一元一次方程的解法的练习题

| 收藏本文 下载本文 作者:静馨婷

下面小编给大家整理的一元一次方程的解法的练习题(共含6篇),欢迎阅读与借鉴!同时,但愿您也能像本文投稿人“静馨婷”一样,积极向本站投稿分享好文章。

一元一次方程的解法的练习题

篇1:一元一次方程的解法的练习题

一元一次方程的解法的练习题

基础训练

一、选择题

1.若a=1,则方程=x-a的解是

A、x=1B、x=2C、x=3D、x=4.

2.方程+10=k去分母后得()

A、1-k+10=kB、1-k+10=6kC、1+k+10=6kD、1-k+60=6k.

3.把方程+10=-m去分母后得()

A、1-m+10=-mB、1-m+10=-12m

C、1+m+10=-12mD、1-m+120=-12m.

4.把方程1-=-去分母后,正确的是()

A、1-2x-3=-3x+5B、1-2(x-3)=-3x+5

C、4-2(x-3)=-3x+5D、4-2(x-3)=-(3x+5).

5.方程x=5-x的解是()

A、B、C、D、20.

二、天空题

6.数5、4、3的.最小公倍数是________________.

7.方程-1=去分母,得_________________.

三、解答题

8.下面方程的解法对吗?若不对,请改正.

-1=解:去分母,得:3(x-1)-1=4x

去括号,得:3x-1-1=4x

移项,得:3x+4x=-1-1

∴7x=-2,即x=-

学练点拨:

去分母时要注意(1)不要漏乘不含分母的项;(2)分子是多项式时,分子必须添加括号.

综合提高

一、选择题

9.解方程1-=-去分母后,正确的是()

A、1-5(3x+5)=-4(x+3)B、20-5×3x+5=-4x+3

C、20-15x-25=-4x+3D、20-15x-25=-4x-12.

10.把方程=1-去分母后,有错误的是()

A、4x-2=8-(3-x)B、2(2x-1)=1-3+x

C、2(2x-1)=8-(3-x)D、2(2x-1)=8-3+x.

11.解方程+=0.1时,把分母化成整数,正确的是()

A、+=10B、+=0.1

C、+=0.1D、+=10.

二、填空题

12.若代数式与-1的值相等,则x=____________.

13.若关于x的方程3x=x-4和x-2ax=x+5有相同的解,则a=__________.

三、解答题

14.解方程:

(1)=(2)(4-y)=(y+3)

(3)=x-(4)1-=.

15.解方程:-=0.5

16.当x为何值时,x-与1-的值相等.

17.已知方程-=1的解是x=-5,求k的值.

18.已知关于x的方程3x-2m+1=0与2-m=2x的解互为相反数,试求这两个方程的解及m的值.

探究创新

19.解方程:++---+=.

20.已知关于x的方程ax+5=的解x与字母系数a都是正整数,求a的值.

篇2:一元一次方程解法教学设计

教学目标:

1、经历对实际问题中数量关系的分析,建立一元一次方程的过程,体会学习方程的意义在于解决实际问题。

2、通过观察,归纳一元一次方程的概念。

3、理解等式的基本性质,并利用等式的基本性质解一元一次方程。

4、培养学生自主学习的意识,增强合作交流的能力。

教学重点、难点

教学重点:对一元一次方程概念的理解,会运用等式的基本性质解简单的一元一次方程。

教学难点:对等式基本性质的理解与运用。

教学过程:

一:情境导入

多媒体展示古代一趣味问题:

今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何14

设计理念:设置开放性问题,为学生开放性思维提供时间和空间,可极大调动学生的创造积极性.应把握学生的创新潜能,使不同层次的学生都能得到发展。这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质.

二:导入课题

一元一次方程及其解法

三:问题情境导入

问题1:在参加雅典奥运会的中国代表队中,羽毛球运动员有18人,比跳水运动员的2倍少4人,参加奥运会的跳水运动员有多少人?如果设参加奥运会的跳水运动员有x人,则根据题意可列出方程:

2x-4=18 1

问题2:王玲今年12岁,她爸爸36岁,问再过几年,她爸爸的年龄是她年龄的2倍?如果设再过x年,则x年后王玲的年龄是岁

则x年后爸爸的年龄是()岁

由题意可得:(先让学生做,然后交流。)

设计理念:引导学生用数学眼光去发现周围的生活现象,思考能否用数学知识、方法、观点和思想去解决所遇到的问题。

四:想一想

看看式子:

2x-4=18

36+x=2(12+x)

1、它们属于我们小学里学过的什么内容?

方程:含有未知数的等式叫方程。

2、上面的两个方程的左右两边的式子属于我们学过的代数式中的哪一类式子?

它们都是整式

3、如果方程的两边都是整式,我们就把这样的方程叫整式方程。

设计理念:通过创设愉悦的问题情景,引起学生的学习兴趣,给学生提供经15历从多角度寻求不等关系的过程,在轻松欢快中探索问题,解决问题。

五:合作探究

观察方程:2x-4=18

36+x=2(12+x)

这两个方程有什么特征?(从未知数的个数与未知数的次数两方面去考虑)

一元一次方程:象上面的两个方程,只含有一个未知数,并且未知数的次数都是1,这样的整式方程叫一元一次方程。

设计理念:完整的解题过程的展现,有利于培养学生有条理地思考和表达的习惯。

六:相信你会判断

判断下列各式是不是一元一次方程,是的打“√”,不是的打“x”。

(1)x+3y=4

()

(2)x2—2x=6

()

(3)—6x=0

()

(4)2m+n=0

()

(5)2x—y=8

()

七、回顾交流

1:请同学们自己写出几个一元一次方程的例子。

2:请同学们回顾一下什么叫方程的解?

方程的解:使方程左右两边相等的未知数的'值叫方程的解。

3:解方程:求方程解的过程叫做解方程。

估一估:判断括号里的数是不是方程的解

1、2x-4=18(x=11)

2、36+x=2(12+x)(x=12)

3、3x+1=7(x=3)

设计理念:通过设置的问题,形成问题串,逐步深入,引导发现,通过提问,把学生逐步引入问题情境中,并且问题具有一定的梯度和层次,对学生的思考有一定的引导启发作用。培养其勇于探索的精神,画出相应的示意图解决问题是解应用题的一个重要手段,要使学生学会利用不同的示意图解决问题。

八、知识导航

我们在小学里已经学过等式的基本性质,谁能告诉老师等式基本性质的内容吗?

等式的基本性质

1、等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

2、等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

九、做一做

说明下列变形是根据等式的哪一条基本性质得到的?

1、如果5x+3=7,那么5x=4

2、如果-8x=16,那么x=-2

3、如果-5a=—5b,那么a=b

4、如果3x=2x+1,那么x=1

十、课堂小结

1、通过这节课的学习,你有哪些收获?你还有哪些疑问?

十一、作业:

1、课堂作业p91页习题3、1第2题

2、课后预习下一节。

预习要点:

1、什么叫移项?

2、会用移项的方法解一元一次方程。

小结:

这节课是从学生的实际问题出发,结合新课标准的理念,创造性使用教材而设计的一节课,是继前面有了经历将实际问题转化为数学问题的过程的经验后,体验文字语言、图形语言、符号语言的互相转换。本节的设计是从学生感兴趣的情境入手,通过画线段获取信息,经历从不同的角度寻求不同的不等关系。形成解决问题的一些基本策略,提高学生综合分析问题、解决问题的能力。经历分析寻求不同的等量关系的过程,体验解决问题策略的多样性,发展创新能力。通过本节教学使学生初步感受“数学建模”的方法,能更好地发展学生有条理地进行思考和表达,故本节课有承上启下的作用。

篇3:一元一次方程解法教学设计

一、教材分析:

1、主要内容:一元一次方程的解法第一课时

2、教材中的地位与作用:一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。本节课是在教授了一元一次方程解法第一课时因此尤为重要。同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。

3、教学重点:熟练运用等式性质和移项解一元一次方程。

教学难点:学生如何在已有的基础上根据不同形式的问题选择合适的解题方法。

二、教学目标:

(1)知识与技能:初步学习一元一次方程的一般解法,进一步巩固等式性质。

(2)过程与方法:通过寻找解题方法,提高学生发散思维能力,逐步培养创新意识。

(3)情感、态度与价值观:在教学过程中,充分体现和谐、简洁之美,使学生在获取知识的.同时,又能对所学内容产生浓厚的兴趣,增强求知欲。

三、教法方法:自学探究指导法

学法探究:自主、合作、探究学习法教学手段:多媒体辅助教学初步设想简单问题由学生自主完成,难度稍大同桌或小组互助完成,知识拓展由小组间互助完成,即同桌对学,小组对学,互查互助,学友展示师傅补充。

四、课前准备

1、导学案的使用:由于七年级是课改的年段,教师在新课前一天将学习目标、学习内容、思路和方法等以“预习案”的形式明确给学生,学习目标、思路和方法要有层次性和逻辑性。并印发“探究案”和“测评案”(三案合一),有意识地引导学生在课前自学。

2、分组:两个差异较大的学生结成一个学习对子,即:师傅和学友。三个学习对子为一个学习小组。桌椅按照面对面排列。每一对学习对子中的师傅负责徒弟的学习,六人中挑选综合能力最优者为组长,负责本组合作学习的总组织者

和协调者。相邻的两个小组为结对组。班级同学般6人一组,其中优中差相结合,不仅考虑数学学科同时考虑其他学科,由于学生各科不均衡,师徒角色有时会转化。

五、教学流程一)、基础知识链接

本环节设置三个方面的内容分别是(1)温故知新复习巩固难点重现。(2)概念回顾承上启下识记运用。(3)新知初探自主学习合作认知。

1、复习回顾

(1)下列是一元一次方程的是()

A、x2+x=0B、x—y=0C、y—2=0D、110xm

(2)、如果3x+2=0是关于x的一元一次方程,那么m=__(3)如果(k+1)x|k|+21=0是一元一次方程,则k=_______

2、等式的性质

(1)等式的性质1:等式的两边加(或减)(或式子)结果仍相等。

(2)等式的性质2:等式的两边乘以同一个数,或除以结果仍相等

3、移项:把等式一边的某一项移到等号的另一边叫做移项。

(1)x+3=7移项得x=7—()

(2)3x+4=5x移项得4=5x—()学生通过观察分析、独立思考,自主探究,学会解决问题。

二)、基础知识巩固

在新知初探的基础上引进对移项的探究,旧知识与新知识结合更利于掌握移项的理论基础。本环节设置6道题分成3个层次同桌互助、小组互助、对组合作乃至全班大范围交流。

小组探究,合作互助(试解下列一元一次方程)(1)—2x=4(2)x+5=2

(3)—5y=—3y+2(4)3m+7=32—2m(5)x—3=3x+1(6)2、5y+10y—15=6y—21、5、2本环节为解决问题的核心初级阶段尽量由学生完成,成熟之后由学生自主或互助完成,机动灵活地调整教学方式,进行教学实施

三)、基础知识拓展

本环节是将探究完全放手给学生通过重点重现,难点分解,小步距教学,变换问题的呈现方式,学生的学习方式,并对学生灵活学习方法进行探究,引导学生以学习小组的形式进行合作学习。并通过组内、组间交流,让他们在集体的思想碰撞中,寻求答案。既攻破了疑难,又锻炼了学生的能力。

1.如果—3x2a—1+6=0是一元一次方程,那么a=。

2、方程(a2—1)x2+(a—1)x+1=0是关于x的一元一次方程,则a=。

3、当m=__时,方程2x+m=x+1的解为x=-4、

4、若x=2是方程2x-a=7的解,那么a=___

5.如果5a2b2m+1与—2a2bm+3是同类项,则m=。

6、关于x的方程2x-4=3m和x+2=1有相同的解,那么m=_____

四)当堂检测

巩固训练,稳步提升,习题数量少,难易适中,有利于学生建立自信心,个人认为学习与孩子们的快乐成长相比较学生的快乐更重要。

五)归纳总结知识提升

归纳总结纳入系统,交流反思提高认知六)、布置作业巩固提高(课后跟踪训练)

这组题的设计目的是“趁热打铁”,进一步激发学生学习兴趣,加深所学知识的印象。采用形式完全由学生自主合作完成,努力培养学生的观察能力、思维能力,增加学生“成就感”激发学生的求知欲。

1、解方程:

(1)2x12x1(2)53(y)33(3)—5x—7=2x—11 2a—9a

2、若与互为相反数,求a的值。

32

3、用一根长10cm的铁丝围成一个长方形,已知长比宽多1、4cm,求长方形的长和宽。

4、求作一个方程,使它的解为—5,且未知数的系数为2,试列出一个满足条件的方程。

5、在“希望工程”义演中,成人票8元,学生票5元,一共售出1000张票。所得的票款可能是6932元吗?如果可能。成人票比学生票多售出多少张?

本环节设计构想是加深对所学知识的理解,并能得到运用和发展,并且使知识技能转化为能力,真正做到知识的“活学活用”。

六、设计说明

本节课是课改新型课,而课改又处于尝试阶段,设计理念是自始至终我都是有意识培养学生动眼、动口、动手、动脑能力,使学生始终处于一种积极心态下去完成学习任务。极大调动学生的学习主动性,并使刚学过的知识上升到一个新的高度,同时也培养了学生的创新意识。但由于教法处于尝试阶段,而我又能力有限,设计中一定会有不足希望各位同仁批评指正。

篇4:数学教案-一元一次方程和它的解法

数学教案-一元一次方程和它的解法

一、素质教育目标

(一)知识教学点

1.要求学生学会用移项解方程的方法.

2.使学生掌握移项变号的基本原则.

(二)能力训练点

由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.

(三)德育渗透点

用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.

(四)美育渗透点

用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.

二、学法引导

1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.

2.学生学法:练习→移项法制→练习

三、重点、难点、疑点及解决办法

1.重点:移项法则的掌握.

2.难点:移项法解一元一次方程的步骤.

3.疑点:移项变号的掌握.

四、课时安排

3课时

五、教具学具准备

投影仪或电脑、自制胶片、复合胶片.

六、师生互动活动设计

教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.

七、教学步骤

(一)创设情境,复习导入

师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.

(出示投影1)

利用等式的性质解方程

(1) ; (2) ;

解:方程的两边都加7, 解:方程的两边都减去 ,

得 ,得  ,

即 . 合并同类项得  .

【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.

提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?

(二)探索新知,讲授新课

投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.

(出示投影2)

师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?

2.改变的项有什么变化?

学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.

师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的 项从右边移到了左边;②这些位置变化的项都改变了原来的符号.

【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.

师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.

(三)尝试反馈,巩固练习

师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.

学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.

【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.

对比练习:(出示投影3)

解方程:(1) ; (2) ;

(3) ; (4) .

学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.

师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)

【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.

巩固练习:(出示投影4)

通过移项解下列方程,并写出检验.

(1) ; (2) ;

(3) ; (4) .

【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.

(四)变式训练,培养能力

(出示投影5)

口答:

1.下面的移项对不对?如果不对,错在哪里?应怎样改正?

(1)从 ,得到 ;

(2)从 ,得到 ;

(3)从 ,得到 ;

2.小明在解方程 时,是这样写的解题过程: ;

(1)小明这样写对不对?为什么?

(2)应该怎样写?

【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式.

(出示投影6)

用移项解方程:

(1) ;(2) ;

(3) ; (4) .

【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目.

学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分.

(出示投影7)

解下列方程:

(1) ; (2) ;(3) ;

(4) ; (5) ; (6) .

【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的'目的,而互相评判更增加了课堂上的民主意识.

(五)归纳小结

师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点.②检验要把所得未知数的值代入原方程.

八、随堂练习

1.判断下列移项是否正确

(1)从 得 ( )

(2)从 得 ( )

(3)从 得 ( )

(4)从 得 ( )

2.选择题

(1)对于方程 ,移项正确的是( )

A. B.

C. D.

(2)对于方程 移项正确的是( )

A. B.

C. D.

3.用移项法解方程,并写出检验

(1) ;

(2) ;

(3) .

九、布置作业

课本第205页A组1.(1)(3)(5).

十、板书设计

随堂练习答案

1.× × × √

2.D  C

3.略

作业答案

(5)

解:移项得

合并同类项得

检验:略

探究活动

运动与学习成绩

班里共有25个学生,其中17人会骑自行车,13人会游泳,8人会打篮球.全部掌握这三种运动项目的学生一个也没有.在这25个学生中,有6人数学成绩不及格.而参加以上运动的学生中,有2人数学成绩优秀,没有数学不及格的(学习成绩分优秀、良好、及格、不及格).问:全班数学成绩优秀的学生有几名?既会游泳又会打篮球的有几人?

参考答案:

全班数学成绩及格的学生有25-6=19(人),参加运动的人次共有17+13+8=38,因没有一个学生掌握三个运动项目,且数学没有不及格的,所以参加运动的学生共19人.每人掌握两个运动项目,19人中有17个会骑自行车,只有两个学生同时会游泳又会打篮球.

参加运动的共19人,且数学成绩全部及格,不参加运动的数学全不及格,所以全班数学成绩优秀的学生只有2名.

篇5:《一元一次方程的解法》的教学反思

熟练而准确地掌握一元一次方程的解法,是本章也是初中数学的重点和难点.因此,在教学过程设计时,注重了讲、练结合.同时在除了安排一定量的例题以外,还安排了相当数量的练习,从而使学生更好地达到上述要求.

在设计整个一元一次方程的解法的教学过程时,始终遵照“坚持启发式,反对注入式”的教学原则.即在课上,凡是学生自己努力能解的方程都应由学生自己解决完成

篇6:一元一次方程组练习题

一、1.3

2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)

3. (点拨:解方程 x-1=- ,得x= )

4. x+3x=2x-6 5.y= - x

6.525 (点拨:设标价为x元,则 =5%,解得x=525元)

7.18,20,22

8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]

二、9.D

10.B (点拨:用分类讨论法:

当x0时,3x=18,x=6

当x0时,-3=18,x=-6

故本题应选B)

11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+30,b-3,故本题应选D.)

12.B (点拨;在变形的过程中,利用分式的.性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)

13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)

14.D

15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)

16.D 17.C

18.A (点拨:根据等式的性质2)

三、

20.解:去分母,得

15(x-1)-8(3x+2)=2-30(x-1)

21x=63

x=3

21.解:设卡片的长度为x厘米,根据图意和题意,得

5x=3(x+10),解得x=15

所以需配正方形图片的边长为15-10=5(厘米)

答:需要配边长为5厘米的正方形图片.

22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故

100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171

解得x=3

答:原三位数是437.

23.解:(1)∵103100

每张门票按4元收费的总票额为1034=412(元)

可节省486-412=74(元)

(2)∵甲、乙两班共103人,甲班人数乙班人数

甲班多于50人,乙班有两种情形:

①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得

5x+4.5(103-x)=486

解得x=45,103-45=58(人)

即甲班有58人,乙班有45人.

②若乙班超过50人,设乙班x人,则甲班有(103-x)人,

根据题意,得

4.5x+4.5(103-x)=486

∵此等式不成立,这种情况不存在.

故甲班为58人,乙班为45人.

24.解:(1)由已知可得 =0.12

A站至H站的实际里程数为1500-219=1281(千米)

所以A站至F站的火车票价为0.121281=153.72154(元)

(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66

解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.

(注:一元一次方程练习题及答案,仅供练习和参考,要想熟练掌握一元一次方程的做题方法,还需同学们勤加练习和思考!祝同学们学习成绩越来越棒,加油!)

初一数学一元一次方程相关链接《

一元一次方程教案

一元一次方程的解法

一元一次方程应用题一元一次方程练习题一元一次方程应用题归类

一元一次方程练习题

一元一次方程组练习题

一元一次方程练习题及答案

一元一次方程同步练习题及答案

七年级数学上册第三章一元一次方程练习题

一元一次方程教案

一元一次方程数学教案

一元一次方程应用教案设计

解一元一次方程教案

一元一次方程单元测试题

一元一次方程的解法的练习题(整理6篇)

欢迎下载DOC格式的一元一次方程的解法的练习题,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式

猜你喜欢

NEW
点击下载本文文档