下面就是小编给大家整理的解一元一次方程数学课件(共含10篇),希望您能喜欢!同时,但愿您也能像本文投稿人“唯我”一样,积极向本站投稿分享好文章。
解一元一次方程数学课件
教学目的:
理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。
重点、难点
1、重点:弄清应用题题意列出方程。
2、难点:弄清应用题题意列出方程。
教学过程:
一、复习
1、什么叫一元一次方程?
2、解一元一次方程的理论根据是什么?
二、新授。
例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?
先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。
分析:设应从A盘内拿出盐x,可列表帮助分析。
等量关系;A盘现有盐=B盘现有盐
完成后,可让学生反思,检验所求出的解是否合理。
(盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)
培养学生自觉反思求解过程和自觉检验方程的'解是否正确的良好习惯。
例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
引导学生弄清题意,疏理已知量和未知量:
1.题目中有哪些已知量?
(1)参加搬砖的初一同学和其他年级同学共65名。
(2)初一同学每人搬6块,其他年级同学每人搬8块。
(3)初一和其他年级同学一共搬了400块。
2.求什么?
初一同学有多少人参加搬砖?
3.等量关系是什么?
初一同学搬砖的块数十其他年级同学的搬砖数=400
如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程
6x+8(65-x)=400
也可以按照教科书上的列表法分析
三、巩固练习
教科书第12页练习1、2、3
第l题:可引导学生画线图分析
等量关系是:AC十CB=400
若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再
由等量关系就可列出方程:
6(65-x)+8x=400
四、小结
本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。
五、作业
一、教学目标:
1、知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。
2、能力目标:培养学生的运算能力与解题思路。
3、情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。
二、教学的重点与难点:
1、重点:了解一元一次方程的.概念,解含有括号的一元一次方程的解法。
2、难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。
三、教学方法:
1、教 法:讲课结合法
2、学 法:看中学,讲中学,做中学
3、教学活动:讲授
四、课 型:新授课
五、课 时:第一课时
六、教学用具:彩色粉笔,小黑板,多媒体
七、教学过程
1、创设情景:
今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的她
心里想一个数
将这个数+2
将所得结果
最后+7
将所得的结果告诉老师
(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)
老师:同学们知道老师是怎样猜到的吗?
同学:不知道。
老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。
2、探究新知:
一元一次方程的概念:
前面我们遇到的一些方程,例如 3
老师:大家观察这些方程,它们有什么共同特征?
(提示:观察未知数的个数和未知数的次数)
(抽同学起来回答,然后再由老师概括)
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程
老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?
再次强调特征:
(1)只含一个未知数;
(2)未知数的次数为1;
(3)是一个整式。
(注意:这几个特征必须同时满足,缺一不可)
3、例题讲解:
例1判断如下的式子是一元一次方程吗?
(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由)
① ② ③
④ ⑤⑥
准确答案:①③
下面我们再一起来解几个一元一次方程。
例2、解方程
(1)
解法一:解法二:
提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号
(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)
(2)
解:
提示
1)在我们前面学过的知识中,什么知识是关于有括号的、
2)复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。
3)问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。
4)问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。
5)一起回顾合并同类项的法则:未知数的系数相加。
6)系数化为1,运用了等式的性质。
(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式、)
方程(1)该怎样解?由学生独立探索解法,并互相交流。
去括号,移项,合并同类项,系数化为1。
4、巩固练习
(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)
(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)
5、小结:和同学们一起回顾我们这节课学习了什么?
解一元一次方程2课件
解一元一次方程2课件
一、课题名称:
去括号与去分母
二、教学目的和要求:
1、知识目标
(1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;
(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
2、能力目标
(1)通过学生观察、独立思考等过程,培养学生归纳、慨括的能力;
(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3、情感目标
(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;
(2)培养学生严谨的思维品质;
(3)通过学生间的相互交流、沟通,培养他们的协作意识。
三、教学重难点:
重点:
去分母解方程。
难点:
去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。
四、教学方法与手段:
运用引导发现法,引进竞争机制,调动课堂气氛
五、教学过程:
1、创设情境,提出问题
问题1:
我手中有6,x,30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快有对。
学生思考,根据自己对一元一次方程的理解程度自由编题。
问题2:
解方程5(x-2)=8
解:
5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
问题3:
某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
2、探索新知
(1)情境解决
问题1:
设上半年每月平均用电x度,则下半年每月平均用电____度;上半年共用电____度,下半年共有电_____度。
问题2:
教室引导学生寻找相等关系,列方程。
根据全年用电15万度,列方程,得6x+6(x-2000)=150000.
问题3:
怎样使这个方程向x=a的形式转化呢?
6x+6(x-2000)=150000
↓去括号
6x+6x-12000=150000
↓移项
6x+6x=150000+12000
↓合并同类项
12x=162000
↓系数化为1
x=13500
问题4:
本题还有其他列方程的方法吗?
用其他方法列出的方程应怎样解?
设下半年每月平均用电x度,则6x+6(x+2000)=150000.
(学生自己进行解决)
归纳结论:
方程中有带括号的式子时,根据乘法分配率和去括号法则化简。 (见“+”不变,见“—”全变)
去括号时要注意:
(1)不要漏乘括号内的任何一项;(2)若括号前面是“—”号,记住去括号后括号内各项都变号。
(2)解一元一次方程——去括号
例题、解方程:
3x—7(x—1)=3—2(x+3)。
解:
去括号,得3x—7x+7=3—2x—6
移项,得3x—7x+2x=3—6—7
合并同类项,得—2x=—10
系数化为1,得x=5
3、变式训练,熟练技能
(1)解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
(2)3(2-3x)-3[3(2x-3)+3]=5;
(3)2 (x+1)+3(x+2)-3=-4(x+3).
(2)学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
(3)学校田径队的.小刚在400米跑测试时,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?
4、总结反思,情意发展
(1)本节课你学习了什么?
(2)本节课你有哪些收获?
(3)通过今天的学习,你想进一步探究的问题是什么?
可以归纳为如下几点:
①本节主要学习用去括号的方法解一元一次方程。
②主要用到的思想方法是转化思想。
③注意的问题:
括号前是“—”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项;在实际问题中,要会找等量关系。
5、布置作业
(1)必做题:
课本第98页习题3.3第1、2题。
(2)选做题:
①解方程:
3x-2[3(x-1)-2(x+2)]=3(18-x)。
②杭州新西湖建成后,某班40名同学划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?
六、课后小结:
本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开
思考、讨论,进行学习。
强调学生主体意识的体现,在设计中,教师始终把学生放在主体的地位,让学生通过尝试得到解决,归纳出去括号解方程的特点,让学生通过合作与交流,得出问题的不同解答方法。
从设计上体现学生思维的层次性。教师首先引导学生尝试列出含未知数的式子,寻找相等关系列出方程。
解一元一次方程去分母课件
一、教学目标
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点
1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法
讲练结合、注重师生互动。
四、教学准备
课件
五、教学过程(师生活动)
(一)情境引入
教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)
教师可以在学生回答的基础上做回顾小结
问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)
教师可以在学生回答的基础上做回顾小结:
1、问题涉及的三个基本物理量及其关系;
2、从知的信息中可以求出汽车的速度;
3、从路程的角度可以列出不同的算式:
问题3:能否用方程的知识来解决这个问题呢?
(二)学习新知
1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.
如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.
2、教师引导学生寻找相等关系,列出方程.
问题1:题目中的“汽车匀速行驶”是什么意思?
问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗? 问题3:根据车速相等,你能列出方程吗?
教师根据学生的回答情况进行分析,如:
依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:
依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:
3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.
4、归纳列方程解决实际问题的两个步骤:
(1)用字母表示问题中的未知数(通常用x,y,z等字母);
(2)根据问题中的相等关系,列出方程.
(三)举一反三讨论交流
1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的`优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.
列算式:只用已知数,表示计算程序,依据是间题中的数量关系;
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、
建议按以下的顺序进行:!
(1)学生独立思考;
(2)小组合作交流;
(3)全班交流.
如果直接设元,还可列方程:
如果设王家庄到青山的路程为x千米,那么可以列方程:
依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:,再列出方程 =60
说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.
(四)初步应用、课堂练习
1、例题(补充):根据下列条件,列出关于x的方程:
(1)x与18的和等于54; (2)27与x的差的一半等于x的4倍.
建议:本例题可以先让学生尝试解答,然后教师点评.
解:(1)x+18=54;(2) (27-x)=4x.
列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.
2、练习(补充):
(1) 列式表示:
① 比a小9的数; ② x的2倍与3的和;
③ 5与y的差的一半; ④ a与b的7倍的和.
(2)根据下列条件,列出关于x的方程:
(1) 12与x的差等于x的2倍;
(2)x的三分之一与5的和等于6.
(五)课堂小结
可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:
1、本节课我们学了什么知识?
2、你有什么收获?
说明方程解决许多实际问题的工具。
(六)本课作业
1、必做题:第84--85页习题3.1第1,5题。
2、选做题:根据下列条件,用式表示问题的结果:
(1) 一打铅笔有12支,m打铅笔有多少支?
(2) 某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?
(3) 根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。
初一数学解一元一次方程的教案设计
第一课时
教学目的
1.了解一元一次方程的概念。
2.掌握含有括号的一元一次方程的解法。
重点、难点
1.重点:解含有括号的一元一次方程的解法。
2.难点:括号前面是负号时,去括号时忘记变号。
教学过程
一、复习提问
1.解下列方程:
(1)5x-2=8 (2)5+2x=4x
2.去括号法则是什么?“移项”要注意什么?
二、新授
一元一次方程的.概念
如44x+64=328 3+x=(45+x) y-5=2y+l 问:它们有什么共同特征?
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。
例1.判断下列哪些是一元一次方程
x= 3x-2 x-=-l
5x2-3x+1=0 2x+y=l-3y =5
例2.解方程(1)-2(x-1)=4
关于七年级数学解一元一次方程的教案
教学目标:
1.知识目标
(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。
(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
2.能力目标
(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;
(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3.情感目标:
(1)激发学生浓厚的'学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;
(2)培养学生严谨的思维品质;
(3)通过学生间的互相交流、沟通,培养他们的协作意识。
教学重点:1.弄清列方程解应用题的思想方法;
2.用去括号解一元一次方程。
教学难点:1.括号前面是“-”号,去括号时,应如何处理,括号前面是“-”号的,去括号时,括号内的各项要改变符号。
2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。
教学过程:
一、创设情境,提出问题
问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。
学生思考,根据自己对一元一次方程的理解程度自由编题。
问题2:解方程5(x-2)=8
解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
(教学说明:给学生充分的交流空间,在学习过程中体会“取长补短”的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)
二、探索新知
1.情境解决
问题1:设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。
问题2:教师引导学生寻找相等关系,列出方程。
根据全年用电15万度,列方程,得6x+6(x-2000)=150000.
问题3:怎样使这个方程向x=a的形式转化呢?
6x+6(x-2000)=150000
去括号
6x+6x-12000=150000
移项
6x+6x=150000+12000
合并同类项
12x=162000
系数化为1
x=13500
问题4:本题还有其他列方程的方法吗?
用其他方法列出的方程应怎样解?
设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解题)
归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号。)
去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,记住去括号后括号内各项都变号。
2.解一元一次方程――去括号
例题:解方程3x-7(x-1)=3-2(x+3)
解:去括号,得3x-7x+7=3-2x-6
移项,得3x-7x+2x=3-6-7
合并同类项,得-2x=-10
系数化为1,得x=5
三、课堂练习
1.课本97页练习
2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其它年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
四、总结反思
1.本节课你学习了什么?
2.通过今天的学习,你想进一步探究的问题是什么?
(由学生自主归纳,最后老师总结)
四、作业布置
1.课本102页习题3.3第1、4题
2.配套资料相关练习
教学反思:本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出答案。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习
七年级数学解一元一次方程同步测试题
【基础过关】
一、选择题
1、方程=x-2的解是
A.5 B.-5 C.2 D.-2
2、解方程x=,正确的是 ( )
A.x==x=;B.x=,x=C.x=,x=;D.x=,x=
3、下列变形是根据等式的性质的是()
A.由2x﹣1=3得2x=4B.由x2=x得x=1
C.由x2=9得x=3D.由2x﹣1=3x得5x=﹣1
4、下列变形错误的是()
A.由x+7=5得x+7-7=5-7;B.由3x-2=2x+1得x=3
C.由4-3x=4x-3得4+3=4x+3xD.由-2x=3得x=-
5、已知方程①3x-1=2x+1②③④中,解为x=2的是方程()
A.①、②和③;B.①、③和④C.②、③和④;D.①、②和④
二、填空题
1、判断:方程6x=4x+5,变形得6x+4x=5()
改正:________________________________________________.
2、方程3y=,两边都除以3,得y=1()
改正:________________________________________________.
3、某数的4倍减去3比这个数的一半大4,则这个数为__________.
4、当m=__________时,方程2x+m=x+1的解为x=-4.
当a=____________时,方程3x2a-2=4是一元一次方程.
6、求作一个方程,使它的'解为-5,这个方程为__________.
三、解下列方程
(1)6x=3x-12 (2)2y―=y―3
(3)-2x=-3x+8(4)56=3x+32-2x
(5)3x―7+6x=4x―8(6)7.9x+1.58+x=7.9x-8.42
【知能升级】
1、2a—3x=12是关于x的方程.在解这个方程时,粗心的小虎误将-3x看做3x,得方程的解为x=3.请你帮助小虎求出原方程的解.
2、在代数式|()+6|+|0.2+2()|的括号中分别填入一个数,使代数式的值等于0.
答案
【基础过关】
一、选择题
1、A2、C3、A4、D5、D
二、填空题
1、错,6x-4x=52、错,y=3、24、5,6、x+5=0
三、解下列方程
1、x=-42、y=3、x=84、x=245、x=6、x=-10
【知能升级】
1、x=-32、-4,-0.1
七年级数学解一元一次方程移项教学反思
本节课内容选自人教版七上3。2。2章节的《解一元一次方程》,学生之前已经学习了用合并同类项的方法来解一元一次方程,这种方程的特点是含x的项全部在左边,常数项全部在右边。今天要学习的.方程类型是两边都有x和常数项,通过移项的方法化归到合并同类项的方程类型。教学重点是用移项解一元一次方程,难点是移项法则的探究。
我是从复习旧知识开始,合并同类项一节解方程都是之前学过的知识,为本节课作铺垫,再引出课本上的“分书”问题,应用题本身对学生来说,理解上有点难度,讲解其中的数量关系不是本节课的重点,所以我避重就轻地给了学生分析提示,通过填空的形式,找出数量关系,进而列出方程。
列出方程后,发现方程两边都有x和常数项,这个方程怎么解?从而引出本节课的学习内容:怎样解此类方程。方程出示后,通过学生观察,怎样把它变为我们之前的方程,也就是含x的项全部要在左边,常数项在右边。学生回答右边的4x要去掉,根据等式性质1,两边要同时减去4x才成立。左边常数项20用同样的方法去掉,通过方框图一步步演示方程的变化,最后成为3x—4x=—25—20,变为之前学过的方程类型。
通过原方程、新方程的比较(其中移项的数用不同颜色表示出来),发现变形后相当于把4x从右边移到左边变为—4x,20从左边移到右边变为—20,进而揭示什么是移项,在移项中强调要变号,没有移动的项是不要变号的,再让学生思考移项的作用:把它变为我们学过的合并同类项的方程。
学习了原理之后,把例题做完,板示解题步骤,特别是每一步的依据,进而给学生总结出移项解方程的三步:移项、合并同类项、系数化为1。
练习反馈环节,让学生自己练习一道解方程,明确各步骤,下面分别是移项正误判断、解方程、应用题,分层次让学生掌握移项法则以及解方程,最后再解决实际问题。
本节课主要存在的问题有:
1、对学生的实际情况了解不够,学生已经知道了移项变号的知识,那么怎样在认识的基础上再来讲授该知识,我有点困惑,还是接学生的话,通过学生来挖掘“移项”的原理。
2、语言不够简练,教师分析得多,学生的参与讨论性不高,发表看法机会少,限制了学生的语言表达能力和数学思维的锻炼。
3、课堂学生练习环节有问题,其中男生板演了一道题,以为简单就过了,实际在后面发现错了,导致教学进入到应用题部分,再回过头来纠错,这是课堂教学中的大忌。点评作业时,应该让学生多说是怎么做的,说出各步骤,使得学生真正掌握移项解一元一次方程的方法。在教学媒体允许的情况下,应该使用实物投影对学生作业进行点评,可以清晰地展示作业中的典型错误,从而更好地了解学生的掌握情况。
七年级数学上册《解一元一次方程》教学反思
在学生学习了解一元一次方程一般都采用的五步变形方法以后,这节课重点探讨解下列方程的技巧方法,
如在解方程30%x+70%(200-x)=200×70%中,在去分母时,方程两边都乘以100,化去%得:
30x+70(200-x)=200×70,有部分学生就提出疑问,为什么在200那里不乘以100?在(200-x)的里面又不乘以100呢?为了能让学生明白,我想是否要将原方程变形为,然后再各项乘以100,写成,最后化去分母。
又在解方程中,怎样去分母呢?最小公倍数是什么呢?学生是有疑惑的,当分母是小数时,找最小公倍数是困难的,我们要引导学生:
①把小数的.分母化为整数的分母。②想办法将分母变为1,即把左右两边分子、分母都乘以15,原方程变形为3(10x-3)-5(4x-10)=15
只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方法。解一元一次方程一般都采用五步变形灵活应用,除此之外,据不同题型,运用一些技巧方法,就能快捷地求出其解
★ 数学课件
★ 一元一次方程教案
★ 初二数学课件