以下是小编收集整理的思维训练《被入侵的家》(共含8篇),欢迎阅读与借鉴。同时,但愿您也能像本文投稿人“秃头魔法师”一样,积极向本站投稿分享好文章。
我是个办公室职业女性,今天在公司又被上司给骂了,就是那个连在公司女同事之间风评也差到爆的老秃驴。
“唉唉,该不会最近老觉得有人跟踪,犯人也是那老贼秃吧?”我一面这样想着,不知不觉已经到了家。
虽然说是家,但其实也是个只有两个房间的老旧公寓,就只有一间一个人用都觉得小的厨房,一间不大的起居室和一间寝室,也只有起居室才有窗户,虽说是真的很便宜啦。
打开门锁进了房间,吓了一大跳,起居室的衣橱被翻乱了!
我想起来了,今早吃完早餐出门时忘了锁门,就这样去上班了……
啊啊……窗户都有锁上,也就是说贼一定是从玄关侵入的。
感觉好差劲,真让人不爽!
算了,今天已经这么累了,晚饭也别吃了,明天再报警吧!
我再次确定玄关已经锁上,往寝室走去。
聪明的您是不是已经推理出了有什么不对劲的地方?主角回到寝室可能会遇到什么情况呢?
本篇答案将在下篇公布(点击下一篇)
上篇答案:
这位妈妈被认为没有见过自己的孩子,但是她立马就说这不是她的孩子,相信医院想要拿孤儿顶包,也不可能出现搞错性别这么低级的失误。唯一可能的解释就是,妈妈知道自己的孩子已经死了。
那么,妈妈知道孩子死了,却不想任何人说,并且对外人保持了根本没见过自己生下来的孩子的印象。合理的解释是,妈妈想掩盖知道孩子已死的事实,只有一种情况可以让一个妈妈这么做,那就是孩子是她自己所杀。
一个小雪纷飞的寒冷日子。正午,帕特隆前往情人的公寓。一进屋子里,就发现她的手脚被绑在床上。
“到底怎么了?”帕特隆一边解开绳子一边问道。
“昨晚十点左右,有一个蒙面歹徒侵入。他绑住我之后,就把你的存折和印章全部偷走了。”她声泪俱下地说道。
但是,帕特隆环顾四周,突然注意到一件事。
“你说谎,你一定是在我进来之前,绑住自己的手脚,借口强盗进入,快把我的钱拿出来。”
到底帕特隆是如何看破这个情人的谎言的呢?证据何在?
本期答案将在下期公布(点击下一篇)
上期答案:凶手是雪茹的男友,通过猫眼看到外面是学生的话就不会穿着睡衣见他。
某小区7幢四楼一女子常被无缘无故门铃声骚扰,最近几次发生时她试图从门眼上看时,却发现门眼被胶布粘住看不见了,以下有这么四人与这起事件有关:
A:住在与该女子同一小区但是在另一栋楼五楼的男子,与该女子有经济纠纷,曾砸过被害人的门,门眼也被砸烂了。
B:住在该女子楼下二楼的初三学生,曾按门铃骚扰过该女子,被学生父亲知道后修理了一顿。
C:为三楼女子送报纸的工人,因女子嫌报纸工效率不高而发生过口角。
D:和该女子同一楼6楼的一个疯子,他曾按过楼上楼下所有人的门铃均被发现,事后他往往很开心。
到这里,你知道谁是作案者了吗?
本篇答案将在下篇公布(点击下一篇)
上篇答案:
凶手是软件工程师,窗户的英文:window
“林局,突然把我叫来,看来今天的案子很棘手啊!”罗思对警局林局长说到。
“是的。”林局回道,“死者是一名画家,死者左手握着水果刀直刺心脏,身上其它地方并无任何伤痕,表面看来,似乎是自杀。”
“林局都把我叫来了,那么就应该不是自杀这么简单了。”罗斯。
“是啊!先让小胡把调查进展和你说一下,我去处理点事情。”林局说,”小胡过来,把资料和罗大侦探说一下。“
“是。”小胡拿着一份资料和罗思说道,”死者妻子昨晚外出回来,发现死者暴毙于书房中,然后报警。根据法医判断死亡时间是在昨天下午一点到四点,目前警方锁定了四个嫌疑人。这是警方调查这四个人的资料,请您过目。“
罗思侦探接过资料问道:”为什么死者是用左手拿着水果刀刺入心脏而不是右手,相对左手来说右手不是更容易发力么。“
”那是因为死者是心脏在右边。“小胡从同事手中接过透明袋子交给罗斯继续说到,”这是在书房发现的疑似死者留下的遗书,里面的文字是打印出来的。另外根据死者妻子提供的信息,死者一个月前生病后左手麻木,连叉子都不能拿,之后连最喜欢去的西餐厅也不去了。“
”原来如此。“罗思说完低头看着遗书的内容,发现里面的内容与案情并无关联,只是凝视着落款与日子(周伟杰,19.8.)皱眉深思。又继续看四个嫌疑人的资料,资料上显示的四个嫌疑人:
韦恩-瓦尔特:33岁,英国人,死者留学英国时的好友,四天前被公司派到中国。也是死者妻子的前男友,被死者横刀夺爱,至今仍,未婚。
保罗-沃克:33岁,美国人,死者留学英国时的室友,喜爱摄影,无业,四天前与韦恩-瓦尔特一起来到中国。
周伟光:27岁,死者弟弟,游手好闲,好赌,有吸毒史,经常找死者借钱,与死者为此发生过多次争吵。
孙明杰:30岁,画家,与死者不熟,一个月前在画展中看到了多幅死者的画,认为死者剽窃了他的作品,故前来追究。
看完资料罗思对小胡说到:”叫你们林局来一下吧,凶手是谁我已经知道了。“
凶手是谁呢?
本片答案将在下篇公布(点击下一篇)
上篇答案:
雪下了一整个晚上,如果王强半小时前刚刚回家,他的汽车就不会结冰,而且车道上也肯定会有汽车轮胎留下的痕迹和他的脚印。因为房子没有车库,他不可能吧车停在其他地方。所以,他在撒谎。
明代时,某地一富商要外出做几年生意。富商独居,家中没有亲人,所以在外出期间,他只好把自己攒下的一坛银子封好口委托邻居保管。
因害怕邻居起贪念,富商在把坛子交给邻人时对他说,坛子里封的是红枣。随即,商人就外出了,一走就是三年多。
三年后的一天,邻居认为商人不会回来了,就擅自打开了坛子,发现里面是满满一坛银子,顿起贪念,把所有的银子据为己有。
不料没几日,商人返乡。邻居知道后急忙装了一坛子红枣封了口,待商人来讨还坛子时,就把这一坛红枣给了富商。
商人开坛后发现银子被调包了,便去质问邻居,邻居死不认账,两人把官司打到了衙门。
县官升堂问案,邻居一口咬定商人交给他保管时就说,坛子里全是红枣,而这么多年来,他从来没有开过坛子。县官仔细检查了坛子里的红枣,突然用力一拍惊堂木,对邻居断喝道:“大胆贼人,还不乖乖认罪。”邻居大声喊冤,但是县官一句话说得他哑口无言,乖乖退还了富商一坛银子。
聪明的您能推理出县官为什么能认定是邻居把坛子里的银子调包了吗?县官又说了一句什么话让邻居乖乖认罪了呢?
本篇答案将在下篇公布(请点击下一篇)
上篇答案:
凶手事先将绳圈套在整个窗户外面边缘,再通过一些方法吸引死者打开窗户探头(如在屋顶用一端绑有小球的绳子作类似单摆运动,通过小球撞击窗户吸引死在开窗探头),然后将绳子收紧,往上拉,将其吊死并移尸屋顶。
1如何加强思维训练
在综合中进行分析,锻炼思维能力
分析和综合既是思维的基本过程,又是重要的逻辑思维方法。分析作为一种思维过程,是指将事物的整体分为多个部分加以研究,进而认识事物的构成和本质。综合则是把事物的各个部分、各个方面、各种因素和各个层次联系起来加以研究的思维过程。应用题解答的思维过程一般就是对应用题的条件和问题进行分析和综合的过程。例如分数应用题:“商店运来苹果200千克,梨是苹果的4/5,问运来的梨和苹果共多少千克?”在教学中,教师可运用图像让学生直观地感知题意,抓住题目中的问题进行分析,探求问题与条件的数量关系。
在分析时教师可设计系列问题,解剖题目中的“问题”部分,启迪学生思考、探究:运来的梨和苹果共多少千克中的“共”由几部分数量组成,苹果数量与条件中的是什么数字联系,梨的数量与条件中的是什么数字联系,如何从梨与苹果的联系中求出梨的数量。然后教师引导学生进行综合分析,从而使学生形成解题思路,得出解题方法。
设计相近式问题与训练,培养和发展学生的类比思维能力
要使学生的新知识与原有知识结构得到发展与提高,教师还必须加强学生的类比思维能力的培养与提高。如讲授“异分母分数加减法”之前,教师必须要求学生先复习整数加减法、小数加减和同分母分数加减法的内容,并把它们归属到一个知识整体中去。然后教师引导学生概括出加减式题都必须在计数单位(或分数单位)相同时才能直接相加减的道理。
在讲新课时,教师可以设计出相近式问题:①异分母分数能直接相加减吗?为什么?②异分母分数加减首先要怎样?③怎样把异分母分数化成同分母分数?通过对这种相近式问题的逐一思考,学生就会很自然地进行类比思维:异分母分数相加减→分数单位不同不能直接加减→化成同分母分数→通分→相加减。
2如何训练数学思维逻辑
学生逻辑思维能力的训练与培养途径
1.鼓励学生尝试多种思维方式,提高思维灵活性。
数学有着“性”的特点,即“一就是一”,但如果从思维方式看待数学,它在很多时候也具备“灵活性”的特点。这个认知对于小学数学来说,是非常重要的。在小学数学解题过程中,经常一题可以多解,学生可以通过这些题目中锻炼自己的逻辑思维能力,提高自身思维的灵活性。数学教师可以在讲解前,让学生根据题型的不同,尝试着通过转变思路,寻求一种更适合、更简单的解题方法。如:200千克海水能够制盐2.5千克,那么50000千克的海水能够制盐多少千克?这属于一题多解,可以通过2.5÷200×50000;50000÷(200÷2.5);2.5×(50000÷200)几种方法进行解答。
2.培养学生从表面现象寻找和发现问题,提高思维的深刻性。
思维的深刻性就是透过现象看本质的能力,它是思维品质的基础。在小学数学中,数学教师可以通过开放性习题对学生进行思维训练,引导和帮助学生尝试从表面现象发现问题的内在规律与内在联系,从而找出更多、更有效的解决问题的方法,提高学生思维的深刻性,这是提高学生思维品质的基础。
开发学生的创新思维,培养创新能力。
学生的思维往往从活动中开始。在教学活动中,教师要为学生创设一个实际操作、亲身体验的良好环境,充分让学生动手剪一剪、拼一拼、折一折,画一画、摸一摸等,这样可以集中学生注意力,激发学习兴趣,使学生学习的生动、活泼有趣又帮助学生抽象数学知识、形成概念、发展了思维,在操作中应大胆放开操作形式,更有助于学生创造能力的培养。
例如:在教学“认识2的时候,首先让学生在课桌上摆小棒,表示数量2,观察时,学生都能正确地摆出来,我都给予肯定。随后,我又循循善诱地进行点拨:能不能摆出其它形式的2呢?”学生们一听,一只只小手都积极的行动起来。于是,我让学生到黑板上摆一摆,结果竟然摆出了十几种:“=、>、<、T、+、^……”在这一操作中,使学生理解了2的含义,突破了教学的重点、难点,学生从学具操作中,创新思维促进创新意识,自主学习、探究性学习得到充分发挥。学生从操作活动中吸取经验,思维活动起来,有利于开发学生的创新潜给学生心理相融的课堂氛围,使学生创新思维能力得以培养。
3学生逻辑思维能力的训练
1.延展法。
延展法可分为单向延展法、多向延展法及反思延展法等。单向延展法应由易到难、由因导果,逐步延展;多向延展应注意引导学生观察各单元之间的联系及单元内知识点的联系等;反思延展法则主要是引导学生在解题后对整个审题过程和解题方法及解题所用知识的回顾与总结,逐步培养学生养成解题后会进行反思的良好习惯,这是培养和提高学生逻辑思维能力的有效方法。
2.破思维定势训练法。
所谓的破思维定势训练法,其实就是指教师呈现一组一组的题目,通过题组训练,打破思维定势的一种思维训练方式。打破思维定势是为了更好地促进学生逻辑思维能力的提高与发展。因此,教师可通过题组进行教学,选取的题型一般为基本题与变式题的结合。
3.常规求异法。
常规求异法对教师及学生提出的要求更高,需要学生改变常规的定向思维方式,不受固定思维支配,独辟蹊径,使之既在意料之外,又在情理之中,引导学生从不同的角度思考问题,以求得问题解决的思维训练方式。以12根火柴棒摆6个相等的正方形为例。按照学生惯有的思维方式,多数学生只是摆弄摆弄,这样显然无法达到题目的要求,此时可以引导学生联想已学过的正方体的特征(12条棱的长度相等,六个面的面积相等)。学生的思路打开了,问题也就迎刃而解了,在摆出的正方体中找到了六个相等的正方形。
4如何培养数学创新思维能力
引导学生学会学习的创新思维,从小培养学生既学会也会学。
在教学中,不仅要使学生学会知识,而且要让学生在学习中找规律,掌握学习方法,培养创新思维。例如:我在教数学单数和双数时,要求学生说出100以内的单数、双数,并写出几个进行分类,寻找规律。于是,每个学生兴致勃勃的按要求写出一些单数、双数。
如单数:11、13、15、17、19、1、3、5、7、9、21、23、25、27、29……如双数:20、24、28、26、.2、4、6、8、10、16、18……教师引导学生按从小到大的顺序说出单数双数,并板书在黑板上,让学生仔细观察,找出规律。在教师的引导下学生很容易的说出:单数的个位都是1、3、5、7、9,而双数的个位上是0、2、4、6、8。在此基础上,教师在引导,我们所学的100以内的数中所有单数、双数都有这个特点,这样揭示知识本质。学生的思维不断得到发展,学生兴趣浓,思考勤,理解深,记得牢,效果好。
善于引导学生进行探索和发现,充分发挥学生的积极性和主动性
数学教学中,应改变学生被动学习的局面,积极引导学生进行观察,探索和发现,作出合理的猜想,把有关的信息纳入自己的理解系统。因此,在课堂上,留给学生动手和动脑的时间以及思维的空间是非常重要的。例如:我们在进行圆周角的概念教学时,可以先提出具有启发性和思考性的问题,“顶点在圆周上的角就是圆周角吗?”鼓励学生进行相互交流,展开讨论,发挥学生的学习主动性。这一概念教学采用了“探索―发现―归纳―完善”的教学方法,体现了教为主导、学为主体、共同探索的教学思想,不仅加深了学生对概念的理解,而且可以暴露学生的思维过程,对培养学生的思维能力大有好处。
要使学生积极主动地探求知识,发挥创造性,必须克服那些课堂上老师是主角,少数学生是配角,大多学生是观众、听众的旧地教学模式。学生在教育教学过程中能够与教师一起参与教和学中,做学习的主人,形成一种宽松和谐的教育环境。只有在这种氛围中,学生才能充分发挥自己的聪明才智和创造想象的能力;其次,班集体能集思广益,有利于学生之间的多向交流,在班集体中,取长补短。课堂教学中有意识地搞好合作教学,使教师、学生的角色处于随时互换的动态变化中,设计集体讨论、查漏互补、分组操作等内容,锻炼学生的合作能力。
奥地利医生彼得在看儿子睡觉时,忽然发现儿子的眼珠子转动起来。他感到奇怪,连忙叫醒了儿子,儿子说他刚才正做着一个梦。
彼得想,眼珠子转动会不会与做梦有关呢?
于是,他把儿子当成了“试验品”:每当儿子睡觉时,他便守在旁边。一旦发现儿子的眼珠子转动,就叫醒儿子,儿子总会说正在做梦。
彼得又仔细地观察他的妻子,后来又观察了邻居、他的病人,都发现同样的情况。因此,他写出了论文,指出人睡觉时眼珠转动,表示睡者在做梦。
他的论文引起了各国科学家的注意。如今,人们研究梦的生理学,用眼珠子转动的次数、转动的时间,来测量人做梦的次数、梦的长短。
这种用直接观察所取得的结果和今天用脑电波的测试数据是相吻合的。
“人睡觉时眼珠子转动,表示睡者在做梦。”这个结论当时是怎样得来的呢?是这位奥地利医生观察了儿子、妻子、邻居及病人等个别现象后归纳分析得出来的:
儿子睡觉时眼珠子转动,表示在做梦:
妻子睡觉时眼珠子转动,表示在做梦:
邻居睡觉时眼珠子转动,表示在做梦:
病人睡觉时眼珠子转动,表示在做梦;
所以人睡觉时眼珠子转动,表示睡者在做梦。
上面所讲说的都是一些个例,但通过这些例子也可以得出一些带有普遍性的结论,那就是任何人在睡觉的时候眼珠子转动都表示在做梦。
这种从个别的、特殊的事物中推出的同类事物带有共性的思维方法,叫做归纳分析法。在日常生活中,人们经常使用这种方法来判断事情。
归纳推理是一种由特殊或个别性的前提推出一般性结论的推理。
其推理的一般形式如下:
A是G
B是G
C是GGG前提
A、B、C都是D
所以RD是GGG结论
推理中的前提是论据,结论是论点。
比如论证“自学能成才”:
高尔基是个人才
华罗庚是个人才
张海迪是个人才张张论据(前提)
他们都是靠自学成才的
所以说自学能成才所所论点(结论)
在实际应用中可以省略成分,如上边那种形式可变成:高尔基、华罗庚、张海迪不都是自学成才的吗?
归纳推理分为两类:完全归纳推理和不完全归纳推理。简单枚举归纳推理、科学归纳推理、概率预测推理和统计推理是不完全归纳推理的几种类型。一般的归纳推理都是前提与结论之间没有蕴含关系的或然性推理,但完全归纳推理除外。
训练1:完全归纳推理
完全归纳推理,又称完全归纳法。它是通过考察某一类事物中每一个对象的情况,从而概括出关于该类事物情况的一般性结论的推理。
例如:德国数学家弗里德里希·高斯,在10岁时曾迅速而准确地得出老师出的一道算术题的答案。这道题是这样的:
12319899100=?
如果这道理按照正常的步骤计算需要很多时间,而且出错率也是非常高的。通过观察,高斯发现,从1到100的这些数,两头对称的两个数相加得数都是101.而这样类型的数共有50对。所以他就把101×50,得出5050这个答案。在这道数学题中,高斯使用的是完全归纳推理的方法得出“两头相加为101”这一结论,从而使得这道题简单易算。
完全归纳推理有很大的局限性。它要求对一类事物的全部分子都进行考察,才能得以推出结论。
训练2:不完全归纳推理
不完全归纳推理,亦称“简单归纳法”或“简单枚举归纳推理”。这是只根据部分对象个体具有的某种属性而作出概括的推理方法。具体地说,就是通过对某类事物部分对象的考察,以及列举若干经验事例,发现某一属性在一些同类对象中不断重复,而又没有遇到与此相矛盾的情况,从而得出该类事物都具有某种属性的一般性结论。
简单枚举归纳推理具有一定的不可靠性,得出的结论不一定是正确的。因为简单枚举并没有列举全部或无法列举全部事例,而只是把仅属于部分对象个体的性质当做全体对象一般属性作出判断,而且又没有通过理论证明。虽然如此,我们也不能否认他对于人们的认识所起的重要作用。在它对事物进行初步概括,提出假设时,也为人们的科研活动提供了线索、指明了方向,为人们的研究发展起了推动作用。所以,在人类社会的发展中,它也是功不可没的。
训练3:科学归纳推理
科学归纳推理,也被称为科学归纳法,是一种不完全归纳推理。它主要是通过考察某类事物中的部分对象,并掌握对象和某种属性的必然联系,特别是事物之间的因果联系,从而概括出关于该类事物一般性结论。
金鸡纳霜的发明就是科学归纳推理的结果。
在很久以前,居住在厄瓜多尔的印第安人得了一种叫疟疾的急性传染病。这种疾病的主要症状就是感觉忽冷忽热,在热的时候就会大肆维思出汗,然后口渴难耐、肉痛、浑身无力。当时,由于医学技术比较落后,所以找不到医治这种疾病的办法。当时,有一位患者在走路的时候发病了,当时特别口渴就爬到一个死水坑边喝了那里的水,结果病好了。所以,他就告诉其他的患者也去喝那里的水。结果他们的病都好了。当时科学家也很奇怪,于是前去观察,结果发现水坑的水中含有奎宁。奎宁是哪来的呢?原来在水坑旁边有棵金鸡纳树,这种树的树皮里含有奎宁,在与水交融的过程中,奎宁扩散到了水中。正是因为奎宁杀死了患者体内的疟原虫,所以这些患者才得以痊愈。当明白了这个道理之后,科学家就发明了治疗疟疾的特效药奎宁,并命名为金鸡纳霜。
在简单枚举归纳推理的基础上,科学归纳推理产生并发展起来。
简单枚举归纳推理与科学归纳推理之间是存在很大区别的:简单枚举归纳推理是知其然不知其所以然,而科学归纳推理是既知其然又知其所以然。所以科学归纳推理更具有可靠性。
科学归纳推理是以发现客观事物间的必然联系为依据的。因果联系是客观世界普遍联系的一种重要形式,因而,在进行科学归纳推理时,常常要通过确定事物或现象间的因果联系来实现。
今天天气很好,罗思侦探和陈龙警官相约到郊区钓鱼,却在小河中央的一块大石头上发现了一具男童的尸体,尸体上有很多伤口,浑身布满鲜血。
陈龙警官调查现场之后,认为男童的死亡时间是两天之前。罗思侦探却说:“我认为,男童的死亡时间是今天,而且距离现在的时间并不长。凶手一定 是将男童杀害后,抛弃到这里,想利用湍急的河水来毁尸灭迹。”
你觉得罗思侦探和陈龙警官谁推理更正确?
本篇答案将在下篇公布(点击下一篇)
上篇答案: 警长判断是正确的,一个人如果是在全身湿漉漉而且零下五度的情况下走1.5公里路,身上会结些冰渣和薄冰,但是这人还是湿漉漉的没结冰,显然是刚弄湿不久。
★ 系统思维训练
★ 如何加强思维训练
★ 如何训练感知思维