小编在这里给大家带来式与方程教学设计的教案(共含13篇),希望大家喜欢!同时,但愿您也能像本文投稿人“csyr0010”一样,积极向本站投稿分享好文章。
式与方程教学设计的教案
教学准备
1。教学目标
知识与技能:
整理式与方程的知识体系,学会用字母表示数,体会用字母表示的简洁性。 过程与方法:
正确理解方程的意义,能熟练地解简易方程。区别沟通等式、代数式、等量关系式。 情感态度与价值观:
理解基本数量关系,正确列方程解决问题,提高代数和方程意识。
2。教学重点/难点
教学重点:
明确字母表示数的意义和作用;会灵活的用方程解答两步计算的实际问题。 教学难点:
正确找到等量关系,列方程解决问题。
3。教学用具
多媒体课件等
4。标签
教学过程
(一)、引入新课
2、a+b=b+a,S=vt…… (1)出示:WC、km、kg、S=(a+b)h÷
师:看到这些信息,你想到了什么?(学生可能回答:这些信息都是用字母来表示的。)
(2) 你们觉得用字母表示数有什么优点? (学生可能回答:用字母表示数,比较简洁明了。)
师:用字母表示数可以简明地表示数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。用字母表示数是代数的开始,从算术到代数,是数学的发展也是数学学习的重要转变。今天我们来复习代数初步知识中的含有字母的式子表示数以及有关方程的内容。
[设计意图说明:通过教师的小结,让学生进一步明确用字母表示数的简洁性和重要性。]
(二)、探究新知
<一>用字母表示数量关系、用字母表示运算定律、用字母表示计算公式。
1、师:谁能说说我们已经学习过哪些常见的数量关系,能用字母表示吗?
(学生可能回答:我们已经学习过的'常见数量关系如:速度×时间=路程;vt=s 。) 2、师:同学们再想一想,字母可以用来表示数量关系,还可以用来表示什么呢?请四人一组把我们已经学过的知识整理一下,用含有字母的式子表示出来。
(学生可能回答:还可以用字母表示运算定律和计算公式。)
3、师:请同学们任意写出几个用字母表示的运算定律或者计算公式,再与同桌检查交流。
(请两名学生板演,全班评价并说明所表示的意义。)
4、师:用含有字母的式子可以表示数量关系、运算定律,计算公式等,字母的作用可真大。你觉得,用字母表示数有哪些好处呢?
(学生可能回答:用字母表示数应用很广泛,表达很简洁,有很强的概括性。)
[设计意图说明:让学生体会用字母表示数的简洁性、广泛性和概括性,使学生感受数学美,激发学生学习数学的热情。]
5、师:想一想,在一个含有字母的式子里,数字与字母,字母与字母相乘时,怎样正确规范地书写呢?
(学生可能回答:在一个含有字母的式子里,数字与字母,字母与字母相乘时,乘号可以写作“·”或省略不写,数字写在字母的前面。)
6、a乘以4。5可以怎样写?s乘以h可以怎样写?
4。5或a·4。5或4。5a。不可以写成a4。5。s乘以(学生可能回答:a乘以4。5可以写成a×
h可以写成S·h或Sh)
7、师:同学们,小精灵明明也带来了一道练习题,我们来看看。
媒体出示例1:学校买来9个足球,每个a元,又买来b个篮球,每个58元。下面这些含有字母的式子,你们能说说它们表示的意义吗?
9a 表示足球的总价
58b表示 篮球的总价
58-a表示每个篮球比足球贵的价格
9a+58b表示篮球和足球的总价
请把书翻到第86页第一题,赶紧做做吧!
(学生汇报、评价。)
8、师:同学们,如果a=45,b=6,那么,你们能算出9a+58b是多少钱吗? (课件出示答案)
<二>方程
1、师:学习了用字母表示数后,我们还一起认识了方程。谁来说一说,什么是方程?你能举出方程的例子吗?在判断一个等式是否是方程时,需要特别关注什么?
(学生可能回答:含有未知数的等式叫做方程,如X+2=5;在判断一个等式是否是方程时,需要特别关注等式中是否含有未知数,含有未知数的等式,就一定是方程。)
2、课件出示例2:下列式子中,哪些是方程?
3、上面哪些是方程?你是怎么判断的?
]
(学生可能回答:①②⑤⑥⑧是方程。因为这些都是含有未知数的等式,所以是方程。)
4、课件出示例3:
(1)4。7x不是方程。 ( √ )
) (2)0。5x=4是方程,不是等式。 ( ×
(3)是方程的式子一定是等式。 ( √)
) (4)是等式的式子一定是方程。 (×
(5)含有未知数的等式是方程 。( √)
) (6)含有未知数的式子是方程。(×
) (7)方程是等式,等式也是方程。(×
(8)3=0是方程。 ( √ )
) (9)4+20含有未知数,所以它是方程。( ×
) (10)x=3不是方程( ×
5、师:7×0。3+X=2。5里未知数X等于几?X=0。4是这个方程的什么?
师:什么叫做“方程的解”?
(学生可能回答:方程的解是使方程左右两边相等的未知数的值,它是一个数值。) 它与“解方程”有什么不同?
(学生可能回答:解方程是一步一步的解答过程)
你会解方程,求出方程的解吗?根据什么解方程?
(学生可能回答:求方程的解的过程叫解方程;一般根据等式的基本性质来解方程。) 6、你会解这些方程吗?选择几个解一解。(媒体反馈答案。)
7、如何判断方程解的是否正确?在解方程时要注意一些什么?[来^#源:@中教&%网]
(学生可能回答:解方程时要注意运算符号,正确使用等式性质。)
8、师:等式性质是怎样的?[来%源:@中^国教~育出版#网]
(学生可能回答:① 等式两边同时加上或减去同一个数,等式仍然成立;② 等式两边同时乘以或除以同一个数(除数不能为零),等式仍然成立。)
9、解方程还可以根据加减法之间、乘除法之间的互逆关系来解答的。
(结合板书:解方程:能先算的要先算,再按各部分之间的关系来解。)
这两题可以怎样检验方程的解对不对?
课件出示例题:
X+3×1。5=8。3 3x-10=1。4 x-4/9=10 1/2×(x-4)=4
<三>列方程解决问题
1、师:列方程可以帮助我们解决许多实际问题。下面,我们就来看看小精灵带来的这道题目。
2、课件出示例3:学校组织远足活动。原计划每小时走3。8km,3小时到达目的地。实际2。5小时走完了原定路程,平均每小时走了多少千米?
3、师:
(1)认真读题,说说题意,已知什么条件,要求什么问题。
(2)用自己的话说说等量关系。
4、师:你们能解决这个问题吗?
(学生可能回答:这道题的等量关系为:原定路程=实际路程,原定路程可以用
3。8×3 求出;实际路程可以用实际用的时间乘以实际的速度求出。如果设平均每小时走了X
3,求出X的值,就解答了问题。) 千米,可列出方程:2。5X=3。8×
5、学生边介绍,教师边媒体出示解答过程:
解:设平均每小时走了X千米。
2。5X=3。8×3
复习目标:
1、通过复习进一步理解用字母表示数的意义和方法,能用字母表示常见的数量关系,运算定律,几何形体的周长、面积、体积等公式。
2、能根据字母所取的数值,算出含有字母的式子的值。
3、理解方程的含义,会较熟练地解简易方程,能通过列方程和解方程解决一些实际问题。
复习过程
一回顾与交流。
1、用字母表示数。
(1) 请学生说一说用字母表示数的作用和意义。
(2) 教师说明。
用字母表示数可以简明地表示数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。
(3) 说一说你会用字母表示什么。
学生回顾曾经学过的用字母表示数的知识,进行简单的整理后再与同学交流。然后汇报交流情况。
① 说一说,在含有字母的式子里,书写数与字母、字母相乘时,应注意什么?
如:a乘4.5应该写作4.5a;
s乘h应该写作sh;
路程、速度、时间的数量关系是s=vt.
② 你还知道哪些用字母表示的数量关系或计算公式?
学生汇报,教师板书。
如:用字母表示运算定律。
加法交换律:a+b=b+a
加法结合律:a+(b+c)=(a+b)+c
乘法交换律:ab=ba
乘法结合律:a(bc)=(ab)c
乘法分配律:a(b+c)=ab+ac
用字母表示公式。
长方形面积公式:s=ab
正方形面积公式:s=a平方
长方体体积公式:V=abh
正方体体积公式:V=a三次方
圆的周长:C=2πr
圆的面积:S=πR
圆柱体积:v=sh
圆锥体积:v= sh
(4) 做一做。 xkb1.com
完成课文做一做。
2.简易方程。
(1)什么叫做方程?
①含有未知数的等式叫做方程。
②举例。
如:X+2=16 4.5X=13.5 X÷ =30
(2)什么叫做解方程?什么叫做方程的解?
方程的解:使方程左右两边相等的未知数的值叫做方程的解.
解方程:求方程的解的过程,叫做解方程.
(3)解方程。
过程要求:新课标第一网
① 学生独立解方程。
② 请一位学生上台板演。
③ 师生共同评价,强调书写格式。
3.用方程解决问题。
(1)出示例题。
学校组织远足活动。原计划每小时行走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?
(2)结合例题说一说用列方程的方法解决问题的步骤。
(3)学生列方程解决问题。
(4)全班反馈、交流。
路程不变
原速度×原时间=实际速度×实际时间
3.8×=实际速度×2.5
(5)做一做。
二巩固练习
完成课文练习十五。
新课标第一网
第十一课时
一、创设情境,再现知识
谈话:同学们,上节课我们一起回顾了用字母表示数,体会了用字母表示数的优点。这节课老师又给同学们带来了一位老朋友,请看他是谁?(师板书X)看到老朋友,你想到了关于它的哪些知识?
学生可能回答以下几个方面(方程、解方程、方程的解、列方程解应用题、等式、等式性质等知识)(师板书相关概念)
这节课让我们和老朋友“x”一起回顾方程的有关知识,好吗?
【设计意图】引导学生由字母x回忆起方程的有关知识点,更容易引起学生对已学知识的回顾整理。把知识拟人化更符合学生的心理特点,能充分调动学生参与学习探究的兴趣和欲望。
二、梳理归网,学习内化
1.回顾知识,自主梳理
①自己回顾每个概念的意义,同位交流。
②等式与方程有什么关系?方程的解与解方程又有什么不同?你能举例说明或画图表示吗?(小组合作,整理在练习本上)
【设计意图】让学生通过自我回顾,忆起方程中各个概念的意义和联系,在举例中进一步区分等式与方程、方程的解与解方程等易混概念。
2.交流展示,引导建构
①全班交流整理结果(展台展示,师及时点拨纠正存在问题)
②哪些是方程?哪些是等式?
6x+8=11 8x-5x=15×0.2 30a+5b 7x-6<36 55x=y (2.4+a)÷2.4=5 0.5×□+72÷18=8 1÷8=0.125 2.5X-7=13
③你会解这些方程吗?解方程的根据是什么?(等式性质)
选择几个解一解。(展台展示交流)
如何判断方程解的是否正确?在解方程时要注意一些什么?
④复习简易方程的解法、步骤及检验方法、书写格式。
【设计意图】在交流中使学生明确:判断一个式子是不是方程,要把握两点,第一含有未知数,第二必须是等式。方程的解是未知数的数值,解方程是求这个数值的过程。
3.提炼方法,认知内化
(1)列方程解应用题可以帮助我们很容易的解决许多实际问题,怎样列方程解答应用题?关键是什么?(找等量关系,设未知数,列方程)
(2)出示第101页第4题及改编题
山东省应届大学生本科毕业生报考研究生的人数达到62300人,比增加了40%。20应届大学生本科毕业生报考研究生的有多少人?
①你会用不同的方法解答吗?(学生板演,集体订正)哪种方法更适合这道题?为什么?
②如果已知年的人数,求20的人数,用哪种方法合适呢?
引领反思:用方程解决问题与用算术法解决问题相比,有什么特点?相同之处是什么?(用方程解决问题能使较复杂的思考过程变得简单)
【设计意图】结合具体的题目,让学生分别用方程与算术法解答,通过对比分析两种解答方法的基本思路及特点,体会两种思路的区别,能选择合适的方法解答。
三、综合应用,整体提高
1.判断下面各题,哪些适合用算术方法解,哪些适合列方程解,为什么
①一个三角形的面积是45平方厘米,底是12厘米,高多少厘米?
②在学校组织的数学竞赛中,六年级得一等奖的有56人,得二等奖的人数比一等奖的人数的2倍还多8人,得二等奖的有多少人?(如果知道二等奖的人数,求一等奖的人数用哪种方法合适?)
2.我是“精选细算“小英才
课本101页5-8题 (学生独立做,集体订正)
3.智力冲浪
课本101页9-11题(这是含有两个未知量的题目,教师重点引导学生用一个未知数表示两个未知量。)
【设计意图】练习时,让学生思考用方程还是算术法解答,通过对比分析选择合适的方法解答,感受方程解题的优越性。
四、总结提升,知情共融。
这节课我们整理和复习方程的有关知识,谁来说一说有哪些收获?
【课后反思】
本节课在学生已有知识的基础上,通过学生对问题的探讨,让学生合作探究,回顾复习旧知,关注了学生对旧知的理解和应用,进一步培养了学生综合应用的能力。教学中注意数学思维方法的渗透,在问题的分析、讨论、交流过程中,使学生进一步地掌握了有关的概念,掌握了等式、方程、方程的解、解方程等知识,并对这些概念进行了比较,并体会到了用方程和算术法解应用题的区别,提高了灵活选择解答应用题方法的能力,使学生交流完善了自己的知识体系,感受到了数学博大精深的魅力。
(胶南实验小学 龚素花)
《式与方程》的整理与复习
教学内容:小学数学教科书(人教版)第12册第84-85页
教学目标:1、帮助学生整理式与方程的知识体系,学会用字母表示数,体会用字母表示的简洁性。
2、理解方程的含义,会熟练地解简易方程,初步沟通算式、代数式、具体数量之间的关系。
3、进一步理解基本的数量关系,会根据实际情况选用方程解决问题,提高学生的方程及代数意识。
教学重点:明确字母表示数的意义和作用;会灵活的用方程解答实际问题。
教学难点:找等量关系式,用方程解决实际问题。
教学过程:
一、谈话引入,揭示课题
今天我们来复习“式与方程”。看到这课题,你想到了哪些知识?(用字母表示数,解方程,用方程解决问题)
二、复习用字母表示数
1. 用字母表示数。
① 1,2, 3, 4, 5, 6…… 可以用哪个数来表示?x
② 4,8,12,16,20,24…… 可以用哪个数来表示?4x
师:4x 与x有什么关系呢? 4x表示x的4倍
“2x+4”呢?“x÷2-4”呢?
小结:我们要弄懂含有字母式子的含义,含有字母的式子可以表示一个数,而这个数与这个字母有着一定关系。
2. 做一做。字母a来表示一个数,你能根据不同关系的表述分别写出另一个数吗?
一个数 另一个数
a 比a多2的数 a+2
比a少2的数 a-2
2个a相加是多少? 2a
2个a相乘是多少? a2
a的2倍 2a
a的一半 a÷2
学生独立完成,汇报结果。
2a与 a2有什么区别? 用字母表示数要注意什么?
三、复习方程与解方程
(1)如果黑板上的三个式子:“4x”“2x+4”“x÷2-4”的结果都是60,那么这些式子就都等于多少呢?
像这样的等式数学上叫做什么?(方程)
什么叫方程? (含有未知数的等式叫方程)
(2)学生独立练习解上述三个方程,完成后校对讲评。
四、复习用方程解决问题
1. 根据上述三个方程,编解决问题。
(1)根据4x=60,你想到了什么数学问题?
①小明骑自行车4小时行了60千米,平均每小时行了多少千米?
解:设平均每小时行了x千米。 4x=60
②一个正方形的周长是60厘米,它的边长是多少?
解:设它的边长为x厘米。4x=60
师:列方程的依据是什么?
(2)根据2x+4=60, 你想到了什么数学问题?
① 甲筐有苹果60千克, ,乙筐有苹果多少千克?
解:设乙筐有苹果x千克。 列出方程是:2x+4=60。
师:你能根据方程,补上相应的条件吗?(甲筐是乙筐的2倍还多4千克)
② 如果要列出x÷2-4=60的方程,可以把哪句话改一改?怎么改?
“甲筐是乙筐的2倍还多4千克” 改为“甲筐是乙筐的一半还少4千克”
师:刚刚补上的两个条件,正是在列方程时要用到的关键句,知道什么叫关键句吗?
师:从这句话中可以找到数量关系,列出方程。
2. 复习用方程解决问题的一般步骤。
小明和小刚两家相距425米。两人同时从家出发,经过2.5分钟后能在途中相遇。小明每分钟走75米.小刚每分钟走多少米?(用方程解答)
(1)学生独立解答,指明板演,集体校对。
(2)用方程解决问题时要做到哪几步?
一般步骤:①读懂题意;②设未知数;③找出等量关系;④列出方程;⑤解方程:⑥检验得数。
师:在这六步中你们认为哪一步是最重要的?
3. 对比质疑突出优化。
(1)陈老师为学校买了8个篮球,12个足球,共用去 760元。已知篮球每个32元。足球每个多少元?(用方程解答,方法越多越好)
学生独立解答,集体分析校对。
①8×32+12x=760 “篮球的总价+足球的总价=两种球的总价”
②760-12x=8×32; “篮球的总价相等”
③(760-12x)÷8=32; “篮球的单价相等”
④(760-12x)-32=8; “篮球的个数相等”
⑤(760一32×8)÷x=12 “足球的个数相等”
师:根据以上五个等量关系列出的方程,你们觉得最容易找到等量关系的是哪一个?
师:根据每个人的理解,能较快地找到等量关系列出方程的都应该是可以的。但如果你所列出的方程计算比较麻烦.就要继续调整,找出其他的等量关系来列方程.像上题通常容易想到的是按“总价相等”来列出方程。
(2)选择合适的方法解决。
①陈老师为学校买8个篮球,每个32元;买了若干个足球。每个42元;买这两种球共付了760元,问足球买了多少个?
②陈老师为学校买了8个篮球。每个32元;12个足球 ,每个42元。问共要付多少元?
小结:②顺向思考题通常用算术法,①逆向的,较难的用方程比较简单。
五、课堂小结
今天我们学习了什么内容?你有哪些收获?还有什么疑惑?
第1课时(总第6课时)
一、教材分析
【复习内容】
教科书第12册92页“整理与反思”和92-93页“练习与实践”1~6。
【知识要点】
1.用字母表示数:(1)表示运算律;(2)表示计算公式;(3)表示一般数量关系。
2.方程与等式的关系:方程一定是等式,但等式不一定是方程。
3.方程、方程的解与解方程的区别:
方程:含有未知数的等式(是一个等式)。
方程的解:使方程左右两边相等的未知数的值(是一个值)。
解方程:求出方程中未知数的值的过程(是一个过程)。
4.等式的性质:
(1)等式的两边同时加上或减去同一个数,所得结果仍然是等式。
(2)等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
5.列方程解决实际问题。
【教学目标】
1.使学生进一步理解用字母表示数的作用和等式的性质,体会用字母表示数的简洁性,渗透初步的代数思想。在比较中进一步加深对方程、方程的解及解方程的区别、方程与等式的关系的理解。
2.使学生进一步掌握“ax±b=c”、“ax×b=c”、“ax÷b=c”、“ax±bx=c”等形式的方程解法,培养学生自觉检验的良好习惯。
3.使学生进一步掌握列方程解决实际问题的基本思考方法,提高学生分析理解数量关系的能力,体会列方程解决实际问题的方便性。
二、教学建议
复习“式与方程”的知识要抓住四点进行:一是要组织学生讨论92页“整理与反思”中的3个问题。可采用先小组讨论、后全班交流的方式进行。讨论时要让学生结合一些具体的例子来说明。二是要加强一些相近知识的比较,如等式与方程的比较,方程、方程的解与解方程的比较等。三是要注意培养学生一些良好的学习习惯,如方程解好后自觉检验的习惯、列方程解决实际问题前先分析数量关系后解答的习惯。四是要重视学生分析理解数量关系的训练。注意:新教材里解方程一定要指导学生用等式的性质解。
三、知识链接
1.用字母表示数(教科书四下P106的例题、P108的例题、P110的例题)。
2.等式的性质与解方程(教科书五下P1-7例1-例6)。
3.列方程解决实际问题(教科书五下P8例7)。
四、教学过程
(一)用字母表示数
1.你能举出一些用字母表示数的例子吗?先小组交流,后全班交流。
2.教师指出:在具体情境中,用字母表示数总是有一定范围的。
3.用字母表示数有什么好处?
4.完成“练习与实践”第1题:学生独立完成后全班交流,说式子和数量关系。
(二)方程与等式
1.举例说说什么是方程?方程与等式有什么联系和区别?
2.填一填:在下面的集合圈里填入“等式”和“方程”。
3.举例说说什么是等式的性质?你怎样理解“同时”、“同一个数”、“0除外”这些词的?利用等式的性质可以干什么?
4.说一说“方程的解”与“解方程”有什么区别?
5.完成“练习与实践”第2题:学生独立完成,同时指名几人板演,后集体订正,并指名说说解方程的依据。教师要强调把方程解好后一定要养成检验的习惯。
(三)列方程解决实际问题
1.列方程解决实际问题的一般步骤有哪些?你认为最关键的是哪一步?
2.说出下面各题中数量之间的相等关系。
(1)养禽场一共养鸡鸭600只。
(2)红花比黄花少25朵。
(3)参加航模组的人数是参加美术组的3倍。
(4)花金鱼比黑金鱼的1.2倍还多8条。
(5)单价、数量、总价。
(6)速度、时间、路程。
(7)工作效率、工作时间、工作总量。
3.完成“练习与实践”第3~6题。
完成第3~5题:学生说数量关系和解法后,集体订正。
完成第6题:课前让学生了解自己穿的鞋的码数和厘米数,课上完成时出示码数和厘米数之间的换算关系后,让学生验证这种换算关系正确与否,后引导学生分析知道厘米数求码数与知道码数求厘米数通常应各采用什么方法解,再让学生独立解答填表,最后全班交流。
习 题 精 编
一、在( )里写出含有字母的式子。
(1)3个x相加的和( ),3个x相乘的积( )。
(2)一批煤有a吨,烧了8天,平均每天烧m吨,还剩( )吨。
(3)一个圆柱底面半径为r,高为h,它的体积v=( )。
(4)松树高y米,杨树比松树的34 少5米,杨树高( )米。
(5)小明今年a岁,小华今年b岁,经过x年后,两人相差( )岁。
二、解方程。
1.25x÷0.25=4 8.5+65%x=15 34 x - 13 x=59
三、判断。
(1)方程一定是等式,等式一定是方程。( )
(2)方程两边同时乘或除以同一个数,所得结果仍然是方程。( )
(3)畜牧场养了600头肉牛,比奶牛的2倍多80头,求奶牛有多少头?可以列式为600÷2+80。( )
四、选择。
1、下面的式子中,( )是方程。
A、25x B、15-3=12 C、6x+1=6 D、4x+7<9
2、x=3是下面方程( )的解。
A、2x+9=15 B、3x=4.5 C、18.8÷x=4 D、3x÷2=18
3、当a=4,b=5,c=6时,bc-ac的值是( )。
A、1 B、10 C、6 D、4
4、五年级种树60棵,比四年级种的2倍少4棵。四年级种树( )。
A、26棵 B、32棵 C、19棵 D、28棵
五、列方程解答下面各题。
(1)养鸡场一共养鸡650只,其中母鸡的只数是公鸡的1.6倍,养鸡场养母鸡多少只?
(2)学校开展兴趣小组活动,参加书法组的有36人,比美术组的2.5倍少9人,参加美术组的有几人?
(3)甲、乙两桶油,甲桶油的重量是乙桶油的3倍,如果从甲桶取出28千克,乙桶加入4千克,这时两桶油的重量相等,甲、乙两桶原来各有多少千克油?
式 与 方 程
第2课时(总第7课时)
一.教材分析:
【复习内容】教科书第12册P92-93“练习与实践”7-9题。
【知识要点】
1、用方程解稍复杂的百分数除法应用题。
2、纳税、折扣等实际问题的逆运算如何用方程解。
【新旧教材比较】
在过去的教材里,分数乘法应用题与百分数乘法应用题、分数除法应用题与百分数除法应用题的教学内容在循环中重复多、递升少,浪费了教学资源,制约了学生学习积极性和能动性的发挥。
新教材把百分数除法实际问题和分数、百分数实际问题安排在一起。六年级下册只编排稍复杂的百分数除法实际问题。稍复杂的分数除法实际问题和百分数乘法实际问题都在练习里带出,夯实了基础知识与基本的数学思想,避免了不必要的重复,增加了问题的现实性和挑战性。教学重点放在数量关系和推理能力上,利用题目中最基础、生活中最常见的数量关系作为列方程的依托,有利于中、小学数学的衔接。
【教学目标】
1.使学生进一步理解商品打折出售的含义,进一步掌握分析数量关系的方法,熟练掌握列方程解答稍复杂的百分数实际问题的方法,理解不同形式的打折问题之间的联系,并能熟练解答。注重知识间的联系与融会贯通。
2.在分析问题、解决问题的活动中,发展学生的数学思考能力,提高用方程表示数量关系的能力,进一步积累解决问题的经验,增强数学应用意识。
3.让学生在学习和游戏中获得成功体验,提高学生的学习兴趣和爱好。
二、教学建议
教学分数、百分数应用题,重点放在数量关系和推理能力上。联系分数的意义与分数乘法概念,把实际问题里的各个数量组织起来,构成数量关系式并根据数量关系式确定解题的方法。用线段图直观表现题目中的百分数的含义和数量关系,列方程解答是得出数量关系式后的自然选择。游戏要让学生有足够时间练习、探究。
三、知识链接
教科书六下P8 例4; P11 例5、P12例6 ; P73例2。
四、教学过程
1.出示习题。一种图书打八折后售价是20元,这种图书原价是多少元?
2.学生练习、交流、检验。
3.练习P93第7、8两题。
4.练习P93第9题。
学生通过自主探索和合作探索发现规律,并运用规律求出所框的4个数。
习 题 精 编
1.一本书打八折后售价是30.4元。这本书原价多少元?比原来便宜多少元?
2.修一段路,已经修了全长的80%,还剩下1.2千米。这段路全长多少千米?
3.图书室的故事书的本书是科技书的75%,科技书和故事书共1400本。科技书和故事书各多少本?
4.王阿姨在商场买了2件上衣。一件上衣打七五折后卖120元。另一件上衣提价25%后卖120元。商场卖这2件上衣是赚了,还是亏本了?赚了,赚多少?亏了,亏多少?
5.按规定稿费收入扣除元后按14%的税率缴纳个人收入所得税,小红的爸爸编写《数学小故事》出版后缴纳个人所得税224元 。小红的爸爸编写《数学小故事》共获得多少元稿费?
6.一次会议的出席率为95%,缺席人数比出席人数少36人。应出席多少人?
7.六(1)班有学生45人,男生是女生的80%。女生有多少人?(用方程和转化方法解)
8.一个书架有上下两层,下层本数是上层本数的40%。如果把上层的书搬15小红的爸爸编写《数学小故事》小红的爸爸编写《数学小故事》本放到下层,那么两层的本数同样多。原来上、下两层各有图书多少本?
9.下表的红框中的5个数的和是60。在表中移动这个框,可以使每次框处的5个数的和各不相同。
1、任意框几次,看看每次框出按5个数的和与中间的数有什么关系?
2、如果框出5个数的和是180,应该怎样框?能框出和是100的5个数吗?
为什么?
“式与方程”过关测试题
一、填空。
1.在(1)8x=96 (2)1.7-x (3)a+b=230 (4)y+5<11.3
(5)0.25+m=0.5 (6)5.4-2.8=2.6 (7)z+0.2>0.52 中,____________是等式,_______________是方程。
2.在( )里写出含有字母的式子。
(1)绿绳长x米,红绳的长度是绿绳的2.4倍,红绳长( )米,两种绳一共长( )米,绿绳比红绳短( )米。
(2)妈妈买8只茶杯,付了100元,找回m元,一只茶杯( )元。
(3)师徒加工一批零件,师傅单独完成要a小时,徒弟单独完成要b小时,徒弟和师傅工作时间的比是( ),师傅和徒弟工作效率的比是( )。
(4)m与n的差除它们的和( )。
(5)一个圆锥底面直径为 d,高为h,它的体积v=( )。
3. 在( )里填“>”、“<”或“=”。
(1)当x=1.6时,0.58+0.6x( )1.63。
(2)当x=0.6时,x+0.3x( )55%。
二、判断。
(1)方程一定是等式,等式不一定是方程。 ( )
(2)方程两边同时乘0.5,所得结果仍然是方程。( )
(3)含有未知数的式子叫方程。 ( )
(4)方程x- 1.2=1.6的解是2.8。 ( )
三、选择。
1、等腰三角形的一个底角是n°,它的顶角是( )°。
A.n° B.90°-n° C.180°-2n° D.(180°-n°)÷2
2、如果a×75%=75%÷b=c-75%=d+75%。那么a、b、c、d中最大的是( )。
A.a B.b C.c D.d
3、5个连续偶数,中间的一个数为m,则最大的数是( )。
A.m+1 B.m+2 C.m+3 D.m+4
四、解方程。
1.25-0.25x=4 8.5+65%x=15 45 x - 34 x=34
五、解决问题。
1.某市规定:乘坐出租车起步价为6元(3千米以内),超过3千米以外每1千米按2.5元计费(不足1千米按1千米收费)。小明的妈妈乘坐出租车行了m千米。
(1)用式子表示小明的妈妈应付的钱数。
(2)当m=11时,求小明的妈妈应付多少钱。
2. 小芳收集的外国邮票比中国邮票少35张,外国邮票的张数是中国邮票的58 ,小芳收集的外国邮票和中国邮票各多少张?
3.学校开展兴趣小组活动,参加书法组的有18人,比美术组的25℅少6人,参加美术组的有几人?
4.修一段路,第一天修了全长的15 ,第二天修了500米,两天正好修了全长的40℅。这条路全长多少千米?
5.我国公布了新的个人收入所得税征收标准。个人月收入2000元以下不收税。月收入超过2000元,超过部分按下面的标准征税(如图)。黎明老师这个月缴纳了35元税款,他这个月的收入是多少元?
6.小红买了2本一样的练习本和1支钢笔共花去12元。买一本练习本的钱数是买一支钢笔的钱数的10℅。买1支钢笔和1本练习本各要花多少元钱?
(编写单位:溪桥镇南沙小学 责任编辑:李海东
编写人员:李海东 封国云 张建明)
教学内容:教科书92页“整理与反思”,完成“练习与实践”第1~6题。
教学目标:
1.使学生进一步体会方程的意义和思想,会用等式的性质解一些简单的方程。
2.使学生进一步认识用字母表示数及其作用,培养学生抽象,概括的能力。
教学重点:
能正确地用含有字母的式子表示数量及数量关系、计算公式。
教学难点:
会用等式的性质解一些简单的方程。
教学准备: 多媒体
教学过程:
一、整理与反思
今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,能正确地解简易方程。
师:你能自己举出一些用字母表示数的例子吗?
长方形的周长C=2(a+b)
加法交换率a+b=b+a……
师:什么叫方程?方程与等式有什么联系和区别?
(1)教师引导:含有字母的等式叫方程。
(2)表示相等的式子叫等式。方程是含有字母的等式。
师长:你知道等式有哪些性质?举例说一说。
强调:0除外
教师归纳:等式的两边同时加、减、乘、除以同一个数(除数不为0),等式的两边相等。
二、练习与实践
1.在括号里写出含有字母的式子
(1)一种贺卡的单价是a元,小英买5张这样的贺卡,用去元;小明买n张这样的贺卡,付出10元,应找回()元。
(2)每千瓦时电费0.52元,每立方米水费2元。小明家本月用了a千瓦时电和b立方米水,一共要付水费()元。
2.第2题
(1)完成后交流,并让学生说出解每个方程的过程,分别运用了等式的哪些性质?
(2)说说解答每题时应注意什么?
3.电视节目现在能收看56套节目,比开通有线电视前的5倍少4套,开通有线电视前只能收看几套节目?
学生交流、完成
4.京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)
学生交流、完成
5.长江三峡水库总库容大约是黄河小浪底水库的3倍,黄河小浪底水库的总库容比长江三峡水库少260亿立方米。黄河小浪底水库的总库容是多少亿立方米?长江三峡呢?
学生交流、完成
4.第6题
强调:根据题目的情况,合理选择方法,列算式或列方程
三、小结
通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于式与方程的复习
关于式与方程的复习
教学内容:教科书93页 “练习与实践”第7~9题。
教学目标:
使学生进一步认识用字母表示数及其作用,培养学生抽象,概括的能力。
教学重点:
能正确地用含有字母的式子表示数量及数量关系、计算公式。
教学难点:
会用等式的性质解一些简单的方程。
教学准备: 多媒体
教学过程:
一、练习与实践
1.完成“练习与实践”第7题
理解“一种药品降价10%”的含义。指名板演,集体交流,说说解题思路
2.完成“练习与实践”第8题
两种衬衫的原价相同,由于打的折扣不同,所以现价不同。108元原是这两中衬衫现价的和。
3.完成“练习与实践”第9题
组织学生分组开展活动,适时互换角色,也可以让学生在小组里开展竞赛,以提高练习效果。
二、小结
通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?
学生交流
三、作业
完成《练习与测试》相关作业。
板书设计
关于式与方程的复习
关于正比例和反比例的复习
教学内容:教科书94页“整理与反思”,完成“练习与实践”的第1~6题。
教学目标:
1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。
2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。
教学重点:
使学生加深认识比例的意义和基本性质。
教学难点:
能判断两个比能能不能组成比例,能比较熟练地解比例。
教学准备: 多媒体
教学过程:
一、整理与反思
今天我们一起来复习正比例和反比例相关知识。
(一)比的知识:
1.谁来举个例子说说什么是比?什么是比的基本性质?
(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)
2.说一说用比的知识可以解决哪些实际问题。
让学生体会比在解决实际问题时的应用。
(二)比和分数、除法的联系
出示:a∶b=( )( ) =( )÷( )(b≠0)
那么比和分数、除法的联系是什么?它们的区别呢?
谁来说说比的基本性质与分数的基本性质、商不变的规律?它们有什么联系吗,谁来说说?
(三)比例的知识
1.什么是比例?
2.比和比例有什么关系?(小组讨论后交流)
3.比例有怎样的基本性质?
二、练习与实践
1、完成“练习与实践”第1、2题
(1)第一题:学生独立数出班上男女生人数,再完成此题。
(2)第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。
2、完成“练习与实践”第3、4题
(1)先让学生估计,再说估计的理由 ,再算一算。
(2)解比例,做好后选两题验算一下。
3、完成“练习与实践”第5、6题
(1)先学生独立做最后交流,弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的93100 。使学生加深对比与百分数关系的理解。
(2)让学生独立得出:深色与浅色地砖铺地面积的比是20∶40,化简得1∶2。
三、小结
通过学习你有什么收获?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于正比例和反比例的复习
教学内容:六年级下册整理与反思之《式与方程》
教学目标:
1、通过复习使学生进一步理解用字母表示数的意义和方法,能用字母表示常见的数量关系,运算定律,几何图形的周长、面积、体积等公式。
2、明确方程、解方程和方程解的概念,弄清楚方程与等式的区别。
3、正确理解方程的含义,能熟练地解简易方程。
教学重点:
明确字母表示数的意义和作用;理解方程的相关概念;熟练地解建简易方程。
教学难点:
明确等式与方程的区别,能熟练解简易方程。
教学具准备:
多媒体课件等。
教学过程:
一、导学设疑,揭示课题
1、出示:CCTV、SOS、UFO、NBA、CS、ATM、VIP师:看到这些字母你立刻想到了什么?
同学们的课外知识真丰富,那么我们今天要学习的课内知识相信大家也一定能学会。
2、今天我们就围绕字母所涉及到的式与方程的知识进行整理与反思。(板书课题)
二、自学质疑,沟通联系
1、同学们先想一想,在我们小学六年的数学学习中,用字母都表示过什么呢?
出示问题后,汇报交流大家都想好了吗?谁来说说?
(1)根据回答板书:用字母表示数量关系。
接着让学生举例来说明,师根据学生的回答板书:s=vt还可以表示什么呢?(2)板书:表示计算公式。你能举个例子吗?根据回答板书:s=ahc=4a用字母表示平面图形计算公式
正方形、长方形、平行四边形、三角形、梯形和圆形的相关计算公式。用字母表示立体图形体积计算公式
正方体、长方体、圆柱、圆锥的体积公式。在简写时我们要注意什么呢?(点名回答)
师鼓励:他说得太精彩了,大家不要吝啬自己的掌声哦!
想一想:在一个含有字母的乘法式子里,数字与字母,字母与字母相乘时,怎样正确规范地书写呢?(出示温馨提示)
刚才我们用字母表示了数量关系、计算公式,字母还可以表示什么呢?(还可以用
字母表示运算定律。)
(3)请同学们说出所学过的用字母表示的运算定律。(PPT展示)看来小小的字母在我们的数学课堂上用途还真不少!大家觉得用字母表示数有什么好处?(用字母表示数,比较简洁明了。)
小结:正因为用字母表示数简明易记,所以生活中很多数学现象人们都喜欢用字母来表示。(请看大屏幕)
三、展学释疑,巩固练习
1、用含有字母的式子表示下面的数量。
1)一只青蛙每天吃a只害虫,100天吃掉()只害虫。2)小明今年b岁,再过十年是()岁。3)一堆货物x吨,运走24吨,还剩()吨。
4)水果店有x千克苹果,一共装6箱,平均每箱装()千克。5)m表示一个偶数,与他相邻的两个偶数是()和()。
小结:通过上面的练习,我们感受到用字母表示数应用很广泛,表达很简洁,有很强的概括性。在你们未来的学习中,数字会越来越少,字母会越来越多,同学们可以使用这些简洁的字母使你的学习越来越轻松。
下面我们就来看一下用字母表示的这些式子分别代表什么意义!
2、学校买来9个足球,每个ɑ元,又买来b个篮球,每个58元。9ɑ表示()58b表示()58-ɑ表示()9ɑ+58b表示()如果ɑ=45,b=6,则9ɑ+58b=()
四、自学质疑,建构体系
1、学习了用字母表示数后,我们还一起认识了方程。
出示问题:什么是方程?方程与等式有什么关系?(介绍两者的练习与区别)请用自己喜欢的表达方式来说说方程与等式的关系。
我们可以用一句话概括:方程一定是等式,但等式不一定是方程。也可以用集合的形式来描述。
2、如果给你一些式子,你能判断它是不是方程吗?(出示练习题)1①4+0.7X=102②X-0.25=③30a+5b④7X-6<36
4X21⑤55X=Y⑥
=30%⑦1÷8=0.125⑧X+X=42
432在判断一个等式是否是方程时,需要特别关注什么?
(在判断一个等式是否是方程时,需要特别关注等式中是否含有未知数,含有未知数的等式,就一定是方程。)
3、你会解这些方程吗?(独立完成)
刚才在解方程时运用了哪些知识?(解方程时应用了等式的性质)
4、等式的性质有哪些?怎么样应用等式的性质解方程?
出示等式的性质:
①等式两边同时加上或减去同一个数,等式仍然成立;
②等式两边同时乘以或除以同一个数(除数不能为零),等式仍然成立。
小结:一般根据等式的基本性质来解方程。还可以根据加减法之间、乘除法之间的互逆关系来解方程。
五、用学生疑,总结延续这节课我们一起回顾、整理了很多式与方程的知识,收获知识不是最快乐的,用我们收获的知识去解决无数的数学问题才是我们学习数学的最大乐趣。你们说对不对?希望同学们能够用我们整理的知识去解决生活中更多的实际问题。
教学内容:教科书92页“整理与反思”,完成“练习与实践”第1~6题。
教学目标:
1.使学生进一步体会方程的意义和思想,会用等式的性质解一些简单的方程。
2.使学生进一步认识用字母表示数及其作用,培养学生抽象,概括的能力。
教学重点:
能正确地用含有字母的式子表示数量及数量关系、计算公式。
教学难点:
会用等式的性质解一些简单的方程。
教学准备:多媒体
教学过程:
一、整理与反思
今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,能正确地解简易方程。
师:你能自己举出一些用字母表示数的例子吗?
长方形的周长C=2(a+b)
加法交换率a+b=b+a……
师:什么叫方程?方程与等式有什么联系和区别?
(1)教师引导:含有字母的等式叫方程。
(2)表示相等的式子叫等式。方程是含有字母的等式。
师长:你知道等式有哪些性质?举例说一说。
强调:0除外
教师归纳:等式的两边同时加、减、乘、除以同一个数(除数不为0),等式的两边相等。
二、练习与实践
1.在括号里写出含有字母的式子
(1)一种贺卡的单价是a元,小英买5张这样的贺卡,用去元;小明买n张这样的贺卡,付出10元,应找回()元。
(2)每千瓦时电费0.52元,每立方米水费2元。小明家本月用了a千瓦时电和b立方米水,一共要付水费()元。
2.第2题
(1)完成后交流,并让学生说出解每个方程的过程,分别运用了等式的哪些性质?
(2)说说解答每题时应注意什么?
3.电视节目现在能收看56套节目,比开通有线电视前的5倍少4套,开通有线电视前只能收看几套节目?
学生交流、完成
4.京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)
学生交流、完成
5.长江三峡水库总库容大约是黄河小浪底水库的3倍,黄河小浪底水库的总库容比长江三峡水库少260亿立方米。黄河小浪底水库的总库容是多少亿立方米?长江三峡呢?
学生交流、完成
4.第6题
强调:根据题目的情况,合理选择方法,列算式或列方程
三、小结
通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?
学生交流
四、作业
完成《练习与测试》相关作业。
一、教材分析
【复习内容】
教科书第12册92页“整理与反思”和92-93页“练习与实践”1~6。
【知识要点】
1.用字母表示数:(1)表示运算律;(2)表示计算公式;(3)表示一般数量关系。
2.方程与等式的关系:方程一定是等式,但等式不一定是方程。
3.方程、方程的解与解方程的区别:
方程:含有未知数的等式(是一个等式)。
方程的解:使方程左右两边相等的未知数的值(是一个值)。
解方程:求出方程中未知数的值的过程(是一个过程)。
4.等式的性质:
(1)等式的两边同时加上或减去同一个数,所得结果仍然是等式。
(2)等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
5.列方程解决实际问题。
【教学目标】
1.使学生进一步理解用字母表示数的作用和等式的性质,体会用字母表示数的简洁性,渗透初步的代数思想。在比较中进一步加深对方程、方程的解及解方程的区别、方程与等式的关系的理解。
2.使学生进一步掌握“ax±b=c”、“ax×b=c”、“ax÷b=c”、“ax±bx=c”等形式的方程解法,培养学生自觉检验的良好习惯。
3.使学生进一步掌握列方程解决实际问题的基本思考方法,提高学生分析理解数量关系的能力,体会列方程解决实际问题的方便性。
二、教学建议
复习“式与方程”的知识要抓住四点进行:一是要组织学生讨论92页“整理与反思”中的3个问题。可采用先小组讨论、后全班交流的方式进行。讨论时要让学生结合一些具体的例子来说明。二是要加强一些相近知识的比较,如等式与方程的比较,方程、方程的解与解方程的比较等。三是要注意培养学生一些良好的学习习惯,如方程解好后自觉检验的习惯、列方程解决实际问题前先分析数量关系后解答的习惯。四是要重视学生分析理解数量关系的训练。注意:新教材里解方程一定要指导学生用等式的性质解。
三、知识链接
1.用字母表示数(教科书四下P106的例题、P108的例题、P110的例题)。
2.等式的性质与解方程(教科书五下P1-7例1―例6)。
3.列方程解决实际问题(教科书五下P8例7)。
四、教学过程
(一)用字母表示数
1.你能举出一些用字母表示数的例子吗?先小组交流,后全班交流。
2.教师指出:在具体情境中,用字母表示数总是有一定范围的。
3.用字母表示数有什么好处?
4.完成“练习与实践”第1题:学生独立完成后全班交流,说式子和数量关系。
(二)方程与等式
1.举例说说什么是方程?方程与等式有什么联系和区别?
2.填一填:在下面的集合圈里填入“等式”和“方程”。
3.举例说说什么是等式的性质?你怎样理解“同时”、“同一个数”、“0除外”这些词的?利用等式的性质可以干什么?
4.说一说“方程的解”与“解方程”有什么区别?
5.完成“练习与实践”第2题:学生独立完成,同时指名几人板演,后集体订正,并指名说说解方程的依据。教师要强调把方程解好后一定要养成检验的习惯。
(三)列方程解决实际问题
1.列方程解决实际问题的一般步骤有哪些?你认为最关键的是哪一步?
2.说出下面各题中数量之间的相等关系。
(1)养禽场一共养鸡鸭600只。
(2)红花比黄花少25朵。
(3)参加航模组的人数是参加美术组的3倍。
(4)花金鱼比黑金鱼的1.2倍还多8条。
(5)单价、数量、总价。
(6)速度、时间、路程。
(7)工作效率、工作时间、工作总量。
3.完成“练习与实践”第3~6题。
完成第3~5题:学生说数量关系和解法后,集体订正。
完成第6题:课前让学生了解自己穿的鞋的码数和厘米数,课上完成时出示码数和厘米数之间的换算关系后,让学生验证这种换算关系正确与否,后引导学生分析知道厘米数求码数与知道码数求厘米数通常应各采用什么方法解,再让学生独立解答填表,最后全班交流。
习题精编
一、在()里写出含有字母的式子。
(1)3个x相加的和(),3个x相乘的积()。
(2)一批煤有a吨,烧了8天,平均每天烧m吨,还剩()吨。
(3)一个圆柱底面半径为r,高为h,它的体积v=()。
(4)松树高y米,杨树比松树的34少5米,杨树高()米。
(5)小明今年a岁,小华今年b岁,经过x年后,两人相差()岁。
二、解方程。
1.25x÷0.25=48.5+65%x=1534x-13x=59
三、判断。
(1)方程一定是等式,等式一定是方程。()
(2)方程两边同时乘或除以同一个数,所得结果仍然是方程。()
(3)畜牧场养了600头肉牛,比奶牛的2倍多80头,求奶牛有多少头?可以列式为600÷2+80。()
四、选择。
1、下面的式子中,()是方程。
A、25xB、15-3=12C、6x+1=6D、4x+7<9
2、x=3是下面方程()的解。
A、2x+9=15B、3x=4.5C、18.8÷x=4D、3x÷2=18
教学内容:
苏教版义务教育课程标准实验教科书第92页《式与方程》“练习与实践”的第11-6题。
教材学情分析:
《式与方程》复习教材上分为两个部分,“整理与反思”部分主要复习用字母表示数的方法,以及方程意义和解法。教材先后组织学生讨论三个问题,首先要求学生举出一些用字母表示数的例子,让学生在交流中进一步认识到:当用字母表示数时,含有字母的式子可以表示公式,运算律和数量关系;然后要求学生说说方程与等式的联系和区别,在比较中进一步明确方程的含义;接着要求结合具体的例子回忆并整理等式的有关性质,在整理中进一步理解解方程的依据和方法。
“练习与实践”第1题让学生根据一些常见的数量关系,用含有字母的式子表示相应的数量,体会用字母表示数的应用价值,培养用字母表示数的意识和能力;“练习与实践”第2题是解方程的练习,教材呈现的方程不仅在形式上具有较强的典型性,而且解方程的过程还涉及整数、小数、分数和百分数的计算,通过练习,能使学生加深对等式性质的认识,并自觉整理有关方程的解法;“练习与实践”第3-6题是让学生列方程解决有关整数或小数计算的实际问题。其中,第6题让学生利用鞋的码数和厘米之间的换算关系,根据已知的码数列方程求出相应的厘米数,或根据已知的厘米数列算式求出相应的码数。通过解答这样的问题,不仅能使学生进一步掌握列方程解决问题的基本思考方法,而且能使学生进一步体会到方程是描述数量关系的一种常见和有效的数学模型,列方程解决问题具有独特的方法价值。
教学目标:
⑴使学生进一步体会方程的意义和思想,会用等式的性质解一些简单的方程,能列方程解答一些需要两、三步计算的实际问题,提高用含有字母的式子表示数量关系的能力,增强符号意识。
⑵使学生进一步掌握列方程解决问题的基本思考方法,而且能使学生进一步体会到方程是描述数量关系的一种常见和有效的数学模型,列方程解决问题具有独特的方法价值。
⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。
教学重点:提高用含有字母的式子表示数量关系的能力,增强符号意识。
教学难点:提高用含有字母的式子表示数量关系的能力,增强符号意识。
教学具准备:
教学流程:
一、自主学习,完成练习。
⑴揭示课题。
教师谈话:今天我们复习《式与方程》,(板书课题――“式与方程”)。方程好多同学不再陌生,这里的式是什么意思,猜一猜!
预设学生回答:式子;含有字母的式子;……
教师小结:一般指含有字母的式子。
⑵举例回忆。
举例一些用字母表示数的例子。
二、解决问题,梳理知识。
⑴举例分类。
板书学生说出的用字母表示数的例子,引导学生适当分类。
公式:S=vt,……
规律:a+b=b+a,……
数量关系:5a,……
⑵再次理解。
呈现“练习与实践”第1题;自主完成“练习与实践”第1题;交流矫正所填的答案;理解答案所表示的意思;体会用字母表示答案,其实也在表示数量关系。
⑶激活记忆。
呈现“练习与实践”第2题;自主完成“练习与实践”第2题,指明学生板演;评价学生的板演情况,回忆学过会解答的方程类型和解方程的根据。
例: 30X=15 回忆类型X×a=b和X÷a=b。
解:30÷30×X=15÷30 运用了等式的性质,回忆等式的性质2。
X=15÷30 可以省去上面一步。
X=0.5
联想等式的性质1,回忆简单方程的类型,X±a=b。
例: 50X-30=52 把50X看作一个数,说明也是转化思想。
解:50X-30+30=52+30 运用等式的性质1。
50X=52+30 可以省去上面一步。
50X=82
X=82÷50 运用等式的性质2.
X=1.64
回忆验算的方法,并选择题目验算;比较呈现方程的异同,正确选择解方程的方法。
⑷解决问题。
学生自主完成“练习与实践”第3-6题,教师巡视;引导学生用方程思考,体会列方程的思考方法;介绍其它解答方法,体会转化的策略和方法。
“练习与实践”第3题,抓住重点句子的理解,重点句子是“现在能收看的56套节目,比开通有线电视前的`5倍少4套”,列出方程,体会隐含在句子中的数量关系式,并沟通和算式之间的联系。
“练习与实践”第4题,一般会选择算式解法。引导学生列出两种不同的方程:(120+95)X=1262和120X+95X=1262,体会不同的数量关系式列出的方程也不同,沟通两种方程间的联系。
“练习与实践”第5题,引导学生体会列方程解决问题的思考方法,列出方程,解方程,验证答案;用转化的方法解决实际问题,体会转化策略的简捷。
“练习与实践”第6题,交流换算的方法,特别是厘米换成码数的方法,可以变换出新的公式a=(b+10)÷2,也可以用方程解答等等。
⑸谈谈本节课的收获。
式与方程教学设计
教学目标:
1.使学生进一步认识用字母表示数和其作用,能正确地用含有字母的式子表示数量和数量关系、运算定律、计算公式,培养学生归纳、概括能力。
2.使同学加深对方程和相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程
教学重点:
能正确地用含有字母的式子表示数量和数量关系、运算定律、计算公式,掌握解简易方程的步骤和方法,能正确地解简易方程
教学过程:
一、谈话导入
在前面我们已经学习了用“字母表示数”和“方程”的有关知识,今天这节课我们一起来整理一下这部分知识。(板书课题:式与方程)
(设计意图:复习课不同于新授课或练习课,它需要把原来所学的知识进行归纳梳理,所以开门见山的谈话方式能很快让学生进入学习状态。)
二、引导回顾旧知。
1.我们知道用字母可以表示数,也可以表示数量关系、运算定律、计算公式等等。比如“黄老师比小明大28岁”,如果小明的岁数用a来表示,那么黄老师的岁数可以用怎样的一个式子来表示呢?(a+28)反过来,如果我们用a表示黄老师的岁数,那么小明的年龄可以用怎样的式子表示呢?(a-28)
2.此外,用字母表示运算定律,如加法交换律(a+b=b+a)、计算公式C= 2(a+b)、s=a×a=a2等等。
(设计意图:本环节的学习是整理用字母可以表示数,也可以表示数量关系、运算定律、计算公式,同时也归纳了用字母表示的简洁性)
三、尝试练习,检查反馈
过渡句:刚才我们复习了用字母表示数、数量关系等等,下面来完成一则数学日记练习
1.出示题目:
购物
星期六上午,小芳和妈妈乘公交车到超市买东西。上车时小芳数了一下,共有14人,到新街路口站下去了a人,又上来了b人,现在车上有( )人。到了超市,小芳看见超市门前停放着3排电动车,每排大约有m辆,大约共有( )辆电动车。妈妈看见一件很漂亮的衣服原来卖c元,现在要按七五折出售,妈妈花了( )元买下了那件衣服,开心极了!(问当c=100时,妈妈买这件衣服要花多少钱?)
2.买完衣服后,小芳和妈妈一起去买水果,苹果每千克6元,梨每千克5元,她们买了x千克苹果和y千克梨。
问:你能根据这些条件提出什么数学问题?
(学生一人提问题,全班说算式,老师根据学生的'回答板书列式)
6x 5y 6x +5y 6x -5y 6-5 6+5
四、巩固练习:
1.学生写《数学分层测试卡》第52页基本练习填空部分。
2.由一个学生说答案,同桌互相订正,全对的贴上“星星图”。
(设计意图:通过数学日记让学生学习用字母表示数量,并能根据数值代入求值,以提问题的形式锻炼学生思维的灵活性,同时通过《数学分层测试卡》的练习反馈评价,激发学生学习的积极性)
五、复习方程
1.以黑板的板书为例子,如果老师在6x的后面添上“=”,等号右边写上30,即6x=30,这样的式子叫什么呢?(方程)那么什么叫做方程?(含有未知数的等式叫做方程)。
2.课件出示:含有未知数的等式叫做方程。(生齐读定义)
3.判断:哪些是等式,哪些是方程?(等式是表示相等关系的式子)
6+x=14 36-7=29 2x-22=64
x-4<14 8+y 3.6x-2.8x=12
等式有: 方程有:
4.x-4<14为什么不是方程?(因为它不是等式,方程必须是等式)
5.36-7=29已经是等式了,为什么它不是方程?(因为它没有未知数)
6.通过刚才的辨析,你明白了什么?(小结:要判断一个式子是不是方程,必须要满足两个条件,①必须含有未知数,②必须是等式)
7.如果要把8+y改成一个方程,怎么改?(记得加上等号,因为它已经有未知数了)
8.刚才我们给等式和方程分类,请大家比较等式和方程,(引出用集合图来表示)用一句话来概括方程和等式的关系:方程一定是等式,等式不一定是方程。
过渡:大家能不能把这几个方程解出来呢?
(设计意图:本环节主要是让学生理解方程定义,能辨析等式与方程,通过练习让学生明晰方程需要具备的条件,并归纳方程与等式的关系)
六、解方程
1.学生齐练习(请个别学生上台板演)。
2.讲评:(让学生针对板演说解题依据)。
课件出示等式的性质:(逐一出示)
等式两边同时加上或减去同一个数,所得的结果仍然是等式。
等式两边同时乘或除以同一个不等于0的数,所得的结果仍然是等式。
3.强调解方程的格式(先写一个“解”,表示下面的过程是求未知数x的值的过程,等号要对齐)
4.解方程:求方程中未知数的值的过程,叫做解方程。
5.求出来的x=8是不是正确的答案呢?我们应该怎么做?可以通过检验来判断:把x=8代入原方程,看看左右两边是不是相等。
(设计意图:本环节通过练习了解学生掌握解简易方程的步骤和方法的情况,能正确地利用等式性质解简易方程,强调书学格式并会检验,培养学生养成细心认真的学习习惯)
七、全课小结复习内容。
八、练一练,比一比
练习《数学分层测试卡》52页基本练习的判断题及综合练习。(要注意巡视,了解学生完成情况,特别是对学困生的辅导)
教学反思:
这节整理复习课我以“突出主体,注重过程、关注发展”为主,抓好“导、练”系统梳理知识,加强综合实践,以达到举一反三,触类旁通的目的。复习内容分三大部分,“用字母表示数”部分的复习先进行知识的整理,通过学生的回忆对旧知进行回顾和再现,归纳出用字母可以表示数、运算定律、计算公式、数量关系等,然后通过两则数学日记练习使学生综合运用、训练巩固。第二部分的“方程复习”先通过学生对方程定义的易混易错理解引出正确定义,让学生理解方程是“等式”而不是“式子”。然后通过给等式和方程归类练习,逐步理清方程必须具备的两个条件以及方程与等式的包含关系。第三部分“解方程”先通过学生的练习,从学生以往的知识经验解方程后,通过学生说出解题依据,再出示等式的两个性质,同时在学生解方程时不忘记强调书写格式和培养检验习惯。后面部分的练习重点放在知识的灵活运用上,以此来锻炼学生思维的灵活性。在学生学习过程时注意使用分层评价的理念,采用多种方式进行教学,效果很好。
《式与方程》这节课的内容有两点,一是用字母表示数,二是列方程解决简单问题。目标有三点:一是经历回顾和整理式与方程有关知识的过程;二是会用解决简单问题;三是感受式与方程在解决问题中的价值,培养初步的代数思想。教学中为避免学生的这种厌烦情绪,我对这节课每一个环节都进行了精心的设计,以调动学生的积极性。
课前布置学生预习作业:1、什么是方程?什么是等式?2、等式与方程有什么关系?3、用字母表示数时应该注意点什么?4、列方程解应用题的解题步骤有哪些?这些纯粹是概念性的叙述,让学生在课前整理罗列并做简单的记忆,目的在于防止课堂上出现学习障碍。
在复习“用字母表示数”中,结合课前预习,发挥学生的主体作用,以小组比赛形式,通过一些填空及判断、选择题的练习,复习检测学生这部分内容的掌握程度。进一步对这些知识进行查漏补缺。从课堂情况来看学生的参与性广,积极性高,而且对这部分内容掌握不错。
重点我放在了“方程”上,在复习“方程”时,除了复习方程的意义、等式的性质和解方程、列方程解决实际问题外,还在解方程时突出检验的重要性,在列方程解决问题时突出书写格式和检验方法,并结合教材提供的列方程解决实际问题帮助学生了解一般哪些实际问题适合列方程解答。并且补充了很多较实用的配套练习,不过由于习题量有点多,课上时间没有完成,这是在以后教学中应注意的一点,练习不但要形式多样,而且要精炼。
对于一元二次方程根的判别式的三种情况,学生都比较熟悉,但是在运用的过程中暴露出了很多问题:
1、很多同学的计算不过关,方法虽然掌握了,但是在计算△的过程中,总是出错,这对于学生做题的正确率来说非常重要,所以一定要加强部分学生的计算训练,提高计算能力。
2、学生在求字母取值范围这类题目的时候,,特别是二次项系数中含有字母的题目,学生总是忘记考虑对二次项系数的条件限制,从而使得求出的范围不准确。应加强学生这方面的意识。
3、部分学生总是将“求证”的题目与“求字母取值范围”的题目弄混,容易把要求证的结论当成已知来用,对于这部分同学,一定要给他们讲清什么是已知条件,什么是结论,使他们明确完成这两类题目的区别与联系,不再弄错。
★ 教学设计与教案
★ 简易方程教案