以下是小编为大家准备了五年级上册数学《解简易方程》教学设计(共含12篇),欢迎参阅。同时,但愿您也能像本文投稿人“石榴汁”一样,积极向本站投稿分享好文章。
教学目的:
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。
(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
教学重点及难点:理解方程的意义,掌握方程与等式之间的关系。
教具准备:天平一只,算式卡片若干张,茶叶筒一只。
教学过程:
一、游戏导入,揭示课题
1、师生共同做个游戏:用手指指尖顶住直尺,使直尺能保持平衡,感知平衡。
说说生活中,你还见过哪些平衡现象?
2、勤劳聪明的人类根据平衡原理制成了天平,今天我们要借助天平学习新的知识《解简易方程》。(板书课题)看了课题,同学们想知道些什么?
二、教学新课
1、方程的意义
(1)认识天平:简单介绍天平的`结构和使用方法。
(2)操作天平:
a、一边放两个50克的砝码,另一边放100克的砝码,天平平衡。请学生用一个式子来表示这种关系。(板书:50+50=10050×2=100)
b、一边放一个20克的砝码和一个茶叶筒,另一边放100克砝码,天平平衡。茶叶筒的重量不知道,可以怎么表示?你也能用一个式子来表示这种关系吗?
(板书:x+20=100)
c、让学生操作天平,出现不平衡现象,也用式子表示。
(3)出示天平称东西的示意图,让学生用式子表示。(出示卡片)
30+20=502x+50>10080<2x
3x=180100+20<100+50100+2x=50×3
x―18=2460÷20=3x÷11=5
(4)组织学生观察以上式子。
请同学们观察以上式子,想想能不能将这些式子分分类,并说出你分类的标准。(小组讨论,写下来)
按符号的不同分成两大类(出示实投):
80<2x2x+50>100100+20<100+50
指出:这些用大于、小于号连成的式子左右两边不相等,就叫做不等式。
谁再来说几个等式?同桌互相说几个等式。
30+20=503x=180100+2x=50×3
x―18=2460÷20=3
指出:这些用等号连接成的表示两边相等的式子都叫等式。(板书:等式)
(5)观察以上等式,你能不能再分分类,也说一说你分类的标准?(同桌讨论)
一、教学内容:
人教课程标准实验版第九册P59例2。
二、教学目标:
1、运用知识迁移,结合直观图例,应用等式的性质,让学生自主探索和理解简易方程的解法。
2、通过多种形式的分层练习,让学生较熟练掌握简易方程的解法。
3、帮助学生养成自觉检验的学习习惯。
4、培养学生的分析能力和应用能力,渗透代数的数学思想和方法。
三、教学重难点:
应用等式的性质,理解和较熟练掌握简易方程的解法。
四、教学过程:
(一)知识铺垫。
1、什么叫方程的解?什么叫解方程?
2、解方程:X+15=48X―3.2=2.6
解答后说一说(1)你解这两个方程的依据和方法是什么?
(2)说出等式的另外一个基本性质。
(计算机分别演示等式的两个基本性质。注意“不为0”)
揭示课题:这节课我们就继续利用等式的性质来解简易方程。
板书:解简易方程。
(二)新知学习。
1、教学例2。
(1)出示情景图。
(2)说出图意并列出方程。(从图中你知道了哪些信息?会列方程吗?)
(3)怎样用天平图表示这个方程?(左边是3个X,右边是18)
(4)解方程的目的是求X的值,要使天平的左边只剩下一个X,而天平又保持平衡,两边该怎样分?(两边同时平均分成3份)
计算机动画演示:天平两边各剩一份。问:每份怎样?(分别平衡)
(5)反映在方程上,就是我们学过的等式的哪个基本性质呢?
(6)自主探索,试解方程并检验(会用这个基本性质解方程吗?试试看!)。
评讲(强调书写格式和自觉检验)。
2、指导阅读书P59,质疑。
3、想一想、试一试:解方程X÷3=2。1
自己说一说解题的依据和方法。(强调口头检验)
4、小结:我们已掌握了解方程的一般方法,你认为解方程时需要注意什么?
(下面就检验一下你们是否真正掌握了解方程的方法。)
(三)基础练习设计:
1、说出下列方程的解法。
2、选择正确答案。(全班用手势表示)
(1)X+8=30①X=22②X=38
说说你是怎样判断的?
指出:平时解方程后都可以自觉用代入法进行检验。
3、对比练习。
4、解决问题。(列出方程并解答。)
(1)每个福娃X元,买5个共花80元。
(上面两个问题解决得很好,接下来我们进行一个检测性的分组接力竞赛,有信心赢吗?)
5、学习检测。(接力竞赛)
(四)课堂小结。
这节课学习了什么?
解简易方程的依据和方法是什么?
(看来同学们对今天所学的知识掌握得不错。是的,解方程的依据就是等式的基本性质。我们解完方程后还要养成自觉检验的习惯,一般可以用代入法进行检验。下面我们继续挑战一道有难度的拓展题。)
教学内容:
义务教育课程程标准实验教科书数学(人教版)小学数学第9册57―58页的内容。
教学目标:
1、通过学习,使学生知道解方程的方法有两种,并掌握这两种方法。
2、使学生初步掌握解方程,并理解解方程及方程的解的概念。
3、培养学生的分析能力应用所学知识解决实际问题的能力。
重点、难点:
1、理解并掌握解方程的方法。
2、理解解方程及方程的解的概念。
教学过程:
一、复习导入
二、探索新知,出示课本主题图(课件)
(1)根据图画列方程
(2)反馈:
a、X+3=9
b、9―X=3
C、9―3=X
(强调:列方程时X不单独出现在等号的一边,因为这样这个方程没有意义。)
(3)以X+3=9为例教学解方程
三、课堂练习:
1、完成做一做第一题。
2、解下列方程。(用两种方法解决)
四、课堂小结
这节课你有什么收获,跟你的同桌交流一下。
重点、难点:
理解并掌握解方程的方法。
教学过程:
一、复习铺垫
1、方程的意义
师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗?
生:含有未知数的等式叫方程。
2、判断下面哪些是方程
师:你能判断下面哪些是方程吗?
(1)a+24=73(2)4x<36+17(3)234÷a>12
(4)72=x+16(5)x+85(6)25÷y=0。6
生:(1)(4)(6)是方程。
师:你为什么说这三个是方程呢?
生:因为它含有未知数,而且是等式。
二、探究新知
(一)理解方程的解和解方程
1、看图写方程
师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57页天平图)从图中你知道了什么?
生:我知道杯子重100克,水重X克,合起来是250克。
师:你能根据这幅图列出方程吗?
生:100+X=250。
2、求方程中的未知数
师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)
生1:根据加减法之间的关系250-100=150,所以X=150。
生2:根据数的组成100+150=250,所以X=150。
生3:100+X=250=100+150,所以X=150。
生4:假如在方程左右两边同时减去100,那么也可得出X=150。
3、验证方程中的未知数,引出方程的解和解方程两个概念。
师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?
生:对,因为X=150时方程左边和右边相等。
师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?
学生自学后汇报。(板书)齐读两个概念。
4、辨析方程的解和解方程两个概念
师:方程的解是未知数的值它是一个数,怎样判断一个数是不是方程的解呢?
生:要看这个数能不能使方程左右两边相等。
师:而解方程是求未知数的过程,是一个计算过程它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。
5、巩固练习,加深理解。
师:完成做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)
生:X=3是方程5X=15的解,因为X=3时方程左右两边相等。
生:X=2不是方程5X=15的解,因为X=2时左边5×2=10,右边是15,左边和右边不相等,所以X=2不是方程5X=15的解。
(二)解简易方程
1、复习等式的性质
师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?
(1)如果5+3=8,那么5+3-3=8
(2)如果50-13=37,那么50-13+13=50()
(3)如果a-7=8,那么a-7+7=8()
(4)如果X+9=45,那么X+9-9=45()
师:你是根据什么填空的?
生:等式的性质。
师:等式有什么性质呢?我们齐来说一遍。
2、理解方程与等式的联系,引出课题。
师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。
3、出示例1图,列出方程。
师:图上画的是什么?你能列出方程吗?
数学课程标准(实验稿)改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:
老方法:
x + 4 = 20
x = 20-4
依据运算之间的关系:一个加数等于和减另一个加数。
新方法:
x + 4 = 20
x + 4-4=20-4
依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。
改革的原因(摘自教学参考书):
新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。
从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。
那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题? 在我的教学过程中真的出现了问题 。
1.无法解如a-x=b和a÷x=b此类的方程
新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与x÷a=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓“相比原来方法,思路更为统一”的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和a÷x=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而a÷x=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。
我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或a÷x=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的处理方法,有时更 会无法避免地直接和方程思想发生矛盾。
如“3千克梨比5千克桃子贵0.5元。梨每千克2.5元,桃子每千克多少元?”合理的做法应是“设桃子每千克X元”,从顺向思考,列出方程为“2.5×3-5X=0.5”。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成“5X+0.5=2.5×3”之类的方程。又如:课本第62页中的“爸爸比小明大28岁,小明Х岁,爸爸40岁。”很多学生根据“爸爸比小明大28岁”列出40-Х=28,可是无法求解,所以又转成Х+28=40。
很明显,第二个方程是和方程思想的基本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更加直接自然。为实现这个目标,很重要的一点,就是列式时应尽量顺向思考,以降低思考的难度。这是体现方程方法的优越性必然要求。事实上,如果学生能够列成“5X+0.5=2.5×3”“ Х+28=40”那就说明他已经非常熟悉其中的数量关系了,此时,用算术方法即可,哪还有列方程来解的必要呢?我们又怎谈引导学生认识方程的优越性呢?
我们不难看出,根据现实情境列方程解决问题,X当作减数、当作除数,应当是很常见、很必要的现象。要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。
2.解方程的书写过程太繁琐
教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的`繁琐。
因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了。
从这两个方面来看,小学里学习等式的基本性质,并运用它来解方程,在实际操作中,也存在许多的现实问题。那么,如果说用算术思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,那我们又如何是好呢?
新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西,但是也让我感到了许多困惑
1、从教材的编排上,整体难度下降,有意避开了,形如:45-X=23等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现X前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出X在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受--解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。要教他们列方程时怎么避免X前面是除号或减号的方程的出现等等。
五年级数学上册《简易方程》教学设计
教学内容
教材50—51页,用等式表示等量关系。
教学提示
本节课的教学让学生结合具体情境进一步理解方程的意义,并会用等式表示等量关系。再通过层层的递进的练习,加深理解所学知识,并应用所学知识解决问题。整节课以学生为主体,以学生为本,培养学生积极思考、主动探究、归纳总结的能力。
教学目标
知识与能力
结合操作活动进一步理解方程的意义。
过程与方法
会用含有未知数的等式表示等量关系。
情感、态度与价值观
感受方程与现实生活的密切联系,体验数学活动的探索性。
重点、难点
重点
理解方程的意义,会用含有未知数的等式表示等量关系。
难点
理解方程的意义。
教学准备
教师准备:
多媒体
学生准备:
练习本
教学过程
(一)新课导入:复习导入
1.出示:下面式子哪些是方程,并说明理由?
6+x=14 36-7=29 60+23>70 8+x
x+4<14 ÷18=3 3x-12 5x+2x=63
2、写一个方程,然后在小组里交流,说说什么是方程。进一步巩固理解方程的意义。
设计意图:整理上节课学习的知识,进一步巩固学生对方程意义的理解。
(二)探究新知:
1.联系实际,应用拓展
师:看来同学们理解了方程的意义,掌握了方程的特征,其实方程就隐含在我们的生活中,人们发现在我们的衣食住行中,有很多问题都能用方程的方法来解决。试试看!(出示)
衣:妈妈带50元钱给我买了一件T恤后,还剩下26元。
食:小强去麦当劳,买了一袋薯条和一个l0元的汉堡,一共用了l5元。
住:同学们参加社会实践活动,3个人住一个房间,多少个房间能住102人?
行:公交车上有一些人到谢家湾站时,有13人下车,18人上车,车上还剩36人。
师:你想试哪一个?
生1:我想试“衣”。(生读题)
师:能用方程来表示吗?先写在练习本上,再想一想未知数代表的是什么?
生2:x+26=50
生3:50-x=26
师:这是方程。
生4:X代表T恤的价钱。
生5:我想试“食”。 我是这样写的X+10=15,X代表的是一袋薯条的.价钱。
生6:我想试试“行”。
师:你能直接口答吗?
生7:X-13+18=36,X代表的是车上原有的人数。
生7:我想说最后一个“住”。102÷3=X,X代表的是房间数。
师:习惯上都把未知数写在等号的左边。也可以这样表示3X=102
师:刚才我们用方程表达了日常生活中的衣食住行问题,同样,也可以用日常生活来描述方程。
2.(出示)结合生活中的事例解释方程。
①+19=54
②X-14=36
③Z-13十15=37
师:选择自己喜欢的来说。
生1:我想说第2个,我有一些钱,买学习用品花了14元,还剩36元。
师:真是个爱学习的好孩子。
生2:我想说第1个,我有一些零花钱,妈妈又给了我19元,一共有54元。
师:要学会合理使用零花钱。
生3:我想说第3个,公交车上有一些人到百货大楼站时,有10人下车,12人上车,车上还剩30人。
师:先下后上,文明乘车。
……
师:听了同学们的描述,老师认为大家确实理解了方程的意义,会把生活和数学联系起来学习了,很好!
设计意图:将数学知识与生活相联系,是学习数学的目的所在。也使学生学习数学的过程中形成技能。在教学中要保证每个学生参与学习活动,针对学习目标和教学重点,具有层次性和开放性,注重教学的实效性。
(三)巩固新知:
1.出示情境图,学生独立完成。说说列出方程的等量关系。
小丽背80首古诗,小芳背x首古诗,小芳说:你比我少背5首
学生能够列出:小芳背古诗首数-5=小丽背古诗首数
或:小芳背古诗首数-小丽背古诗首数=5
即:x-5=80
或:x-80=5
学生同桌交流,说说自己的想法,然后,全班订正。
2.出示自主练习3。
这是一个结合具体情境理解方程意义的题目。
先让学生独立填写等量关系式并列出方程,交流时,重点引导学生结合示意图说说数量关系。
设计意图:加深理解所学的知识,应用所学的知识灵活解决实际问题。
(四)达标反馈
1.下列各式那些是等式?
①45+32=77 ②5÷X=12 ③3X-4=22 ④2×21=42
⑤a+b=90 ⑥÷6
2.按要求写一写。
教具准备:
天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)
教学过程:
一、导入新课:同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?
二、新知探究
(一)探寻发现“天平保持平衡的规律1”。
第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),
第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b。
第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。
第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a—a=2b+a—a。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
(二)探寻发现“天平保持平衡的规律2”。
第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的`质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),
第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2。
第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。[
第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。
(三)小结天平保持平衡的变换规律,引出等式不变的规律。
通过刚才的实验,我们发现了什么,谁来总结一下。
得出天平保持平衡的变换规律:
(1)天平两边同时增加或减少同样的物品,天平保持平衡;
(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
交流,发现:等式保持不变的规律:
(1)等式两边都加上或减去相同的数,等式保持不变;
(2)等式两边都乘或除以相同的数(0除外),等式不变。
三、练习。
实物演示并判断:(准备8袋花生,4袋盐)
天平两端分别放有一袋500克的盐和两袋250克的花生。
1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?
2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)
3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?
4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?
四:小结。
有什么收获?还有什么问题?
教学内容:数学书P55—56及“做一做”。
教学目标:
1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3、培养学生观察与概括、比较与分析的能力。
教材简介:
本单元的主要学习内容是用字母表示数和解简易方程,以及简易方程在解决一些实际问题中的运用。
本单元的内容分为两节,第一节的主要内容是用字母表示数、表示运算定律、计算公式和数量关系。第二节的主要内容是方程的意义,等式的基本性质和解简易方程,以及列方程解决一些比较简单的实际问题。这些内容的编排体系如下表(见底部附件)。
单元教学目标:
1、使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。
2、使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程
3、使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。
教学建议:
1。关注由具体到一般的抽象概括过程。
2。用好教材资源,适当扩展联系实际的范围。
3。重视良好学习习惯的培养。
课时安排:
1。用字母表示数3课时
2。解简易方程12课时
第一课时:用字母表示数(一)
教学内容:
教材P44-P46例1-例3做一做,练习十第1-3题
教学目的:
1、使学生理解用字母表示数的意义和作用。
2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。
3、使学生能正确进行乘号的简写,略写,知道一个数的平方的含义及读写法。
4、在学习中感受到用字母表示数的优越性,激发对数学学习的兴趣。
教学重点:
理解用字母表示数的意义和作用
教学难点:
能正确进行乘号的简写,略写。
教学准备:
投影仪
教学过程:
一、初步感知用字母表示数的意义
教学例1。
1、投影出示例1(1):
引导学生仔细观察两行图中,数的排列规律。
问:每行图中的数是按什么规律排列的?(指名口答)
2、学生自己看书解答例1的(2)、(3)小题
提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)
师:在生活中、在数学中,我们经常用字母来表示数。今天这节课我们一起来学习用字母表示数。
问:你还见过那些用符号或字母表示数的例子?
如:扑克牌,行程A、B两地,C大调……。
二、新授:
1、学习用字母表示运算定律和性质的意义和方法。
教学例2:
(1)学生用文字叙述自己印象最深的一个运算定律。
(2)如果用字母a、b或c表示几个数,请你用字母表示这个运算定律。
(3)当用字母表示数的时候,你有什么感觉?
看书45页“用字母表示……。”这一段。
(4)你还能用字母表示其它的运算定律和性质吗?
请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
减法的性质:a-b-c=a-(b+c)
除法的性质:a÷b÷c=a÷(b×c)
2、教学字母与字母书写。
引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)
a×b=b×a(a×b)×c=a×(b×c)
可以写成:ab=ba或ab=ba(ab)c=a(bc)或(ab)c=a(bc)
(a+b)×c=a×c+b×c
可以写成:(a+b)c=ac+bc或(a+b)c=ac+bc
其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。
3、教学用字母表示计算公式的意义和方法。
教学例3(1):
师:字母不但可以表示运算定律还可以表示公式、及数量关系。
用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?
学生先自己试写,然后小组交流,看书讨论。
问:
(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?
(2)字母和数字之间的乘号省略后,谁写在前面?
a2表示什么?2a表示什么?
师强调:a表示两个a相乘,读作a的平方。
口答结果:3的平方5的平方6的平方
省略数字和字母之间的乘号后,数字一定要写在字母的前面。
4、练习:省略乘号写出下面各式。
x×xm×m0。1×0。1a×63×nχ×8a×c
教学例3(2):
学生自学并完成相关练习。两生板演。师强调书写格式。
三、巩固练习:
1、完成做一做1、2题。
要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。
2、练习十:第1-3题先独立解答后,再集体评议。
五年级上册数学《简易方程》教学设计
教学内容:教科书第144~145页的内容和练习三十四的第1~4题。
教学目的:
使学生加深理解用字母表示数的意义和作用,会用字母表示和常见的数量关系。回根据字母所取的值,求含有字母的式子的值。
使学生加深理解方程的意义,会解简易方程。
教学过程
一、复习用字母表示数。
教师:我们知道,用字母表示数可以简明表达数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。我们通过下面的例子,边回忆、边总结以前学过的内容和方法。
教师:大家先想一想,在一个含有字母的式子里,数字与字母、字母与字母相乘,应该怎样写?例如,a乘以4.5可以怎样写?S乘以h可以怎样写?(a乘以4.5可以写成a×4.5或a·4.5,不可以写成a4.5。S乘以h可以写成S·h或Sh。)
教师指出:除了不能写成a4.5以外,其他都是对的。
用a表示单价,x表示数量,c表示总价,写出下面的数量关系式。
已知单价和数量,求总价的公式;
已知总价和数量,求总价的公式;
已知总价和单价,求数量的公式。
如果每只圆珠笔的价钱是3.75元,要计算买8支圆珠笔要用多少钱,应该用上面的哪个公式?
教师让学生独立解答。巡视时,注意观察学生用的字母和公式的写法是否正确,发现遗忘的要及时辅导,并纠正错误。写完后,集体订正。
教师让学生用字母写出加法和乘法的运算定律,平行四边形和梯形的面积计算公式,长方体、圆柱和圆锥的体积计算公式。学生写完后指名回答。
教师:用a,b,c表示三个自然数,那么同分数相加的计算法则应该怎样写?(a/c+b/c=a+b/c。)
一个商店原有80千克桔子,又运来了12筐桔子,每筐重a千克。
教师指名回答。
80+12a
a=15时,80+12a=80+12×15=260
答:商店一共有260千克桔子。
作教科书第144页“做一做”的题目。
第1题,教师让学生自己做。巡视时,注意观察学生对“a的3倍”与“a的3倍”的结果是怎样选择的。做完后集体订正。
二、简易方程
复习方程的概念。
教师出示复习题:
下列等式,那些是方程,那些不是方程?并说明理由。
19+25=43 5x+4x+8=35 x-2=8
4×3-18÷3=6 3x+5=7 a+4
学生指出:3x+5=7, 5x+4x+8=35, x-2=8是方程。它们是含有未知数的等式;其他的不是方程。
教师:我们知道含有未知数的等式叫做方程。方程的特征是:它含有未知数,同时又是一个等式。
教师:大家会不会解方程?一起解答方程x-2=8。学生解答后,指名回答方程的解(x=10)教师:x=10是方程x-2=8的解。使方程左右两边相等的未知数的值叫做方程的`解。求方程的解的过程叫做解方程。我们把方程的解和解方程这两个概念要分析清楚。
复习解简易方程。
例3 解下列方程,并写出检验过程。
3x+5=7 5x+4x+8=35
学生做题时,教师巡视,注意帮助有困难的学生和及时纠正错误。集体订正时,让学生将“ 5x+4x+8=35”的解答过程写在黑板(或投影片)上,说明解答过程中运用到什么运算定律和运算关系。
教师:在解方程的过程中,我们主要是应用了加、减、乘、除法中各部分间的关系和一些运算定律。
做教科书第145页上面的“做一做”的题目。
第1题,让学生独立完成。集体订正时,指名回答并说明理由。
第2题,让学生独立完成。集体订正时着重说明有3到小题,在解答中出现3x=150,方程的解都是x=50。
例4 一个书的1/2比这个数的25%多10,这个数是多少?
让学生独立解答。订正时。指名用口算检验。
做教科书第145页下面的“做一做”的题目。
让学生独立完成。集体订正时,让学生说明哪一题列方程比较容易,哪一题列算式比较容易。
三、小结
教师引导学生分别按照复习的过程叙述和小结复习的内容。
四、作业
练习三十四的第1~4题。
教学内容:解简易方程例4(课本第110页)练习二十七第5一9题
教学目的:
⒈进一步掌握转化的思路,正确解答二步计算的方程。
2.在掌握ax±b=c的方程解法的基础上,学会用列方程的方法解答二步计算的文字题。
3.养成分析的习惯,训练严谨的学习态度。
教学过程:
一、复习
⒈解下列各方程,并说明解题的思路与解法根据。
(1)3.8一x=2.9(2)5x=12.5(3)3.8一4x=2.9(4)3×7十5x=42.5
小结:(1)一⑵是最基础的简易方程。只要根据四则互逆关系,就可以求解;⑶一⑷比前二题稍复杂,只要把ax看作一个数,那么二步的问题就转成我们最熟悉的基本方程来解答。
2.用方程表示下列各题的数量关系,并填在横线上:
(1)x的2倍与3.5的和是7.3:
(2)从30里减去x的1.5倍,差是18:
(3)一个数的6倍减去35,差是13:
小结:这些题,如果列综合算式来解答,恐怕不是一件易事,但当我们用方程列式时,却没有那种难的感觉,在方程里,逆向问题变顺向;也就不难了。
二、新授
揭示新课内容;
转化的思路,给我们的解题带来了很大的方便,这节课我们沿着这样的思考方法,继续解简易方程:
板书课题:解简易方程
1.教学补充例:
解方程X一0.8+4=9
(1)分析题意;能不能说出这个方程所表达的相等关系是什么?
很显然方程表示X减去0.8的差加上4得9。
想一想怎么转化,使得这个方程解得更顺些?
让学生议一议,最后取得共识:是应当把X一0.8看作一个加数,问题就好办多了。
⑵议出了基本思路后,可由学生自己尝试解答。
师巡视,确定一生板演:
解:把X一0.8看作加数,那么
X—0.8=9—4
X—0.8=5
X=5十0.8
X=5.8
全班一块用口头检验一下:5.8一0.8+4=5十4=9(正确)
小结比较:前面各题,我们通常把aX看作一个数,而本题则是把(Xl一0.8)的差看作一个数,把题顺利拿下了,说明转化应根据题目的具体情况而定。
(3)完成做一做的1一2解方程X+15一21=6和4(X一0.8)=9
想一想:这两题方程表达的是什么意义,可以把谁看作一个什么数来转化?
师巡视后,作简要的讲评。
⒉例4的教学。
一个数的6倍减去35,差是13,求这个数。
分析:这个问题所提供的相等关系是什么,
根据课复习的第2个题组的训练,学生不难得到,这样可以放手让学生自己解答,只要在格式上注意强调设题即可。
尝试作业后,师可规范板出:
解:设这个数是X。
6X一35=13
把6X看作被减数
6X=13+35
五年级数学解简易方程教学方案
教学目标
1.使学生初步学会这一类简易方程的解法.
2.知道计算这类方程的道理.
教学重点
掌握解这一类方程的解法.
教学难点
理解这一类方程的`算理.
教学过程
一、复习引入
(一)解下列方程
(二)乘法分配律的意义是什么?用字母怎样表示?
二、教学新授
(一)教学例5
例5.一个工地用汽车运土,每辆车运吨,一天上午运了4车,下午运了3车.这一天:网12网
1.教师提问
(1)这个方程有什么特点?
(2)应该怎样解答?
2.学生独立解答.
教师板书:
解:
检验:把代入原方程.
左边=7×5+9×5=80,右边=80,
左边=右边
所以是原方的解.
3.练习
解方程3.6-0.9=5.4(要写出检验过程)
三、课堂小结
今天这节课你学到了哪些知识?解这类方程时要注意什么?
四、巩固练习
★ 解简易方程教案