平与输入数字信号和本地系统时钟之间的 TIE 成正比。确保时钟符合有关 MTIE 的时钟规范,将保证不会超过一定的缓冲器门限。因此,在缓冲器设计中,其大小取决于 MTIE 的规定极限。

图6,典型传输系统的接收机接口

系统时钟输出相位扰动对收发器的影响

一个时钟的输出相位变化可以通过分析其 MTIE 信息获得。漂移产生(在自由振荡模式和同步模式中)主要指系统中所用时钟振荡器的长期稳定性,在自由振荡模式中系统的稳定性仅受振荡器的稳定性影响。除了漂移产生之外,输出时钟相位还受到大量系统不规则特性的影响。

特别是对一个系统同步器而言,将参考源从一个不良或恶化参考时钟转换到一个正常参考时钟可能会导致输出相位扰动。传输用高速 PLL 中使用的传统 VCO(压控振荡器)在改变参考时钟时采用了切换电容器组的方法。这种切换转换会对输出时钟造成暂时的相位偏移。采用超低抖动时钟倍频器电路可以解决这个问题。

高性能网络时钟在系统的所有参考时钟都失去时采用一种称为“保持”的机制。这是通过记忆存储技术产生系统最后一个已知良好参考时钟来实现的。进入和退出保持模式可能会对输出造成相位扰动。当处于保持模式中时,由于准确频率的再生不够精确,因此会继续产生输出相位误差。集成电路技术的进步已使保持精度达到了 0.01ppb。输入参考时钟恶化和对系统的维护测试(不会导致参考时钟切换)过少,也会造成输出相位扰动。

系统输出扰动是有限的,取决于系统在较低层次可以接受的输入容限。例如,符合 G.813 选项 1 的时钟,其相位扰动中所允许的相位斜率和最大相位误差被限制为 1μS,最大相位斜率为 7.5ppm,两个 120ns 相位误差段,其余部分的相位斜率为 0.05ppm。这些数字对应于 G.825 标准规定的输入抖动容限,该标准描述了在 SDH 网络内对抖动和漂移的控制。

当输出相位被扰动时,将相位误差的幅度和速率保持在标准组织所建议的极限之内,可确保在端到端系统中对信号恶化进行妥善处理,从而避免数据损坏或丢失。例如,当系统同步器进行参考时钟切换时,如果输出相位误差位于规范要求之内,同步器就可实现“无间断”参考时钟切换,指示存在缓冲器溢出或欠载,造成指针移动、位调整或滑动。

结论

网络同步和时钟产生是所有高速传输网络系统中最重要的部分。本文论述了时钟恶化的不同类型,主要是抖动和漂移。文章还详细论述了造成上述恶化的原因,以及它们如何影响传输系统。对时

钟子系统进行系统性设计和实现,将提高整个系统的性能,降低误码率,易于集成,提供更高的传输质量和效率。

篇2:传输系统中的时钟同步技术

传输系统中的时钟同步技术

同步模块是每个系统的心脏,它为系统中的其他每个模块馈送正确的时钟信号。因此需要对同步模块的设计和实现给予特别关注。本文对影响系统设计的时钟特性进行了考察,并对信号恶化的原因进行了评估。本文还分析了同步恶化的影响,并对标准化组织为确保传输质量和各种传输设备的互操作性而制定的标准要求进行了探讨。

摘要:

网络同步和时钟产生是高速传输系统设计的重要方面。为了通过降低发射和接收错误来提高网络效率,必须使系统的各个阶段都要使用的时钟的质量保持特定的等级。网络标准定义同步网络的体系结构及其在标准接口上的预期性能,以保证传输质量和传输设备的无缝集成。有大量的同步问题,系统设计人员在建立系统体系结构时必须十分清楚。本文论述了时钟恶化的各种来源,如抖动和漂移。本文还讨论了传输系统中时钟恶化的原因和影响,并分析了标准要求,提出了各种实现技巧。

基本概念:抖动和漂移

抖动的一般定义可以是“一个事件对其理想出现的短暂偏离”。在数字传输系统中,抖动被定义为数字信号的'重要时刻在时间上偏离其理想位置的短暂变动。重要时刻可以是一个周期为 T1 的位流的最佳采样时刻。虽然希望各个位在 T 的整数倍位置出现,但实际上会有所不同。这种脉冲位置调制被认为是一种抖动。这也被称为数字信号的相位噪声。在下图中,实际信号边沿在理想信号边沿附近作周期性移动,演示了周期性抖动的概念。

图 1.抖动示意

抖动,不同于相位噪声,它以单位间隔 (UI) 为单位来表示。一个单位间隔相当于一个信号周期 (T),等于 360 度。假设事件为 E,第 n 次出现表示为 tE[n] 。则瞬时抖动可以表示为:

一组包括 N 个抖动测量的峰到峰抖动值使用最小和最大瞬时抖动测量计算如下:

漂移是低频抖动。两者之间的典型划分点为 10 Hz。抖动和漂移所导致的影响会显现在传输系统的不同但特定的区域。

抖动类型

根据产生原因,抖动可分成两种主要类型:随机抖动和确定性抖动。随机抖动,正如其名,是不可预测的,由随机的噪声影响如热噪声等引起。随机抖动通常发生在数字信号的边沿转换期间,造成随机的区间交叉。毫无疑问,随机抖动具有高斯概率密度函数 (PDF),由其均值 (μ) 和均方根值 (rms) (σ) 决定。由于高斯函数的尾在均值的两侧无限延伸,瞬时抖动和峰到峰抖动可以是无限值。因此随机抖动通常采用其均方根值来表示和测量。

图 2.以高斯概率密度函数表示的随机抖动

对抖动余量来讲,峰到峰抖动比均方根抖动更为有用,因此需要把随机抖动的均方根值转换成峰到峰值。为将均方根抖动转换成峰到峰抖动,定义了随机抖动高斯函数的任意极限 (arbitrary limit)。误码率 (BER) 是这种转换中的一个有用参数,其假设高斯函数中的瞬时抖动一旦落在其强制极限之外即出现误码。通过下面两个公式,就可以得到均方根抖动到峰到峰抖动的换算。3

由公式可得到下表,表中峰到峰抖动对应不同的 BER 值。

确定性抖动是有界的,因此可以预测,且具有确定的幅度极限。考虑集成电路 (IC) 系统,有大量的工艺、器件和系统级因素将会影响确定

[1] [2] [3] [4] [5]

篇3:电力系统中的时钟同步技术的探讨论文

电力系统中的时钟同步技术的探讨论文

电力系统是时间相关系统,无论电压、电流、相角、功角变化,都是基于时间轴的波形。近年来,超临界、超超临界机组相继并网运行,大区域电网互联,特高压输电技术得到发展。电网安全稳定运行对电力自动化设备提出了新的要求,特别是对时间同步,要求继电保护装置、自动化装置、安全稳定控制系统、能量管理系统和生产信息管理系统等基于统一的时间基准运行,以满足同步采样、系统稳定性判别、线路故障定位、故障录波、故障分析与事故反演时间一致性要求。确保线路故障测距、相量和功角动态监测、机组和电网参数校验的准确性,以及电网事故分析和稳定控制水平,提高运行效率及其可靠性。未来数字电力技术的推广应用,对时间同步的要求会更高。

1 电力系统时间同步概况

目前,电力系统中的时间同步处于变电站内GPS统一的状态,甚至有很多老旧变电站还没有实现GPS统一,需要对时的每套设备都配置一套独立的时钟系统。由于GPS设备品牌不同,性能不统一,造成站内、站与站之间时间不统一。这些时间接收系统相互间不通用。无法互为备份,使得整个系统的可靠性无法保证。为了逐步实现全电网的同一时间,有必要在发电厂、变电站、控制中心、调度中心建立集中和统一的电力系统时间同步系统,而且该系统应能基于不同的授时源建立时间同步并互为热备用。

2 电力系统对时间同步的需求

电力自动化设备对时间同步精度有不同的要求。一般而言,电力系统授时精度大致分为4类:

(1)时间同步准确度不大于1μs:包括线路行波故障测距装置、同步相量测量装置、雷电定位系统、电子式互感器的'合并单元等。

(2)时间同步准确度不大于1ms:包括故障录波器、SOE装置、电气测控单元、RTU、功角测量系统(40μs)、保护测控一体化装置、事件顺序记录装置等。

(3)时间同步准确度不大于10ms:包括微机保护装置、安全自动装置、馈线终端装置(FTU)、变压器终端装置(TTU)、配电网自动化系统等。

(4)时间同步准确度不大于1s:包括电能量采集装置、负荷,用电监控终端装置、电气设备在线状态检测终端装置或自动记录仪、控制,调度中心数字显示时钟、火电厂和水电厂以及变电站计算机监控系统、监控与数据采集(sCADA),EMS、电能量计费系统(PBS)、继电保护及保障信息管理系统主站、电力市场技术支持系统等主站、负荷监控,用电管理系统主站、配电网自动化,管理系统主站、调度管理信息系统(DMlS)、企业管理信息系统(MlS)等。

3 目前电力系统内时间同步技术

电力系统设备常用的对时方式有以下4种:

(1)脉冲对时

也称硬对时,是利用脉冲的准时沿(上升沿或下降沿)来校准被授时设备。常用的脉冲对时信号有1PPS和分脉冲(1PPM),有些情况下也会用时脉冲(1PPH),其中1PPM和1PPH也可以通过累计1PPS得到。

脉冲对时的优点是授时精度高,使用被动点时,适应性强;缺点是只能校准到秒(用1PPS),其余数据需要人工预置。

(2)串口报文对时

也称软对时,是利用一组时间数据(年、月、日、时、分、秒)按一定的格式(速率和顺序等),通过串行通信接口发送给被授时装置,被授时装置利用这组数据预置其内部时钟。常用的串行通信接口为RS-232和RS-422/RS-485。

串口报文对时的优点是数据全面,不需要人工预置;缺点是授时精度低,报文的格式需要授时和被授时装置双方约定。

目前,很多场合采用以上2种方式的组合方式,从而可以充分利用两者的优点,克服两者的缺点。

(3)时间编码方式对时

为了解决前2种对时方式的矛盾,在实际应用中常采取2种对时方式结合的方法,即串口+脉冲。这种方式的缺点是需要传送2个信号。为了更好地解决这个矛盾,采用国际通用时间格式码,将脉冲对时的准时沿和串口报文对时的那组时间数据结合在一起,构成一个脉冲串,来传输时间信息。被授时设备可以从这个脉冲串中解析出准时沿和一组时间数据。这就是目前常用的IRIG-B码,简称B码。

时间编码方式对时的优点是数据全面。对时精度高,不需要人工预置;缺点是编码相对复杂。

(4)网络方式对时

网络方式对时基于网络时间协议(NTP)、精确时间协议(PTP)。目前,简单网络时间协议(SNTP)应用较多。网络时钟传输的是以191月1日0时0分0秒算起时间戳的用户数据协议(UDP)报文。用64位表示,前32位为秒,后32位为秒等分数。网络中报文往返时间是可以估算的,因而采用补偿算法可以达到精确对时的目的。网络授时方式可以为接入网络的任何系统提供对时,其中NTP授时精度可达到50ms,PTP授时精度可达到1μs,SNTP授时精度可达到1s。

网络方式对时的优点是基于现有网络,物理实现方便;缺点是高精度补偿算法复杂。

上述4种授时方式各有优点。实际应用中,在满足同步精度要求的前提下,考虑到经济性,采用组合方式授时,即在一套运行管理系统中并存多种方式,可以充分应用授时时钟能够提供的信息。

篇4:1394技术及其在图像传输系统中的应用

1394技术及其在图像传输系统中的应用

摘要:为了最大限度地利用现有硬件资源,缩短开发周期,研制了1394-PCI的转接卡,实现了基于1394的高速图像传输系统。介绍了1394高速串行总线的特性及原理及1394-PCI转接卡的硬件、软件设计。

关键词:1394高速串行总线 1394-PCI转接卡 设备驱动程序

当今的计算机外围设备都在追求高速性和高通用性,尤其在进行图像数据处理和传输时,数据的大指、高速、实时性对计算机与外设的接口提出了更高的要求。

目前新型总线接口有两种:USB和1394接口。它们都支持即插即用,具有易扩展、使用方便、成本低等特点。但在任何USB系统中,只能有一个主机,最多可接127个外设,在全速模式下的传输纺为500kbps~10Mbps。而相比之下1394显得更胜一筹。它支持点到点的传输,消除了主机处理器/内存瓶颈,具有可升级性,支持400Mbps、200Mbps和100Mbps传输率,单一总线支持63个节点,由于1394总线的高速性和独立于主机的操作能力,使它成为高多媒体设备接口的首选。

1 1394技术

IEEE 1394起源于苹果公司,又名FireWire,是为家用电器研制的一种高速串行总线标准,其目的是为了解决对速度要求很高的宽带设备的传输问题。(本网网收集整理)1995年12月,IEEE 1394-1994高速总线标准正式被IEEE标准委员会批准。

1.1 1394的主要特点

a.支持点对点传输。串行总线设备能自主执行事务,而不需要主机CPU的干预。

b.可扩展总线。可以将新的串行设备连接入总线节点提供的端口从而扩展串行总线。

d.热插拔。不需要系统断电就可以动态地加入或删除设备。

e.即插即用。每次加入或删除设备时,总线节点会自动配置,并且配置时不需要主机系统的干预。

f.巨大的映射至内存的地址空间。每个节点拥有256T字节的地址空间,每条总线上有16P字节地址空间。

1.2 1394原理

1394原理主要定义了以下几点:

a.1394总线的拓扑结构。1394串行总线的拓扑结构可以分为两种环境:底板环境和电缆环境。不同环境间总线的连接需要总线桥。电缆环境下的物理拓扑结构是无环网络结构,由电缆连接各节点间的端口,呈分支扩展,形成树状或菊花状的网络拓扑。底板环境中物理拓扑是多点接入(multidrop)的总线,总线上分布着多个连接器,允许节点直接插入,通过仲裁使各节点享用总线。

b.1394的物理接口。1394设备通过标准的六芯线缆来传输信号,如图1所示。其TPA/TPA*和TPB/TPB*为一对差分模式的信号线。VP、VG提供8~40V的电源,可以通过它们给其它的节点供电。

c.1394总线协议。在1394传输中,支持等时传输和异步传输事务,并将每次传输分解为一系列的小事和,有效地利用总线带宽。异步事务需要数据确认,总线协议要复杂些,它包括三种基本事务类型:读取、写入和锁定。每个事务由请求子事务和响应子事务组成。由于等时应用程序的性质,相关的总线事务十分简单,等时事务每隔125μs向目标节点发送数据并且需要任何回热。1394总线一共定义了12种事务类型的包格式,采用循环冗余校验(CRC)进行数据差错控制,有相应硬件和软件处理各类传输事务。

d.1394电源管理。电源管理涉及到单独节点或节点中元件的电源状态控制。1394定义了4种电源状态以及相应的CSR寄存器和ROM配置项,支持挂起/恢复机制,使节点在软件控制下处于低功耗。

2 系统硬件设计

2.1 图像传输系统总体设计

系统采用冗余备份的双路1394高速总线将数据传送给大容量存储器、数据加密器和信道编码器,如图2所示。

由于本地系统中普通采用PCI接口,为了最大限度地利用现有硬件资源,缩短开发周期,研制了1394-PCI的转接卡,来实现基于1394高速图像传输系统。该转接卡主要通过物理层和链路层控制芯片组实现,其中链路层控制芯片采用TI公司的TSB12LV23,支持开放主机控制器接口(OHCI)的.PCI接口芯片。

2.2 TSB12LV23/TSBAB03芯片组

TSB12LV23提供主机接口和物理层接口,实现CRC校验以及同步服务。在芯片中集成了中断寄存器、传送/接收FIFO和DMA通道。TSBAB03芯片完成1394总线协议中的物理层功能,实现仲载机制,对收发信号进行编码/解码。

链路层和物理层芯片的连接电路图如图3所示。

3 系统软件设计

系统软件包括1394设备驱动程序、动态链路库和应用程序。

3.1 1394设备驱动程序开发

Windosw驱动模型(WDM)定义了驱动程序分层,以适应即插即用系统。1394系统驱动程序采用分层结构模型,其设备栈如图4所法。设备驱动位设备栈顶,通过发IRP给IEEE 1394总线驱动来与设备通信。IEEE 1394总线驱动为1394总线提供了独立于硬件的接口,并将一部分IRP传向端口驱动程序。

在分层模型中,1394总线驱动负责管理1394设备驱动程序与1394控制器之间的通信;加载及卸载设备驱动程序。设备驱动程序在功能层工作,它们不需要任何低层硬件资源,只需对总线驱动程序发请求,由总线驱动程序访问硬件来完成这些请求。

用DDK设计的1394设备驱动由4个模块组成:初始化模块、即插即用模块、电源管理模块以及I/O模块。

初始化模块提供设备驱动的入口点,从而将不同的IRP请求发向相应的执行模块。

即插即用模块用于实现1394设备的热插拔和动态配置。当总线驱动程序在加电或者添加/删除时检测到新设备,从设备中取出一个或多个标识符,用于检查所有可用的安装文件,发现合适的设备驱动程序。驱动程序被装入,调用AddDevice入口点,告诉它发现一个新设备,并创建功能设备对象(FDO)。总线驱动程序或者安装文件详细描述设备所需的硬件资源,使用仲裁器为每个设备分配资源。

电源管理模块负责设备的挂起和恢复。

I/O模块完成I/O请求的大部分工作。该模块定义了所需的I/O控制代码,从而为应用程序提供了调用系统驱程序的接口。

3.2 动态链接库的设计

由于Windows具有与设备无关的特性,不提倡与机器底层的东西打交道。如果直接用Windows的API函数或I/O读写指令进行访问和操作,程序运行时往往就会产生保护模式错误甚至死机,更严重的情况会导致系统崩溃。用DLL技术可以方便地解决上述问题。而且DLL没有自己的堆栈,与调用它的应用程序采用有相同的堆栈式,减少了编程设计上的不便;一个DLL在内存中只有一个实例,使之能高效经济地使用内存;DLL的代码封装怀使得程序简洁明晰。

在1394 API动态链接库中封装了所有的1394请求命令,如异步读/写、等时读/写等,从而可以很方便地在应用级实现1394传输。通过调用DeviceIoControl向设备发请求,由I/O管理器构造一个1394请求块传给总线驱动程序;由总线驱动程序完成该请求或者请求进一步传给端口驱动程序,然后返回执行状态。

3.3 应用程序设计

在高速图像传输系统中,应用程序是控制数据流的中心。采用VC++ 6.0和DDK实现,主要功能有:获取视频数据源、检测1394设备、总线管理、分配1394地址空间、设备等时资源和通道、完成1394传输。一次等时传输流程如图5所示。

4 应用前景

如前所述,由于1394的高速、灵活和可扩展性,使其在很多方面都大有用武之地,其中包括大容量存储器、视频会议、家庭网络、高速打印机、娱乐设备等。而且由于数字广播、因特网、家庭数字网络和高带宽的视频/音频传输需求,使得IEEE 1394迅速发展。

篇5:1394技术及其在图像传输系统中的应用

1394技术及其在图像传输系统中的应用

摘要:为了最大限度地利用现有硬件资源,缩短开发周期,研制了1394-PCI的转接卡,实现了基于1394的高速图像传输系统。介绍了1394高速串行总线的特性及原理及1394-PCI转接卡的硬件、软件设计。

关键词:1394高速串行总线 1394-PCI转接卡 设备驱动程序

当今的计算机外围设备都在追求高速性和高通用性,尤其在进行图像数据处理和传输时,数据的大指、高速、实时性对计算机与外设的接口提出了更高的要求。

目前新型总线接口有两种:USB和1394接口。它们都支持即插即用,具有易扩展、使用方便、成本低等特点。但在任何USB系统中,只能有一个主机,最多可接127个外设,在全速模式下的传输纺为500kbps~10Mbps。而相比之下1394显得更胜一筹。它支持点到点的传输,消除了主机处理器/内存瓶颈,具有可升级性,支持400Mbps、200Mbps和100Mbps传输率,单一总线支持63个节点,由于1394总线的高速性和独立于主机的操作能力,使它成为高多媒体设备接口的首选。

1 1394技术

IEEE 1394起源于苹果公司,又名FireWire,是为家用电器研制的一种高速串行总线标准,其目的是为了解决对速度要求很高的宽带设备的传输问题。1995年12月,IEEE 1394-1994高速总线标准正式被IEEE标准委员会批准。

1.1 1394的主要特点

a.支持点对点传输。串行总线设备能自主执行事务,而不需要主机CPU的干预。

b.可扩展总线。可以将新的串行设备连接入总线节点提供的端口从而扩展串行总线。

d.热插拔。不需要系统断电就可以动态地加入或删除设备。

e.即插即用。每次加入或删除设备时,总线节点会自动配置,并且配置时不需要主机系统的'干预。

f.巨大的映射至内存的地址空间。每个节点拥有256T字节的地址空间,每条总线上有16P字节地址空间。

1.2 1394原理

1394原理主要定义了以下几点:

a.1394总线的拓扑结构。1394串行总线的拓扑结构可以分为两种环境:底板环境和电缆环境。不同环境间总线的连接需要总线桥。电缆环境下的物理拓扑结构是无环网络结构,由电缆连接各节点间的端口,呈分支扩展,形成树状或菊花状的网络拓扑。底板环境中物

[1] [2] [3] [4]

篇6:开放式网络化测控系统中的同步控制技术

开放式网络化测控系统中的同步控制技术

现代测控系统的`测量对象越来越复杂、越来越分散,信号采集和控制终端节点呈现开放式、网络化分布式发展趋势.

作 者:支超有 李霞 Zhi Chaoyou Li Xia  作者单位:中国航空工业集团公司第一飞机设计研究院 刊 名:航空制造技术  ISTIC英文刊名:AERONAUTICAL MANUFACTURING TECHNOLOGY 年,卷(期): “”(22) 分类号:V2 关键词: 

篇7:电网信息化系统中同步并行数据迁移技术的运用探讨的论文

2.2.1、实时数据同步

取消方案一中的中间库数据迁移工作,采用数据同步技术,提前将老系统的数据同步至中间库,在老系统业务停机几小时后即可完成数据同步,开始进行数据转换,既降低方案一中的网络带宽花销,又减少了方案一中老系统至中间库的数据迁移时间。数据同步需在老系统数据库与中间库上部署数据同步软件,该软件从老系统生产数据库中获取实时数据,与中间库建立连接,将实时数据同步发送至中间库[2]。

数据同步包含首次数据同步与增量数据同步,首次数据同步指数据同步软件将有迁移需求的数据以某时间点为截止全量迁移复制至目标数据库,增量数据同步指首次数据同步结束后到业务系统停止时将所产生的新增数据实时同步至目标数据库。增量数据同步的原理为实时分析源端数据库的日志,生成数据变动的压缩表,以捕获增量数据,数据经压缩和加密后传送至目标数据库,经过目标库数据同步软件的.装载后,即实现了增量数据的同步。

2.2.2、分库并行数据转换

在采用实时数据同步的基础上,放弃使用原有中间库,新建 4 个中间库进行数据转换及校验工作,中间库既作为数据源也作为数据迁移中间库,可实现 4 个中间库并行的数据转换及迁移工作。在此过程中需要数据同步软件将老系统数据实时同步到 4 个中间库 , 正式数据迁移开始之后即可开展数据转换、校验、整改与迁移工作。按此方案,采用并行的数据迁移方式,可在不同的中间库分配不同的供电局业务数据,相较之前的单链路串行数据迁移方式,即需要按顺序依次进行各局数据迁移、转换的方式,此方案极大程度提高了数据迁移所需时间,方案二如图 2 所示。

2.3、对比结论

试点局上线进行数据迁移工作时采用数据迁移方案一,数据迁移时数据量约为 1 T,耗时为 4 天。由于南方电网营销管理系统后续上线供电局较多,迁移数据量较大,约为 2 T,采用方案一耗时较长。在数据迁移过程中,为保障新老系统数据的一致性及数据迁移的成功率,需要对老系统进行业务系统停机处理,若按方案一,需要对老系统停机 7 天或更久。停机时,无法进行客户算费收费工作,而电网公司业务上不允许长时间对业务系统停机。为保障电网公司利益不受损失,市场营销业务能正常快速开展,综合对比后正式数据迁移采用数据迁移方案二。

3、数据迁移改进方案实施应用

3.1、数据迁移方案实施

3.1.1、全量数据实时同步

通过对业务数据量及服务器性能分析后,4 个分库的建设工作顺利完成。在正式数据迁移开始前,需完成全量数据实时同步工作。同步过程需要使用数据同步软件将数据从老系统同步至 4 个中间库,因此需要在老系统数据库服务器上及 4 个中间库上分别安装部署数据同步软件。此次同步为异构服务器且不同数据库之间的数据同步,源端(老系统)为 AIX 服务器,目标端(中间库)服务器为 LINUX 服务器;源端数据库版本为 oracle10g, 目标端版本为 oracle11g。

由于分为 4 个中间库,首先需在源数据库和目标数据库创建 4 个同步队列,随后在源端数据库与 4 个目标端数据库创建同步用户,最后在源端导出数据库结构并在目标端进行导入。上述准备工作完成后即可开始同步数据,同步完成后进行同步数据比对工作,比对内容为源端与目标端核心数据表的记录数与内容。针对比对后遗漏或缺失的数据表,采取两种方式进行修复:对于数据量比较小的表,通过ORACLE DBLINK 技术进行修复;对于数据量比较大的表,采用数据同步软件进行重新同步。

正式上线前一天,首次数据同步开始,通过数据同步软件将老系统数据库数据从 AIX 主机(老系统数据库)同步至 4 台 LINUX 主机(4个中间库)。首次数据同步完成后,开始增量数据同步。在老系统业务停止后,实时增量数据同步结束,开始进行数据比对与修复工作,约两小时后,数据比对修复工作完成,一致率100%,数据同步工作顺利完成。

3.1.2、并行数据转换与迁移

数据同步完成后,在 4 个中间库同时开展数据转换与迁移工作,根据“南方电网营销系统物理数据模型”为标准,开展新老系统数据转换与迁移工作,将老系统数据编码通过数据库脚本转换为新系统所支持的数据编码。为提升数据迁移脚本执行效率,在数据迁移脚本中适当加入索引能提高数据库的性能,建立索引之后,可以合理的使用资源;此时同样需要由良好的 SQL 语句进行支持[3],进行 SQL 语句优化之后,可进一步提升数据迁移时的效率。

在数据同步开始前,针对不同的分库分配了不同的业务数据,如不同的分库同步不同供电局的老系统历史数据,且每个分库的数据量基本一致,因此可以实现四库并行的同步数据转换与迁移工作,与之前方案相比,数据转换将近提升了 4 倍。

在正式数据迁移时,应设计南方电网营销管理系统的应用级灾备切换场景[4],当数据迁移过程中发生灾难且无法恢复时,致使营销服务中断,应快速切换回老系统,确保公司核心业务系统运行的连续性。

3.2、核心数据功能验证质量提升

迁移完成后,对南方电网营销管理系统数据库与《南方电网营销系统物理数据模型》进行完整性对比,保证数据的安全、完整、真实,如图 3 所示。

4、结束语

本文通过分析南方电网营销管理系统迁移现状,结合业务现状、技术现状等角度提出了两种数据迁移方案,进行了详细的分析与阐述,并重点描述了方案二的设计原理与实施应用。本文所提出的历史数据迁移改进方案已经应用于云南电网公司南方电网营销管理系统的实施上线工作中,并取得了工程实际的应用经验。

该方案为大规模企业级管理信息系统的上线实施数据迁移工作提供了高效实用的技术支持,减少了不必要的损失,节省人力资源。

参考文献:

[1] 田V. ERP系统集中部署模式下的历史数据迁移方案研究[J]. 电力信息与通信技术, , 12(8): 77-81.

[2] 陈然. 大规模电网运行数据实时同步技术研究[J]. 云南电力技术, , (5):24-26.

[3] 罗伟,蒋苏湘,周沿东,魏鹏飞. 湖南电力营销系统数据库性能优化研究[J]. 电力信息与通信技术, 2014, 12(4): 30-34.

[4] 郭晓艳,王扬,孙轶凡,侯丹,章斌. 营销系统应用级灾备体系研究及建立[J]. 电力信息与通信技术, 2014, 12(10): 13-17.

[5] 赵晓锋,周庆捷,王志利,王瑞珏,王建伟. PMS实用化分析评价体系和数据质量提升的研究[J]. 电力信息与通信技术, 2015, 13(7): 101-106.

篇8:电网信息化系统中同步并数据迁移技术的运用探讨的论文

电网信息化系统中同步并数据迁移技术的运用探讨的论文

摘要:作为一项支持企业创新发展的普惠性政策, 科技服务券得到越来越多地区政府部门的重视, 国内主要省市已经出台了相关政策, 让中小企业充分享受到了政策红利, 对推动大众创业、万众创新具有积极的意义。但是, 由于区域间的推行政策不同, 组织形式不同, 导致科技服务券的业务流程和管理方式有着本质的区别。文章根据对当前主流科技服务券管理系统的分析, 设计了一种基于后补贴模式的科技服务券管理系统, 为科技服务券的工作开展提供了一个可行性较强的管理工具。

关键词:科技资源; 服务券; 创新创业; 管理系统

随着“大众创业、万众创新”国家战略的推出, 越来越多的针对中小微企业的普惠科技政策开始出现并呈逐步替代原有一般性科技项目计划的趋势[1-4]。科技服务券在西方国家已经不是一个新名词, 发达国家早已推出类似政策并实施多年。国内部分省市已推行科技服务券, 如北京市在2014年印发了《首都科技创新券实施管理办法 (试行) 》的通知, 上海市在2015年印发了《关于试点开展上海市科技创新券工作的通知》。目前, 科技服务券属于地方政府行为, 并无统一的管理办法, 因此导致各省市的科技服务券政策各有不同, 与之相伴的是科技服务券管理系统各具特色, 没有统一模式[5-8]。本文从科技管理业务模式及计算机应用系统开发的角度分析了基于后补贴形式管理系统需求, 并设计了相应的在线申报、审核、兑现管理系统, 测试表明, 按本文设计开发的原型系统实现了全部预设功能, 具有一定的实用性。

1 科技服务券管理系统需求分析。

科技服务券在线应用管理系统采用Java Web技术进行开发, 是为各级政府单位实施科技服务券政策进行标准化管理的信息管理系统。本系统是综合申报管理、使用管理、兑现管理、企业管理等多功能于一体的科技服务券管理平台。

1.1 科技服务券管理系统需求。

根据科技服务券政策要求, 管理系统的功能需求包含以下方面:登录管理、申请管理、使用管理、兑现管理、审核管理、用户管理。系统框架如图1所示。

1.2 功能需求分析。

1.2.1 登录模块。

登录模块是企业用户进入科技服务券管理系统的第一接口, 功能包括用户名、密码输入, 以及安全性验证等, 给不同级别的用户提供不同层级的权限, 功能具有个性化特点。

1.2.2 申请模块。

申请模块主要功能是用户信息填报, 主要为一些基本信息, 如单位名称、营业执照信息、注册资金、人员数量、单位介绍、单位图片、企业类型、申请科技服务券的大致用途等。另外, 申请模块还连通部分系统日志, 企业可以通过申请模块实时看到提交的申报信息所处状态。

1.2.3 使用模块。

使用模块的主要功能是登记备案, 包括发票、合同、服务证明等附件的上传, 相关服务具体内容摘要的填写, 供方机构的勾选、服务类别的勾选等。为从一定程度上降低服务器承载压力, 限定所有附件上传的大小不能超过5 M, 且附件内容必须清晰可读。

图1 科技服务券管理系统架构

1.2.4 兑现模块。

兑现模块中, 企业用户可以在收到科技服务券管理部门发布的兑现通知后, 通过兑现功能, 提交兑现申请。同时, 网上申报材料与纸质材料同时满足条件的企业申报信息将会自动转入专家评审系统中, 接受技术、财务、管理领域专家的全方位审查。通过技术、财务审核的材料方可具备补贴资格。

1.2.5 审核模块。

审核模块是整个科技服务券管理系统的重点部分, 主要包括初级审核和专家审核两大层级, 其中, 为尽可能避免发生错判、误判现象, 将初级审核分为两小级, 即由两名工作人员完成同一条申报信息的审理, 当前一级审核人员准许申报材料通过后, 后一级审核人员才能进行二次审核, 当且仅当两级用户全部判为通过时, 该项申报材料通过初审, 可以进入专家审核阶段。在专家审核阶段, 由奇数名专家 (至少3人) 审核同一份申报材料, 半数以上通过者方为合格材料, 具备补贴资格。

1.2.6 用户管理。

用户管理模块主要涉及3种用户的管理: (1) 企业用户, 即申报使用科技服务券的用户, 该用户可通过系统实时监控自身提交申报资料的.状态, 接受系统通知。 (2) 专家用户, 即科技服务券评审专家, 包括专家个人信息的修改、密码管理, 评审记录管理等内容。 (3) 初审用户, 即科技服务券管理单位的审核用户, 主要涉及权限分配、专家激活、站内信发送等功能。

2 科技服务券管理系统开发。

开发语言为Java和Jsp, 系统采用B/S结构, 按照管理流程需求及用户使用需求, 采用spring MVC+mybatis框架进行开发, 数据库使用My SQL, 应用多层体系结构, 上层子系统使用下层子系统的功能。应用MVC开发模式, 将科技服务券管理系统划为5层, 分别是业务实体层、数据访问层、业务逻辑层、控制层和Web层。服务器租用阿里云空间服务, 经测试, 研究的科技服务券管理系统可以实现多用户并行操作, 预设功能全部实现。

3 结语。

随着国家科技强国战略的不断推进, 低门槛、普惠性的鼓励中小企业创新创业的政策正在受到越来越多地区政府管理部门的重视。科技服务券作为普惠性政策中比较有代表性的一种, 当前被众多省市采用, 由于国家层面尚未推行顶层政策指导, 因此科技服务券的形式多种多样, 管理系统也千差万别。本文从后补贴的角度分析了管理系统的功能需求, 并设计开发了线上应用原型系统, 在线测试结果表明, 该系统可以实现科技服务券管理基本需求, 具有一定的实用性。

参考文献

[1]曹冰雪, 何昉, 郑风田.试论“双创”的理论基础、国外实践及其启示[J].现代管理科学, 2016 (7) :24-26.

[2]赵志娟, 吴磊琦, 石帅杰.国内外创新券政策对比研究及对浙江的启示[J].科技管理研究, 2017 (23) :47-51.

[3]袁永, 廖晓东, 胡海鹏.新加坡近期科技创新战略与政策研究[J].科学管理研究, 2017 (2) :104-107.

[4]何世伟, 郭鹰.创新券抵用规则对创新效用的影响—基于浙江省创新券政策的分析[J].情报杂志, 2016 (11) :56-59.

[5]张寒旭, 邓媚.基于云计算的现代科技服务交易平台[J].云南科技管理, 2015 (2) :19-21.

[6]徐欣威.基于云计算的镇江科技创新服务平台的设计与实现[J].江苏科技信息, 2017 (25) :40-44.

[7]王琴, 杨宗凯, 吴砥.基于工作流和JSP/Servlet技术的网上项目申报与管理系统设计[J].计算机应用研究, 2006 (12) :181-184.

[8]鄢碧鹏, 李志强, 蒋洪.基于Web的科研项目管理系统的设计与开发[J].扬州大学学报 (自然科学版) , 2005 (4) :57-60.

机电一体化系统中的传感器技术

数字电视信号传输技术分析论文

实时传输协议 RTCP流媒体技术

如何解决OTN网络时钟同步传递网络技巧

浅谈COFDM技术在无线图像传输中的应用特性

传输信号

同步化您的Linux系统时间和时钟速度

SBR系统中pH与MLSS对同步硝化反硝化的影响

高手技术:系统Kerberos的原理

风力发电系统故障诊断技术论文

传输系统中的时钟同步技术(共8篇)

欢迎下载DOC格式的传输系统中的时钟同步技术,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档