初二数学全等三角形思维导图

| 收藏本文 下载本文 作者:酝龙茵

下面是小编为大家整理的初二数学全等三角形思维导图(共含5篇),欢迎大家借鉴与参考,希望对大家有所帮助。同时,但愿您也能像本文投稿人“酝龙茵”一样,积极向本站投稿分享好文章。

初二数学全等三角形思维导图

篇1:初二数学全等三角形思维导图

利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关要验证全等三角形,不需验证所有边及所有角也对应地相同。以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:

SSS(Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应相等的话,该两个三角形就是全等三角形。

SAS(Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应相等,且这两条边的夹角(即这两条边组成的角)都对应相等的话,该两个三角形就是全等三角形。

ASA(Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应相等,且这两个角的夹边(即公共边,)都对应相等的话,该两个三角形就是全等三角形。

AAS(Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应相等,且其中一个角的对边(三角形内除组成这个角的两边以外的那条边)或邻边(即组成这个角的一条边)对应相等的话,该两个三角形就是全等三角形。

HL定理(hypotenuse -leg) (斜边、直角边):直角三角形中一条斜边和一条直角边都对应相等,该两个三角形就是全等三角形。

篇2:初二下学期数学思维导图

1、有两个角互余的三角形是直角三角形。

2、三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

3、三角形的外角等于与它不相邻的两个内角的和。

4、在平面内,有一些线段首尾顺次相接组成的封闭图形叫做多边形。

5、连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

6、各个角都相等,各条边都相等的多边形叫做正多边形。

7、n边形内角和等于(n-2)x180°。

8、多边形外角和等于360°。

9、可以看到,形状,大小相同的的图形放在一起能够完全重合的两个图形叫做全等形。

10、能够完全重合的两个三角形叫做全等三角形。

11、把两个全等三角形重合在一起,重合的顶点叫做对应顶点,重合的便叫做对应边,重合的角叫做对应角。

12、全等三角形对应边相等,全等三角形对应角相等。

13、直角三角形的两个锐角互余。

篇3:初二下学期数学思维导图

1、知名中小学教育专家团队精心研究,有雄厚的理论基础;融合全国数十名一线高级教师的教学经验和多省市状元的学习方法,有丰富的实践经验。

2、将知识点以图形的形式展现出来,把复杂的数学逻辑推理简单化,完全符合人类记忆理解能力特点,效果提升数百倍。

3、《数学思维导图》编制名师和专家亲临授课,精彩讲授。

4、数学思维导图大讲堂结合个性化一对一辅导,效果更佳。

5、讲堂实时互动,提升学生对数学知识点的记忆理解能力。

6、通过利用颜色、线条、图形、联想和想象绘制的思维导图,充分利用了右脑对图像的记忆功能,大大提高我们对数学公式、定义的记忆功能;

7、思维导图可用来随堂作笔记,思维导图作笔记有随意性,能融入自己的知识的理解和认知,能把自己的所听所见所想都融入到笔记中,提升记笔记的条理性和灵活性;

8、其他作用:思维导图对数学考试,思考问题,集中注意力,分析解决问题,知识剖析及归类等也有很大的作用。

篇4:初二数学第一章思维导图

初二数学第一章思维导图

初二数学第一章知识点

一、全等形

1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。

2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合。

二、全等多边形

1、定义:能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、性质:

(1)全等多边形的对应边相等,对应角相等。

(2)全等多边形的面积相等。

三、全等三角形

1、全等符号:≌。如图,不是为:△ABC≌△ABC。读作:三角形ABC全等于三角形ABC。

2、全等三角形的判定定理:

(1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,边角边)

(2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,角边角)

(3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,角角边)

(4)有三边对应相等的两三角形全等。(即SSS,边边边)

(5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,斜边直角边)

3、全等三角形的性质:

(1)全等三角形的对应边相等、对应角相等

(2)全等三角形的周长相等、面积相等

(3)全等三角形对应边上的中线、高,对应角的平分线都相等。

4、全等三角形的作用:

(1)用于直接证明线段相等,角相等。

(2)用于证明直线的平行关系、垂直关系等。

(3)用于测量人不能的到达的路程的长短等。

(4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。

(5)用于解决有关等积等问题。

三角形的主要特点

1.三角形的任意两边的和一定大于第三边 ,由此亦可证明三角形的两边的差一定小于第三边。

2.三角形内角和等于180度 。

3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。

4.直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。直角三角形斜边的中线等于斜边的一半。

5.三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的两个内角之和。

6. 三角形30度的角所对应的直角边等于斜边的一半

7.一个三角形的3个内角中最少有2个锐角。

8.三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。

9.勾股定理逆定理:如果三角形的三边长a,b,c有下面关系:a^2+b^2=c^2。那么这个三角形就一定是直角三角形。

10.三角形的外角和是360°。

11.等底同高的三角形面积相等。

12.底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。

13.三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。

14.在△ABC中恒满足tanAtanBtanC=tanA+tanB+tanC。

15.三角形的一个外角大于任何一个与它不相邻的内角。

16.全等三角形对应边相等,对应角相等。

17.在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。(包括等边三角形)

18.△ABC,恒有【tan(A/2)+tan(B/2)】【tan(A/2)+tan(C/2)】=【sec(A/2)】^2。

19.三角形的重心是三角形三条中线的交点。

20.三角形的内心是三角形三条内角平分线的交点。

21.三角形的外心是指三角形三条边的中垂线的交点。

22.三角形的三条高所在直线的交点叫做三角形的垂心。

23.三角形的两条外角平分线和另外一条内角平分线的交点叫做三角形的旁心。

24.三角形的任意一条中线将这个三角形分为两个面积相等的三角形。

25.三角形具有稳定性,不易变形。

篇5:初二上册数学思维导图

知识点一:分式的定义

一般地,如果A,B表示两个整数,并且B中含有字母,那么式子叫做分式,A为分子,B为分母。

知识点二:与分式有关的条件

①分式有意义:分母不为0()

②分式无意义:分母为0()

③分式值为0:分子为0且分母不为0()

④分式值为正或大于0:分子分母同号(或)

⑤分式值为负或小于0:分子分母异号(或)

⑥分式值为1:分子分母值相等(A=B)

⑦分式值为-1:分子分母值互为相反数(A+B=0)

知识点三:分式的基本性质

分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:,,其中A、B、C是整式,C0。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即

注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含条件B0。

知识点四:分式的约分

定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

知识点四:最简分式的定义

一个分式的分子与分母没有公因式时,叫做最简分式。

知识点五:分式的通分

① 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

② 分式的通分最主要的步骤是最简公分母的确定。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

确定最简公分母的一般步骤:

Ⅰ 取各分母系数的最小公倍数;

Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;

Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。

Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。

注意:分式的分母为多项式时,一般应先因式分解。

知识点六分式的四则运算与分式的乘方

① 分式的乘除法法则:

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:

分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为

② 分式的乘方:把分子、分母分别乘方。式子

③ 分式的加减法则:

同分母分式加减法:分母不变,把分子相加减。式子表示为

异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为

整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。

④ 分式的加、减、乘、除、乘方的混合运算的运算顺序

先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。

注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。

加减后得出的结果一定要化成最简分式(或整式)。

知识点六整数指数幂

① 引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。即

科学记数法

若一个数x是0的数,则可以表示为(,即a的整数部分只有一位,n为整数)的形式,n的确定n=从左边第一个0起到第一个不为0的数为止所有的0的个数的相反数。如0.000000125=

若一个数x是x>10的数则可以表示为(,即a的整数部分只有一位,n为整数)的形式,n的确定n=比整数部分的数位的个数少1。如120 000 000=

知识点七分式方程的解的步骤

⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)

⑵解整式方程,得到整式方程的解。

⑶检验,把所得的整式方程的解代入最简公分母中:

如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

知识点八列分式方程

基本步骤

① 审—仔细审题,找出等量关系。

② 设—合理设未知数。

③ 列—根据等量关系列出方程(组)。

④ 解—解出方程(组)。注意检验

⑤ 答—答题。

初二数学轴对称的思维导图

数学教学计划思维导图

思维导图实战经验

读书笔记思维导图

自我介绍思维导图

八年级上数学思维导图测试题

小学数学教研计划思维导图

思维导图学习方法步骤

思维导图教学设计

思维导图和外语教学

初二数学全等三角形思维导图(通用5篇)

欢迎下载DOC格式的初二数学全等三角形思维导图,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档