大学高数要应该怎么预习

| 收藏本文 下载本文 作者:德鲁普斯

下面是小编为大家整理的大学高数要应该怎么预习(共含5篇),以供大家参考借鉴!同时,但愿您也能像本文投稿人“德鲁普斯”一样,积极向本站投稿分享好文章。

大学高数要应该怎么预习

篇1:大学高数要应该怎么预习

大学高数的预习方法

1.建立学习目标

大学生的学习比中学生更复杂更高级,同时也更为自觉、更为独立,因此,学习动机的强弱对大学生的学业成就有着极大的影响。在高中阶段,学生以考上大学为惟一的学习目标,目标明确,再加上老师和家长的监督,学习抓得很紧,一旦目标实现,容易产生松懈心理,希望在大学里好好享乐一番。没有及时树立起进一步的学习目标。另一方面大学新生自我控制能力一般较差,容易受别人的影响,有时会有意无意地模仿高年级学生的做法。渐渐便失去了自控能力。

因而大学新生应尽快建立学习目标,以适应大学校园的学习气氛,大学里面的学习气氛是外松内紧的。在大学里很少有人监督你,很少有人主动指导你;没有人给你制订具体的学习目标,每个人都在独立地面对学业,每个人都该有自己设定的目标,每个人都在和自己的昨天比,和自己的潜能比,也暗暗地与别人比。

2.调整学习方法

承袭过去在高中阶段的学习方法,即使勤奋用功可能也难以获得能力的全面提高,这在大学新生里是相当普遍的现象。进入大学后,以教师为主导的教学模式变成了以学生为主导的自学模式。教师在课堂讲授知识后,学生不仅要消化理解课堂上学习的内容,而且还要大量阅读相关方面的书籍和文献资料。可以说自学能力的高低成为影响学业成绩的最重要因素。这种自学能力包括:能独立确定学习目标,能对教师所讲内容提出质疑,会归纳总结所学习的内容,并能表达出来与人讨论。

自学能力是每一个人都必须具备的一种能力。其实在每一个学习阶段都需要有自学能力,只是在不同的教育阶段对自学能力的要求不同。基础教育阶段对自学能力的要求没有那么突出,到了大学是个质的飞跃。课堂学习只是大学学习中很少的一部分,更多的知识要靠自学,老师更多的时候是起到引导的作用。大学更多的是传授学生学习的方法。

从旧的学习方法向新的学习方法过渡,这是每个大学新生都必须经历的过程。在思想上应认识到要想在学业上获得成功,一定要充分利用现有的学习条件,掌握、运用自己所学的知识,提高自己的能力。尽早做好思想准备,就能较好地、顺利地度过这一阶段,少走弯路,减少心理压力,促进学业成绩的提高。

大学高数的历史

第一阶段:数学萌芽时期

这个时期从远古时代起,止于公元前 5 世纪。这个时期,人类在长期的生产实践中积累了许多数学知识,逐渐形成了数的概念,产生了数的运算方法。由于田亩度量和天文观测的需要,引起了几何学的初步发展。这个时期是算术、几何形成的时期,但它们还没有分开,彼此紧密地交织在一起。也没有形成严格、完整的体系,更重要的是缺乏逻辑性,基本上看不到命题的证明、演绎推理和公理化系统。

第二阶段:常量数学时期

即 “ 初等数学 ” 时期。这个时期开始于公元前 6 、7 世纪,止于 17 世纪中叶,延续了 多年。在这个时期,数学已由具体的阶段过渡到抽象的阶段,并逐渐形成一门独立的、演绎的科学。在这个时期里,算术、初等几何、初等代数、三角学等都已成为独立的分支。 这个时期的基本成果,已构成现在中学数学课本的主要内容。

第三阶段:变量数学时期

即 “ 高等数学 ” 时期。这个时期以 17 世纪中叶笛卡儿的解析几何的诞生为起点,止于 19 世纪中叶。这个时期和前一时期的区别在于,前一时期是用 静止 的方法研究客观世界的 个别要素,而这一时期是运用 运动 和 变化 的观点来探究事物变化和发展的规律。

在这个时期,变量与函数的概念进入了数学,随后产生了 微积分 。这个时期虽然也出现了概率论和射影几何等新的数学分支,但似乎都被微积分过分强烈的光辉掩盖了它们的光彩。这个时期的基本成果是解析几何、微积分、微分方程等,它们是现今高等院校中的基础课程。

高等数学的特点

高等数学有三个显著的特点:高度的抽象性;严谨的逻辑性;广泛的应用性。

( 1 )高度的抽象性

数学的抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却不是每次都把它们同具体的对象联系起来。在数学的抽象中只留下量的关系和空间形式,而舍弃了其他一切。它的抽象程度大大超过了自然科学中一般的抽象。

( 2 )严谨的逻辑性

数学中的每一个定理,不论验证了多少实例,只有当它从逻辑上被严格地证明了的时候,才能在数学中成立。在数学中要证明一个定理,必须是从条件和已有的数学公式出发,用严谨的逻辑推理方法导出结论。

( 3 )广泛的应用性

高等数学具有广泛的应用性。例如,掌握了导数概念及其运算法则,就可以用它来刻画和计算曲线的切线斜率、曲线的曲率等等几何量;就可以用它来刻画和计算速度、加速度、密度等等物理量;就可以用它来刻画和计算产品产量的增长率、成本的下降率等等经济量; …… 。掌握了定积分概念及其运算法则,就可以用它来刻画和计算曲线的弧长、不规则图形的面积、不规则立体的体积等等几何量;就可以用它来刻画和计算变速运动的物体的行程、变力所做的功、物体的重心等等物理量;就可以用它来刻画和计算总产量、总成本等等经济量。

篇2:大学高数的预习学习方法

这根据每个人的学习时的习惯和理解问题的能力不同而异,但就一般说来,均应抓好以下三个环节。

其一是课前预习。这一过程很重要,因为只有课前预习过,才会在听课时做到心中有数,即老师所讲的内容哪些是属于难以理解的,什么是重点等,这样带着一些问题去听老师讲课,效果就很明显了,同时预习的过程中也就培养了你的自学能力,这对自己来说将是终身受益的。

预习的过程也不需要花太多时间,一般地一次课内容花三、四十分钟左右时间就可以了。在预习时不必要把所有问题弄懂,只要带着这些不懂的问题去听课就行。其二是上课用心听讲,并且要记好课堂笔记。对于上课要用心听讲大家都明白,但要记好课堂笔记的重要性,有的同学就不以为然了,认为教材上都有,大可不必去记,有的同学甚至说:中学里老师就告诉我们,数学课不用记笔记。

其实这种认识是错误的,也是中学里带来的一种不良的学习习惯。首先可以说:老师对于高等数学课程的讲授,绝对不是教材上的内容的简单重复,而是翻阅了大量的同类参考书,而结合自己的教学经验与体会,反复推敲怎样讲授才能使学生更好的领会和掌握后才写成讲稿的。

所以毫不夸张地说:教师的授课教案既有以往成功的经验体会,同时也有过去的教训的借鉴。而且将一次课的内容归纳成有条理性的几点,有些典型的例题、习题的适当选择等,这些都是教科书上所没有完全具备的,因此,学生在听课的同时必须记好课堂笔记,同时这种好的学习习惯即勤动笔对于自己学习及工作能力的培养也是大有好处的。

其三,课后复习,整理笔记,认真完成课后作业。课后的自习,不少人是赶快做作业,这也是一种不好的习惯,其实下课后应该进一步认真钻研教材或教学参考书,在完全弄懂本次课内容之后,整理充实课堂笔记,有些需要理解的地方添上自己的心得与体会,把书本上的知识真正变成自己掌握的知识,然后再完成作业,这要比下课就赶作业的效果要好得多,而且完成作业的速度也要快得多。

篇3:大学高数的预习学习方法

1.建立学习目标

大学生的学习比中学生更复杂更高级,同时也更为自觉、更为独立,因此,学习动机的强弱对大学生的学业成就有着极大的影响。在高中阶段,学生以考上大学为惟一的学习目标,目标明确,再加上老师和家长的监督,学习抓得很紧,一旦目标实现,容易产生松懈心理,希望在大学里好好享乐一番。没有及时树立起进一步的学习目标。另一方面大学新生自我控制能力一般较差,容易受别人的影响,有时会有意无意地模仿高年级学生的做法。渐渐便失去了自控能力。

因而大学新生应尽快建立学习目标,以适应大学校园的学习气氛,大学里面的学习气氛是外松内紧的。在大学里很少有人监督你,很少有人主动指导你;没有人给你制订具体的学习目标,每个人都在独立地面对学业,每个人都该有自己设定的目标,每个人都在和自己的昨天比,和自己的潜能比,也暗暗地与别人比。

2.调整学习方法

承袭过去在高中阶段的学习方法,即使勤奋用功可能也难以获得能力的全面提高,这在大学新生里是相当普遍的现象。进入大学后,以教师为主导的教学模式变成了以学生为主导的自学模式。教师在课堂讲授知识后,学生不仅要消化理解课堂上学习的内容,而且还要大量阅读相关方面的书籍和文献资料。可以说自学能力的高低成为影响学业成绩的最重要因素。这种自学能力包括:能独立确定学习目标,能对教师所讲内容提出质疑,会归纳总结所学习的内容,并能表达出来与人讨论。

自学能力是每一个人都必须具备的一种能力。其实在每一个学习阶段都需要有自学能力,只是在不同的教育阶段对自学能力的要求不同。基础教育阶段对自学能力的要求没有那么突出,到了大学是个质的飞跃。课堂学习只是大学学习中很少的一部分,更多的知识要靠自学,老师更多的时候是起到引导的作用。大学更多的是传授学生学习的方法。

从旧的学习方法向新的学习方法过渡,这是每个大学新生都必须经历的过程。在思想上应认识到要想在学业上获得成功,一定要充分利用现有的学习条件,掌握、运用自己所学的知识,提高自己的能力。尽早做好思想准备,就能较好地、顺利地度过这一阶段,少走弯路,减少心理压力,促进学业成绩的提高。

3.如何学好大学数学

大学数学是大学新生普遍反映较难学习的一门课。大学数学与其它课程相比逻辑性强,比较抽象。这里给新生提一点建议:

首先掌握理解与记忆的关系。数学中概念、公式较多,在学习过程中应注意理解,而不应机械地去记忆。要特别注意前后知识的联系,例如极限、连续、导数几个概念都与极限有关,在学习中就应注意它们的联系,应注意它们的相同点和不同点。又如复合函数求导法则,如果你不能理解它的含义,了解复合函数的构造,你即使把公式背的再熟对作题也没有什么帮助。

认真读书与积极动手。课前尽可能的预习,但课后一定要认真复习,独立完成作业。做题过程应看成是检验对知识的掌握。要注意大学数学与中学数学知识的联系。实际上在大学数学里用了很多的初等数学的知识,这一点是很重要的。

做好吃苦的准备。学习是一个很艰苦的事,要适应数学的思维方式,主动克服各种学习困难,不断提高学习兴趣。

篇4:大学高数函数预习方法有哪些

大学高等数学预习方法

1、课本推荐使用高等教育出版社同济7版高等数学(上册),如学校已发其它版本的数学课本,可以使用,无须额外购买。

2、暑假前要求预习前3章

①函数与极限

②导数与微分

③微分中值定理与导数的应用

3、预习要点:背诵前3章节的公式与定理。

4、课后习题选做2-3题。

5、历年高数考试试题低于大纲规定难度,同学们不要有太大的压力!

学好大学高数函数的注意事项

首先,听中国教师上课。教师的讲解总是重要的,特别是对于低年级的入门性课程。上大学交学费,却不用教师的资源,显然不是明智的选择。与中学听课更侧重解题方法不同,大学的数学课程更应该听教师的分析思路和概念解释。为有更好的听课效果,课前应简单预习,了解要讲的大致内容;课后要复习。特别注意理论的完整性。多数数学课程在具有不同尺度上的理论体系。全部数学课程是个体系,每门课程又是个子体系,课程中每章又自成体系,而教师组成材料时往往让每次课也有一定的完整性。

其次,做俄国习题集的题目。想要学好数学,必须多做练习。完成教师布置作业后仍有余力,应该把教材上比作业难的题目也都做了。在此基础上,我建议从俄国的习题集中找题目做。这出于两方面的考虑。其一,俄国的数学教学体系与中国的很接近,更准确地讲现在中国的教学体现主要是因袭俄国的,因此比较便于与课堂教学同步练习。其二,俄国很多教材没有习题或仅有很少的练习,因此必须配套专门的习题集;往往是一本习题集要配不同的教材,所以习题集的内容很丰富。当然,俄国习题集的缺点是题目太大有些是比较机械的重复性练习。最好有内行指点使用。

第三,阅读英文教材。真正的数学概念是超越语言的,因此用不同的语言思考数学问题,有助于理解的深入。一般而言,阅读英文比中文吃力,因此教材更要精选。不仅要阅读教材,而且要完成练习,这样可以检验理解程度。或许与课堂教学同步阅读英文教材不太现实,不仅是时间有限,而且教学体系差别比较大。可以学完门课程后再读英文教材。英文教材需要精选,下次再专门详细谈。

最后,课程之间打通。前面说过,全部数学课程构成个理论体系。要学好的不仅是每门课程,而且是要把各门课程融会贯通。各门课程的分别仅是为教学方便的侧重不同,彼此之间还是有联系的。例如,数学分析课程中多元曲线和曲面积分用得都是Riemann积分,而在实函数论中将学习Lebesgue积分以及其它抽象积分,这时就应该思考曲线和曲面Lebesgue积分的性质与用途。再例如,高度代数中讲线性空间都是有限维,泛函分析中引入无限维空间,两者的异同也很值得推敲。

高等数学考试要求

一、函数、极限和连续

(一)函数

1.理解函数的概念:函数的定义,函数的表示法,分段函数。

2.理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。

3.了解反函数:反函数的定义,反函数的图象。

4.掌握函数的四则运算与复合运算。

5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

6.了解初等函数的概念。

(二)极限

1.理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。

3.理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

6.熟练掌握用两个重要极限求极限的方法。

(三)连续

1.理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类。

2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型。

3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

4.理解初等函数在其定义区间上连续,并会利用连续性求极限。

二、一元函数微分学

(一)导数与微分

1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。

2.会求曲线上一点处的切线方程与法线方程。

3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。

4.掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

5.理解高阶导数的概念,会求简单函数的n阶导数。

6.理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

(二)中值定理及导数的应用

1.了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。

2.熟练掌握洛必达法则求“0/0”、“∞/ ∞”、“0•∞”、“∞-∞”、“1∞”、“00”和“∞0”型未定式的极限方法。

3.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。

4.理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题。

5.会判定曲线的凹凸性,会求曲线的拐点。

6.会求曲线的水平渐近线与垂直渐近线。

篇5:高考前要怎么预习

在高考前进行有效的预习可以帮助你巩固知识、提升理解和应用能力。以下是一些建议来进行高效的预习:

复习课本内容:回顾课本中的重点知识点和概念。阅读章节摘要、重点示例和习题解析,强化对基础知识的理解。

复习课堂笔记:仔细阅读和复习自己在课堂上所做的笔记。将课堂讲解、重要概念和例题进行整理和总结,加深对知识的记忆。

刷题巩固知识:根据各科目的考试大纲和题型特点,选择相应的习题进行刷题。着重练习一些典型题目和考点,加强对知识的应用和理解。

做过往年真题:通过做过去几年的高考真题,了解考试的出题规律和难度。重点关注近几年的题型和重点考点,熟悉考试形式和答题技巧。

解析模拟试卷:如果有模拟考试或模拟试卷,仔细阅读试卷解析,了解自己的错误和不足之处。对于错题或不熟悉的知识点,进行针对性的复习和强化。

组织知识结构:将各科目的知识点进行整理和梳理,形成清晰的知识结构。通过制作思维导图、总结表格、概念图等方式,加深对知识的理解和记忆。

寻求帮助和解答疑惑:如果遇到不理解或困惑的知识点,及时向老师、同学或家长寻求帮助。解答疑惑可以加深对知识的理解和消除不确定因素。

制定复习计划:根据考试时间表和自己的学习进度,制定合理的复习计划。合理安排时间,将重点知识和弱势科目进行集中复习。

注重细节和考点:注意复习各科目的重点考点和细节,尤其是易错的知识点和常见错误。注重理解和记忆细节,以避免在考试中出现低级错误。

多种方式复习:采用多种方式进行复习,如朗读、讲解、复述、讨论等。多样化的学习方式可以帮助巩固记忆和理解,提高学习效果。

记住,高考前的预习应该是系统和有目的性的。重点关注考试大纲和题型要求,有针对性地进行复习和强化,同时保持良好的学习节奏和心态。祝你高考顺利!

高考考试答题技巧

当参加高考考试时,以下是一些答题技巧可以帮助你应对考试:

仔细阅读题目:在回答任何问题之前,仔细阅读题目并理解其要求。注意关键词、限定词和题目结构,确保你准确理解问题。

划重点和关键信息:在题目中划出重要的关键词或关键信息,这有助于你更好地理解问题,聚焦解决问题的核心。

规划答题顺序:根据自己的优势和时间分配,合理规划答题顺序。可以先解答自己较擅长的题目,以增加信心和积累分数。

解答简洁明了:在回答问题时,尽量保持答案简洁明了。用清晰、简洁的语言表达观点,避免冗长和啰嗦。

注意关键词和要求:确保你的答案涵盖了题目要求和关键词。对于多选题或复杂问题,特别要注意每个选项或要求。

适当举例或论证:如果问题要求举例或提供论证,尽量给出恰当的例子或合理的论证过程,以支持你的答案并展示你的理解能力。

注意标点和语法:在书写答案时,注意标点符号和语法的正确使用。清晰的标点和流畅的语法可以提升答案的可读性和准确性。

注意时间管理:合理控制答题时间,确保你在每个题目上都有足够的时间作答。如果某个题目困难或耗时较长,可以先跳过,留下时间回头解答。

复查答案:在考试结束前,尽可能留出时间来复查答案。仔细检查每个问题的回答,确保没有遗漏或错误,并做必要的修改。

最重要的是,在考试过程中保持冷静和专注。尽量充分发挥自己的知识和能力,遵循考试规则和要求,以取得最佳的成绩。祝你高考顺利!

高考前不能做什么

在高考前,有一些事情是需要避免的,以确保你在考试中保持最佳状态和集中注意力。以下是一些你应该避免做的事情:

避免过度疲劳:避免过度疲劳和过度劳累。保持良好的作息时间,合理安排复习时间,不要通宵复习或熬夜。

避免焦虑和压力过大:尽量避免过度焦虑和过大的压力。保持积极的心态,相信自己的能力,并相信你经过充分准备能够应对考试。

避免迷信和负面情绪:不要过分相信迷信或依赖幸运物品。避免与他人过多讨论考试难度和不良的考试经历,以免影响你的信心和情绪。

避免临时抱佛脚和大量新知识的学习:在考试前的几天,不要试图学习大量新知识或临时抱佛脚。集中复习和回顾已经掌握的知识,巩固自己的基础。

避免过度沉溺于手机和社交媒体:尽量减少对手机、社交媒体和电子设备的依赖。避免花费过多的时间在社交媒体上浏览、聊天或玩游戏,以免分散注意力和浪费时间。

避免不规律的饮食和暴饮暴食:保持规律的饮食习惯,避免暴饮暴食或摄入不健康的食物。合理选择食物,保持营养均衡,以保持体力和精力。

避免过度依赖补习班和模拟考试:不要过度依赖补习班和模拟考试。补习班和模拟考试可以作为复习辅助手段,但过度依赖可能导致焦虑和紧张感。

避免临时改变复习计划:在考试前的最后阶段,避免临时改变复习计划或学习方法。坚持你的复习计划,并相信你已经做出了最佳安排。

大学高数函数预习方法有哪些

高数习题

考研数学高数复习三方面要重视

大学高数考试挂科检讨书

小学生应该如何预习课文

小升初应该怎样做好预习

初一古诗要怎样预习

小学三年级语文应该怎样预习

高数知识点总结心得

高数上册知识点总结

大学高数要应该怎么预习(共5篇)

欢迎下载DOC格式的大学高数要应该怎么预习,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档