数学排列组合练习题10道

| 收藏本文 下载本文 作者:szlt001

下面是小编帮大家整理的数学排列组合练习题10道(共含5篇),希望对大家带来帮助,欢迎大家分享。同时,但愿您也能像本文投稿人“szlt001”一样,积极向本站投稿分享好文章。

数学排列组合练习题10道

篇1:小学六年级数学奥数练习题精选10道

奥数题1

甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?

解:设甲校有x人参加,则乙校有(22-x)人参加。

0.2 x=(22-x)×0.25-1

0.2x=5.5-0.25x-1

0.45x=4.5

x=10

22-10=12(人)

答:甲校有10人参加,乙校有12人参加。

奥数题2

甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求乙的存款。

答案:取40%后,存款有9600×(1-40%)=5760(元)

这时,甲有:(5760+120×2)÷2=3000(元)

甲原来有:3000÷(1-40%)=5000(元),

乙存款:9600-5000=4600(元)

奥数题3

某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完并获利40元。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少?

答案:

(100+40)/2.8=50(本)

原进价:

100/50=2(元) ,

150/(2+0.5)=60(本),

60×80%=48(本)

48×2.8+2.8×0.5×(60-48)-150=1.2

答:盈利1.2元。

奥数题4

李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?

答案:

设以前卖出X千克 降价a元。

那么0.2X× (1+0.5)=(0.2-a)× 2x

则0.1X=2aX a=0.05

答:每千克水果降价0.05元

奥数题5

有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

解析与答案:

首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。

把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。

把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。

由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

奥数题6

能否把8个数1、2、…、8排列在正八边形的各个顶点上,每个顶点放一个数,使得对于任意位于三个相连顶点上的各数之和:(I)大于11;(II)大于13.

【答案与解析】

(I)能够做到,顺时针依次填写1、8、3、6、4、2、7、5即为一例。

(II)不能做到。假设存在这样的排列,那么一共会有8个和,每个和都至少是14,所以这8个和的总和至少是112。而同时,这8个和的总和应该是把每个数字都用了3遍,所以总和应该等于108,出现矛盾.因此无法按照要求填数。

奥数题7

足球门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?

初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,

收入为15×(1+1/5)=18元,

则降价后每张票价为18÷2=9元,

每张票降价15-9=6元。即:

15-15×(1+1/5)÷2=6(元)

答:每张票降价6元。

说明:如果设原来有a名观众,则每张票降价:

15-15a×(1+1/5)÷2a=6(元)

奥数题8

一个运输队运送一批货,第一天,运了全部的30%,第一天和第二天运量的比是3:2,还剩520吨没运走,这批货原有多少吨?

【答案】这批货原有1040吨

【解析】第一天运送30%,第一天与第二天运量比例是3:2,则第二天运了20%,共计50%,剩余50%为520吨,故总共有520×2=1040吨。

奥数题9

如果一个圆盘分成内外两圆,均等分成10个“格子”,且分别将1,2,3,4,…,10这10个数填入内外圈的10个格子中(每格填一数,不一定按大小顺序),若内圆可以绕圆心转动,求证在转动中,一定有某个时刻,内圈的10个数与外圈的10个数每对乘积之和大于302。

【答案与解析】

转动中内圈的10个数与外圈的10个数将分别搭配1次,所有乘积的总和是

(1+2+3+…+10)×(1+2+3++10)=55×55=3025,

而不同的对应方式共10种,所以必有某个时刻,

10对乘积的和大于302,

否则所有乘积的总和将小于等于3020,

与这个总和等于3025矛盾,因此结论成立。

奥数题10

一件衣服,第一天按原价出售,没人来买,第二天降价20%出售,仍无人问津,第三天再降价24元,终于售出。已知售出价格恰是原价的56%,这件衣服还盈利20元,那么衣服的成本价多少钱?

【答案与解析】

我们知道从第二天起开始降价,

先降价20%然后又降价24元,

最终是按原价的56%出售的,

所以一共降价44%,

因而第三天降价24%。

24÷24%=100元。

原价为100元。

因为按原价的56%出售后,

还盈利20元,

所以100×56%-20=36元。

所以成本价为:36元。

篇2:小升初数学排列组合练习题

1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( ) A 768种 B 32种 C 24种 D 2的10次方种

解:

根据乘法原理,分两步:

第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。

第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种

综合两步,就有24×32=768种。

2 若把英语单词hello的字母写错了,则可能出现的错误共有 ( ) A 119种 B 36种 C 59种 D 48种

解:

5全排列5*4*3*2*1=120

有两个l所以120/2=60

原来有一种正确的所以60-1=59

3.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

答案为53秒

算式是(140+125)÷(22-17)=53秒

可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

4.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

答案为100米

300÷(5-4.4)=500秒,表示追及时间

5×500=2500米,表示甲追到乙时所行的路程

2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

5.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)

答案为22米/秒

算式:1360÷(1360÷340+57)≈22米/秒

关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

6.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

正确的答案是猎犬至少跑60米才能追上。

解:

由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的.10米刚好追完

7. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?

答案:18分钟

解:设全程为1,甲的速度为x乙的速度为y

列式40x+40y=1

x:y=5:4

得x=1/72 y=1/90

走完全程甲需72分钟,乙需90分钟

故得解

8.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?

答案是300千米。

解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。

因此360÷(1+1/5)=300千米

从A地到B地,甲、乙两人人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有千米

9.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?

解:(1/6-1/8)÷2=1/48表示水速的分率

2÷1/48=96千米表示总路程

10.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。

解:

相遇是已行了全程的七分之四表示甲乙的速度比是4:3

时间比为3:4

所以快车行全程的时间为8/4*3=6小时

6*33=198千米

11.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?

解:

把路程看成1,得到时间系数

去时时间系数:1/3÷12+2/3÷30

返回时间系数:3/5÷12+2/5÷30

两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时

去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75

路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)

篇3:小升初数学10道经典应用题分析

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

解题思路:

由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

答题:

解:一把椅子的价钱:

288÷(10-1)=32(元)

一张桌子的价钱:

32×10=320(元)

答:一张桌子320元,一把椅子32元。

2.3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

解题思路:

可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

答题:

解:45+5×3=45+15=60(千克)

答:3箱梨重60千克。

3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

解题思路:

根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

答题:

解:4×2÷4=8÷4=2(千米)

答:甲每小时比乙快2千米。

4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?

解题思路:

根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:

解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)

答:每支铅笔0.2元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)

解题思路:

根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

答题:

解:下午2点是14时。

往返用的时间:14-8=6(时)

两地间路程:(40+45)×6÷2=85×6÷2=255(千米)

答:两地相距255千米。

6. 学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

解题思路:

第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(?4.5-3.5)千米,由此便可求出追赶的时间。

答题:

解:第一组追赶第二组的路程:

3.5-(4.5-?3.5)=3.5-1=2.5(千米)

第一组追赶第二组所用时间:

2.5÷(4.5-3.5)=2.5÷1=2.5(小时)

答:第一组2.5小时能追上第二小组。

7. 有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

解题思路:

根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

答题:

解:乙仓存粮:

(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)

甲仓存粮:

14×4-5=56-5=51(吨)

答:甲仓存粮51吨,乙仓存粮14吨。

8. 甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

解题思路:

根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

答题:

解:乙每天修的米数:

(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)

甲乙两队每天共修的米数:

40×2+10=80+10=90(米)

答:两队每天修90米。

9. 学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

解题思路:

已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

答题:

解:每把椅子的价钱:

(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)

每张桌子的价钱:

25+30=55(元)

答:每张桌子55元,每把椅子25元。

10. 一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

解题思路:

根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

答题:

解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)

答:甲乙两地相距560千米。

篇4:小学一年级数学练习题13道

小学一年级数学练习题13道

1、我已经做了35道题,还有28道题没有做,一共有多少道题?

2、被减数是76,减数是48,差是多少?

3、比93少25的数是多少?

4、一个加数是38,另一个加数是46,和是多少?

5、比24大30的.数是多少?

6、小红拿了3元钱去买铅笔,用了2元6角,还剩多少钱?

7、猴爸爸摘了36个桃,猴妈妈摘了28个桃,小猴摘了17个桃,他们一共摘了多少个桃?

8、树上有43只鸟,第一次飞走了25只,第二次飞走了12只,树上还有多少只鸟?

9、我一共有85张邮票,分给小华26张,分给小聪38张,还剩多少张邮票?

10、苹果43千克桃子29千克梨18千克

(1)苹果比桃子多多少千克?

(2)一共有多少千克水果?

11、小轿车36元汽车17元面包车25元

(1)三种玩具车一共要多少元?

(2)买汽车和面包车一共多少元?付50元,应找回多少元?

12、合唱班45人电脑班37人棋类班32人钢琴班23人

(1)参加合唱班和钢琴班的共有多少人?

(2)参加电脑班的比棋类班的多多少人?

(3)参加合唱班的比钢琴班的多多少人?

13、一班34人二班48人三班30人四班52人

(1)班收集的多,()班收集的少,多()节。

(2)二班和三班共收集多少节电池?

(3)一班比四班少多少节电池?

篇5:小升初数学专项练习试题10道

小升初数学专项练习试题10道

1、一只木箱里装着红、黄、蓝三种颜色的球。黄球的个数是红球的23 ,篮球的个数比黄球的23 还多3个,红球比篮球多32个,木箱里共装球多少个?

2、甲、乙两辆汽车同时从A出发前往B,当甲车行了全程的13 时,乙车离B还有24千米,当甲车又行了剩下的一半时,乙车行了全程的一半,求AB两地路程。

3、把一批面粉分给三个工厂,甲厂先分到这批面粉的25 ,乙厂分得余下的25 ,最后丙厂分得14.4吨,这批面粉重多少吨?

4、两袋大米,第二袋比第一袋重15千克,已知第一袋大米重量的13 恰好与第二袋大米重量的27 相等,两袋大米各重多少千克?

5、小明从盒子里取出140个玻璃球,后来又取出剩下的35 ,这时剩下的玻璃球个数是原来的16 ,原来盒子里有多少个?

6、小明家养的鹅的只数是鸡的13 ,鹅是鸭的25 ,已知鸡比鸭多10只。鸭有多少只?

7、一个盒子里装有黑白两种棋子,黑子的颗数是总数的35 ,把12颗白子放入盒子后,黑子的颗数占总数的'37 ,盒子里有黑子多少颗?

8、某工厂的甲、乙、丙三个车间向灾区捐款,甲车间捐款数是另外两个车间捐款数的23 ,乙车间捐款数是另外两个车间捐款数的35 ,已知丙车间捐款数为180元,这三个车间共捐款多少元?

9、小明用三周的时间读完一本书,第一周读了全书的14 多6页,第二周读了全书的1324 ,第三周读的页数是第一周的34 。这本书有多少页?

10、一次考试,语文、数学、英语三门考全优的学生占语文考优秀人数的17 ,占数学考优秀人数的15 ,占英语考优秀人数的13 ,又知道语文考优秀人数的13 比英语考优秀人数的56 少1人,求数学考优秀的有多少人?

10以内加法练习题

10以内加减法练习题

高考数学排列组合问题解题技巧

10道脑筋急转弯智力测试题

排列组合教案

很难的10道智力题推荐

第三册数学广角-----简单的排列组合问题

七年级数学练习题

四年级数学练习题

初一数学练习题

数学排列组合练习题10道(共5篇)

欢迎下载DOC格式的数学排列组合练习题10道,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档