下面是小编帮大家整理的排列组合教案(共含7篇),希望对大家有所帮助。同时,但愿您也能像本文投稿人“过路过路”一样,积极向本站投稿分享好文章。
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.
从n个不同元素中任取(≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取(≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导.
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数.
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.
在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列.
要特别注意,不加特殊说明,本章不研究重复排列问题.
③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.
导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.
公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.
教学设计示例
排列
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
教学重点难点
重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。
难点是解有关排列的应用题。
教学过程设计
一、复习引入
上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):
1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书.
(1)从中任取1本,有多少种取法?
(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?
2.某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?
找一同学谈解答并说明怎样思考的的过程
第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=20xx.
第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区.
二、讲授新课
学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点.先从实例入手:
1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?
由学生设计好方案并回答.
(1)用加法原理设计方案.
首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票.
(2)用乘法原理设计方案.
首先确定起点站,在三个站中,任选一个站为起点站,有3种方法.即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选.那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种.
根据以上分析由学生(板演)写出所有种飞机票
再看一个实例.
在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?
找学生谈自己对这个问题的想法.
事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.
首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;
其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.
根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).
根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)
第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.
由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.
根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).
请板演的学生谈谈怎样想的?
第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.
第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.
第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.
根据乘法原理,所以共有4×3×2=24种.
下面由教师提问,学生回答下列问题
(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?
都是从一些研究的对象之中取出某些研究的对象.
(2)取出的这些研究对象又做些什么?
实质上按着顺序排成一排,交换不同的位置就是不同的情况.
(3)请大家看书,第×页、第×行. 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.
上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.
第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.
第三个问题呢?
从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.
给出排列定义
请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取(≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出个元素的一个排列.
下面由教师提问,学生回答下列问题
(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?
从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的排列.
如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列.
再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列.
(2)还需要搞清楚一个问题,“一个排列”是不是一个数?
生:“一个排列”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的.
三、课堂练习
大家思考,下面的排列问题怎样解?
有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)
分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题.
解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱.
第二步从余下的三张卡片中任选符合条件的一张放在第2空箱.
第三步从余下的两张卡片中任选符合条件的一张放在第3空箱.
第四步把最后符合条件的一张放在第四空箱.具体排法,用下面图表表示:
所以,共有9种放法.
四、作业
课本:P232练习1,2,3,4,5,6,7.
数学教案-排列教学目标
求解排列应用题的主要方法:
直接法:把符合条件的排列数直接列式计算;
优先法:优先安排特殊元素或特殊位置
捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列
插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中
定序问题除法处理:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列。
间接法:正难则反,等价转化的方法。
例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:
(1) 全体排成一行,其中甲只能在中间或者两边位置;
(2) 全体排成一行,其中甲不在最左边,乙不在最右边;
(3) 全体排成一行,其中男生必须排在一起;
(4) 全体排成一行,男生不能排在一起;
(5) 全体排成一行,男、女各不相邻;
(6) 全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;
(7) 全体排成一行,甲、乙两人中间必须有3人;
(8) 若排成二排,前排3人,后排4人,有多少种不同的排法。
某班有54位同学,正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况中 ,各有多少种不同的选法?
(1)无任何限制条件;
(2)正、副班长必须入选;
(3)正、副班长只有一人入选;
(4)正、副班长都不入选;
(5)正、副班长至少有一人入选;
(5)正、副班长至多有一人入选;
6本不同的书,按下列要求各有多少种不同的选法:
(1)分给甲、乙、丙三人,每人2本;
(2)分为三份,每份2本;
(3)分为三份,一份1本,一份2本,一份3本;
(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;
(5)分给甲、乙、丙三人,每人至少1本
例2、(1)10个优秀指标分配给6个班级,每个班级至少
一个,共有多少种不同的分配方法?
(2)10个优秀指标分配到1、2、3三个班,若名
额数不少于班级序号数,共有多少种不同的分配方法?
.(1)四个不同的小球放入四个不同的盒中,一共
有多少种不同的放法?
(2)四个不同的小球放入四个不同的盒中且恰有一个空
盒的放法有多少种?
解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。
引例1
现有四个小组,第一组7人,第二组8人,第三组9人,第四组10人,他们参加旅游活动:
(1)选其中一人为负责人,共有多少种不同的选法。
(2)每组选一名组长,共有多少种不同的选法4
评述:本例指出正确应用两个计数原理。
引例2
(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?
(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?
评述:本例指出排列和组合的区别。
求解排列组合应用题的困难主要有三个因素的影响:
1、限制条件。2、背景变化。3、数学认知结构
排列组合应用题可以归结为四种类型:
第一个专题排队问题
重点解决:
1、如何确定元素和位置的关系
元素及其所占的位置,这是排列组合问题中的两个基本要素。以元素为主,分析各种可能性,称为“元素分析法”;以位置为主,分析各种可能性,称为“位置分析法”。
例:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?
分析:这可以说是一道较简单的排列组合的题目了,但为什么有的同学能做出正确的答案(种),而有的同学则做出容易错误的答案(种),而他们又错在哪里呢?应该是错在“元素”与“位置”上了!
法一:元素分析法(以信为主)
第一步:投第一封信,有4种不同的投法;
第二步:接着投第二封信,亦有4种不同的投法;
第三步:最后投第三封信,仍然有4种不同的投法。
因此,投信的方法共有:(种)。
法二:位置分析法(以信箱为主)
第一类:四个信箱中的某一个信箱有3封信,有投信方法(种);
第二类:四个信箱中的某一个信箱有2封信,另外的某一个信箱有1封信,有投信方法种。
第三类:四个信箱中的某三个信箱各有1封信,有投信方法(种)。
因此,投信的方法共有:64(种)
小结:以上两种方法的本质还是“信”与“信箱”的对应问题。
2、如何处理特殊条件——特殊条件优先考虑。
例:7位同学站成一排,按下列要求各有多少种不同的排法;
甲站某一固定位置;②甲站在中间,乙与甲相邻;③甲、乙相邻;④甲、乙两人不能相邻;⑤甲、乙、丙三人相邻;⑥甲、乙两人不站在排头和排尾;⑦甲、乙、丙三人中任何两人都不相邻;⑧甲、乙两人必须相邻,且丙不站在排头和排尾。
第二个专题排列、组合交叉问题
重点解决:
1、先选元素,后排序。
例:3个大人和2个小孩要过河,现有3条船,分别能载3个、2个和1个人,但这5个人要一次过去,且小孩要有大人陪着,问有多少种过河的方法?
分析:设1号船载3人,2号船载2人,3号船载2人,小孩显然不能进第3号船,也不能二个同时进第2号船。
法一:从“小孩”入手。
第一类:2个小孩同时进第1号船,此时必须要有大人陪着另外
2个大人同时进第2号船或分别进第2、3号船,先选3个大人之一进1号船,
有(种)过河方法
第二类:2个小孩分别进第1、2号船,此时第2号船上的小孩必须要有大人陪着,另外
2个大人同时进第1号船或分别进第1、3号船,有过河方法
(种)。
因此,过河的方法共有:(种)。
法二:从“船”入手
第一类:第1号船空一个位,此时3条船的载人数分别为2、2、1,故2个小孩只能分
别进第1、2号船,有过河方法(种);
第二类:第2号船空一个位,此时3条船的载人数分别为3、1、1,故2个小孩只能同时进第1号船,有过河方法(种);
第三类:第3号船空一个位,此时3条船的载人数分别为3、2、0,故2个小孩同时进第1号船或分别进第1、2号船,有过河方法(种)。因此,过河的方法共有:(种)。
2、怎样界定是排列还是组合
例:①身高不等的7名同学排成一排,要求中间的高,从中间看两边,一个比一个矮,这样的排法有多少种?
②身高不等的7名同学排成一排,要求中间的高,两边次高,再两边次高,如此下去,这样的排法共有有多少种?
答:①种②=8种
本来①是组合题,与顺序无关,但有些学生不加分析,看到排队就联想排列,这是一个误区。至于②也不全是排列问题,只是人自然有高低,按人的高低顺次放两边就是了。
又例:7名同学排成一排,甲、乙、丙这三人的顺序定,则不同排法有多少种?
分析,三人的顺序定,实质是从7个位置中选出三个位置,然后按规定的顺序放置这三人,其余4人在4个位置上全排列。故有排法=840种。
3、枚举法
三人互相传球,由甲开始传球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有
(A)6种(B)8种(C)0种(D)12种
解:(枚举法)该题新颖,要在考试短时间内迅速获得答案,考虑互传次数不多,所得选择的答案数字也不大,只要按题意一一列举即可。
第三个专题分堆问题
重点解决:
1、均匀分堆和非均匀分堆
关于这个问题,课本P146练习10如此出现:8个篮球队有2个强队,先任意将这8各队分成两个组,(每组4个队)进行比赛,这两个强队被分成在一个小组的概率是多少?
由于课本后面出现这样的练习题,所以前面应对这些问题有所分析,尤其为什么均匀分堆有出现重复?应举例说明。
例:有六编号不同的小球,
①分成3堆,每堆两个
②分成3堆,一堆一个,一堆两个,一堆三个
③分成3堆,一堆一个,一堆一个,一堆四个
在①、②、③的条件下,再分别给三个小朋友玩,每人一堆,有多少种分法?
分析:①、②、③都是分堆,其中①是三个均匀分堆,有3!重复,③是两个均匀分堆,有2!重复,如此类推。②是非均匀分堆,不可能出现重复。在教学中应用数字表示球,通过列举法说明重复的可能,以及避免重复。
例:有六编号不同的小球,
①分成3堆,每堆两个
②分成3堆,一堆一个,一堆两个,一堆三个
③分成3堆,一堆一个,一堆一个,一堆四个
在①、②、③的条件下,再分别给三个小朋友玩,每人一堆,有多少种分法?
分析:①、②、③都是分堆,其中①是三个均匀分堆,有3!重复,③是两个均匀分堆,有2!重复,如此类推。②是非均匀分堆,不可能出现重复。在教学中应用数字表示球,通
过列举法说明重复的可能,以及避免重复。
答案:①②③④再乘以
2、为什么有重复,怎样避免重复
例:从4名男生、5名女生中任选3人参加学代会,至少男生、女生各一名的不同选法有多少种?
有些学生这样想:先从4人中选一人,再从5人中选一人,最后在剩下的7人中选一人,结果是结果是错误的。因为后面的7人与前面已选的人可能出现重
复,正确的答案是。
又例:有4个唱歌节目,4个舞蹈节目,2个小品排成一个节目单,但舞蹈和小品要相隔,不同的编排有多少种方法?
有些学生这样想,先定位4个唱歌,有5个位插入小品两个位,此时有7个位再插入4个舞蹈,故的表达式是。
其实,这里又出现了重复,正确的列式是
第四个专题直接法和间接法的区别及运用
重点解决:
1、选择集合的元素有交集问题;
例:七人并坐一排,要求甲不坐首位,乙不坐末位,共有几种不同的坐法?
法一:直接法
第一类:甲在第2—6号位中选一而坐,接着乙在第1—6位中余下的5个位中择一而坐,剩下的任意安排(种);
第二类:甲在第7号坐,剩下的任意安排,有坐法数(种)。
因此,不同的坐法数共有(种)。
法二:间接法
七人并坐,共有坐法数(种)。甲坐首位,有种方法;乙坐末位,亦有种方法。甲坐首位、乙坐末位都不符合题目要求,所以应该从扣除,但在扣除的过程中,甲坐首位且乙坐末位的情况被扣除了2次,因此还须补回一个。因此,不同的坐法数有(种)
2、选择元素中有至少、至多等问题。
在100件产品中,有98件合格品,2件次品,从100见产品中任意抽取3件,(1)至少有一件是次品的抽法有多少种?(2)至多有一件次品的抽法有多少种?
答:(1)解法1:
解法2:
(2)
以上的处理,主要有如下几个好处:
①教学比较自然、流畅,容易对近似概念进行比较,找到其相同点和不同点,更深刻的从外延到内涵掌握概念及其数学意义。
②把相关概念弄清楚后,能给学生有足够的工具,使学生解决应用题时不在被工具而困扰,形成良好知识结构,解决问题的思路容易畅通
③重点突出,学生就比较容易把每一个难点和重点给予突破,减轻学生的负担又能实现学生的学习落到实处。
④在提高教学质量的前提下,又能提高效率。
数学广角是义务教育课程标准实验教科书二年级上册开始新增设的一个单元,是新教材在向学生渗透数学思想方法方面做出的新尝试。本课内容重在向学生渗透简单的排列组合的数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。排列组合的思想方法不仅应用广泛,而且是高年级学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。
本课内容是学生在小学阶段初次接触有关排列组合的知识,但是在日常生活中,有很多事情是用排列组合来解决的,如:衣服的搭配、路线选择等等,作为二年级的学生,已经有了一定的生活经验,因此在学习中安排生动有趣的活动帮助学生感知排列组合的知识。
教必有法而教无定法,只有方法得当,才会有效。根据本课教学内容的特点和学生的思维特点,我采用情境教学法、操作发现法、直观演示的教学方法。为使学生能够有效地学习,主动的建构知识。我采用合作交流法、动手操作法、自主探究的学习方法,让学生在一系列活动中感知排列组合。旨在凸显三模小组化的教学模式,从根本上改变传统教育重教师 教轻学生学的做法,突出学生的主体地位,培养学生自主学习能力。让学生去自学、去尝试、去探究、去发现、去解决。在课堂教学中,实现了以下三种转变:创境引题变说出为引入;先学后教变被动为主动;展示反馈变学会为会学。
教学过程设计:
(一)创境引题变说出为引入
蓝猫是学生喜欢的形象,本课我设计了蓝猫带大家去数学广角游玩的情境并贯穿全课。
谈话导入:小朋友,今天蓝猫要带我们一起到数学广角参观,你们高兴吗?哎,快看,数学广角的大门是有密码锁的,要进去必须得到密码才行。这时有学生可能会发出疑问或者提出问题:密码是几位数啊?密码符合什么条件啊?。蓝猫告诉大家:密码是1和2组成的两位数,学生很快就找出了答案:12或21,但不能确定是哪个,同学们,密码是10-20之间,学生判断出是12。我对判断出是12的学生进行表扬和奖励,让他们一开始上课就获得了成功的体验。这样设计调动了学生的学习兴趣,营造了活跃的课堂气氛,又在破译密码的过程中,渗透了简单的排列知识,为新课的学习做了良好的铺垫。
(二)先学后教变被动为主动
1、小组合作学习探究用1、2、3能组成几个不同的两位数,感知排列知识。
首先出示导学案简洁明了,为学生合作学习指明了方向,让学生结合导学案先学。这时学生小组合作拿出数字卡片,在小组内摆一摆、写一写、说一说,并记录下结果。给学生一个自主学习的空间,教师在辅导过程中能够了解学生的学习情况,为后面的交流展示做好准备。而我则重点指导学生要边摆边说,培养学生动手操作、动口表达、动脑思考的有机结合。接着鼓励学生小组一起上台展示,在展示时,有的学生讲,有的学生写,其他成员补充,这样体现了小组合作的重要性。教师故意选择了三个不同方法的小组展示,根据学生的交流汇报板书三种情况:(1)固定排头的方法12、13、21、23、31、32;(2)固定排尾的方法21、31、12、32、13、23;(3)个位十位交换位置的方法12、21、13、31、23、32。通过对比交流,发现既不重复也不遗漏的应该是6个,我接着追问:怎样才能做到即不重复、又不遗漏的写出这6个数呢?这时学生各抒己见,说出自己的好办法,我对学生的方法加以肯定并表扬:你们的方法真好,我们只要按照一定的顺序去写,就不会重复和遗漏了,并将其概括为:有序列举,这是一次数学思想方法的渗透,也是本课教学的重点。为了突破出这个教学重点并让学生充分感受有序列举的好处,我接着让学生观察这三种方法,说一说你喜欢哪一种?为什么?通过学生的叙述加深了学生对有序列举的感受。
让学生在交流中互相学习,思维碰撞产生新的火花,发散学生思维,效果不同凡响。使学生了解不同的方法,把不同的排列进行对比,克服学生思维定式,有利于学生从多角度理解排列知识,从而深刻理解排列的内涵,揭示排列的本质,使学生对数字的排列有了一个更高层次的认识。让学生当小老师上台展示交流,既可以锻炼这部分学生的胆量,又借学生之口来讲解老师要讲的内容,台下学生听得更认真,同时能让老师站在学生的角度观察思考,进而进行查漏补缺,释疑解惑,重点讲解,难点辨析,这样老师教的轻松,学生学得扎实。而且因为学生自已整理出来的知识结构,往往是最贴切学生的认知能力的,从中也最能暴露学生知识的盲点,有助于教师的矫正。这样的教学利于学生主体性地发挥,把学习的主动权还给学生,让学生在平等交流中体验互助合作的神奇,完善健康的人格个性。在这一环节领袖儿童脱颖而出。
2、小组合作握手游戏,感知组合知识。
承上一活动,门终于开了同学互相握手表示祝贺,从而引出:三个人之间可以握几次手呢?先让学生猜猜看?经过上面的学习,学生可能会猜是6次,也有的可能猜是3次,到底是几次呢?学生亲自握手试一试!此时我也走下讲台参与到学生的活动中,并重点指导有顺序的握手。小组活动结束后,请一小组上台展示握手情况,在巩固了有序思考问题的同时,引导学生用图示来表示握手的方法。这样设计,既能使学生在握手的游戏中体验知识的形成过程,又可以作为课中活动,使学生在此放松,达到一举两得的效果。另外,用图示来抽象形象的表示握手的方法,这又是一次数学思想方法的渗透。
3、对比发现,区分排列组合。
在上一个环节中,学生通过握手游戏,对组合的规律进行了本质的探究,在活动中已经感受到了排列与组合的不同。我以一个问题引入同样是3,为什么3个数字可以摆6个两位数,而3个人却只能握3次手?这个问题是本课教学的难点,我采取的是在操作活动中对比感知排列与组合的不同,在同伴的交流和启发中发现,两个数字交换位置变成了两个数,而握手时两个人即使换位置还是这两个人,所以就是一次。由于数学知识很多时候都显得枯燥无味,在这儿我利用儿歌朗朗上口的特点,学生更容易记住,编了一个温馨提示。那么我也及时的做出小结并揭题:前面摆卡片的情况是与顺序有关的叫排列,而握手的情况是与顺序没有关系的叫组合。从而突破了教学的难点。
(三)展示反馈变学会为会学
根据低年级学生的心理特征和本节课的教学重难点,我在练习设计时注重了目标明确、重点突出、形式多样、有趣味性、联系生活,从而体会生活中处处有数学。仍然围绕蓝猫问题为情境,以搭配、起名、走路、号码为载体,以训练为主线,以培养领袖儿童各种能力为目的,给学生搭建了一个展示反馈的平台,让所学的排列组合知识在这里得到应用,让学生的参与热情在这里得到高涨,让整节课在这里得到升华。
1、搭配问题
蓝猫想请大家为它搭配一套漂亮的衣服,用一件上装搭配一件下装能搭配几套呢?将衣服图片贴在黑板上,学生感觉很新鲜,积极参与,学生说的同时师连线其实也在渗透一种作图方法,并且用两种颜色的笔区分开来,潜移默化的让学生感受固定上衣的方法,老师并不满足现状,而是趁热打铁追问到:除此之外,还有哪些方法?进而启发得出还有固定下装的方法。这种发散问题主要是培养学生从多角度、多方面、多领域去认识客观事物。
2、起名问题
蓝猫请大家用孙、行、者这三个字给孙悟空取名字,看能给它取多少个名字?我让三个学生戴生字头饰排队,学生顿时兴趣高涨,在排队游戏中巩固排列知识。
3、走路问题
蓝猫从学校出发经过数学广角回到家有几种不同的走法?你会选哪条?这也是一个组合问题,但是培养了学生的一种生活经验直路最近。
4、号码问题
蓝猫的电话号码后三位是1、8、9组成的,可能是什么?这是一个贴近生活的排列问题,也是一个拔高题,与三年级的知识衔接在一起。
另外,我在板书设计时,力求体现知识性、简洁性、艺术性,使学生一目了然。
小学四年级奥数下册教案:排列组合的综合应用
小学四年级奥数下册教案:排列组合的综合应用 原文来源:小学奥数辅导网 www.aoshufudao.com 排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有6种不同选法.) 当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握. 例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法? 分析 首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理. 解: 符合要求的选法可分三类: 不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有 5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有 5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的. 因此,依加法原理,选取两幅不同类型的画布置教室的选法有 15+10+ 6=31种. 注 运用两个基本原理时要注意: ①抓住两个基本原理的`区别,千万不能混. 不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数. 不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数. ②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分. ③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的. 例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列. 分析 要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式解: 由此可知,排列共有如下八种: 正正正、正正反、正反正、正反反、 反正正、反正反、反反正、反反反. 例3 用0~9这十个数字可组成多少个无重复数字的四位数. 分析 此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法. 解法1:分析 某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置. 解: 分两步完成: 第一步:从1~9这九个数中任选一个占据千位,有9种方法. 第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法. 由乘法原理,共有满足条件的四位数9×9×8×7=4536个. 答:可组成4536个无重复数字的四位数. 解法2:分析 对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一. 解: 组成的四位数分为两类: 第一类:不含0的四位数有9×8×7×6=3024个. 第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个. ∴由加法原理,共有满足条件的四位数 3024+1512=4536个. 解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列. 解: 从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个) ∴共有满足条件的四位数 10×9×8×7-9×8×7 =9×8×7×(10-1) =4536个. 注 用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏. 更多《……届高三数学一轮复习精品教案――排列组合二项式定理概率统计
2011届高三数学一轮复习精品教案DD排列组合二项式定理概率统计(附高考预测) 二、重点知识回顾 1.排列与组合 ⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关. ⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题. ⑶ 排列与组合的主要公式 ①排列数公式: (m≤n) A =n! =n(nD1)(nD2) …21. ②组合数公式: (m≤n). ③组合数性质:① (m≤n). ② ③ 2.二项式定理 ⑴ 二项式定理 (a +b)n =C an +C an-1b+…+C an-rbr +…+C bn,其中各项系数就是组合数C ,展开式共有n+1项,第r+1项是Tr+1 =C an-rbr. ⑵ 二项展开式的通项公式 二项展开式的第r+1项Tr+1=C an-rbr(r=0,1,…n)叫做二项展开式的通项公式。 ⑶ 二项式系数的性质 ①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即C = C (r=0,1,2,…,n). ②若n是偶数,则中间项(第 项)的二项公式系数最大,其值为C ;若n是奇数,则中间两项(第 项和第 项)的二项式系数相等,并且最大,其值为C = C . ③所有二项式系数和等于2n,即C +C +C +…+C =2n. ④奇数项的二项式系数和等于偶数项的二项式系数和, 即C +C +…=C +C +…=2nD1. 3.概率 (1)事件与基本事件:基本事件:试验中不能再分的最简单的“单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的;试验中的任意事件都可以用基本事件或其和的形式来表示. (2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件的概率是一个常数,不随具体的实验次数的变化而变化. (3)互斥事件与对立事件: 事件 定义 集合角度理解 关系 互斥事件 事件 与 不可能同时发生 两事件交集为空 事件 与 对立,则 与 必为互斥事件; 事件 与 互斥,但不一是对立事件 对立事件 事件 与 不可能同时发生,且必有一个发生 两事件互补 (4)古典概型与几何概型: 古典概型:具有“等可能发生的有限个基本事件”的概率模型. 几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例. 两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个. (5)古典概型与几何概型的概率计算公式: 古典概型的概率计算公式: . 几何概型的概率计算公式: . 两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同. (6)概率基本性质与公式 ①事件 的.概率 的范围为: . ②互斥事件 与 的概率加法公式: . ③对立事件 与 的概率加法公式: . (7) 如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是pn(k) = C pk(1Dp)nDk. 实际上,它就是二项式[(1Dp)+p]n的展开式的第k+1项. (8)独立重复试验与二项分布 ①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立; ②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为 .此时称随机变量 服从二项分布,记作 ,并称 为成功概率. 4、统计 (1)三种抽样方法 ①简单随机抽样 简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取. 简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性. 实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性. ②系统抽样 系统抽样适用于总体中的个体数较多的情况. 系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样. 系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔 ,当 (N为总体中的个体数,n为样本容量)是整数时, ;当 不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,这时 ;第三步,在第一段用简单随机抽样确定起始个体编号 ,再按事先确定的规则抽取样本.通常是将 加上间隔k得到第2个编号 ,将 加上k,得到第3个编号 ,这样继续下去,直到获取整个样本. ③分层抽样 当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样. 分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本. (2)用样本估计总体 样本分布反映了样本在各个范围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确. ①用样本频率分布估计总体频率分布时,通常要对给定一组数据进行列表、作图处理.作频率分布表与频率分布直方图时要注意方法步骤.画样本频率分布直方图的步骤:求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图. ②茎叶图刻画数据有两个优点:一是所有的信息都可以从图中得到;二是茎叶图便于记录和表示,但数据位数较多时不够方便. ③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程度,其计算公式为 . 有时也用标准差的平方―――方差来代替标准差,两者实质上是一样的. (3)两个变量之间的关系 变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解.分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系:如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,其对应的方程叫做回归直线方程.在本节要经常与数据打交道,计算量大,因此同学们要学会应用科学计算器. (4)求回归直线方程的步骤: 第一步:先把数据制成表,从表中计算出 ; 第二步:计算回归系数的a,b,公式为第三步:写出回归直线方程 . (4)独立性检验 ① 列联表:列出的两个分类变量 和 ,它们的取值分别为 和 的样本频数表称为 列联表1 分类 1 2 总计 1 2 总计 构造随机变量 (其中 ) 得到 的观察值 常与以下几个临界值加以比较: 如果 ,就有 的把握因为两分类变量 和 是有关系; 如果 就有 的把握因为两分类变量 和 是有关系; 如果 就有 的把握因为两分类变量 和 是有关系; 如果低于 ,就认为没有充分的证据说明变量 和 是有关系. ②三维柱形图:如果列联表1的三维柱形图如下图 由各小柱形表示的频数可见,对角线上的频数的积的差的绝对值 较大,说明两分类变量 和 是有关的,否则的话是无关的. 重点:一方面考察对角线频数之差,更重要的一方面是提供了构造随机变量进行独立性检验的思路方法。 ③二维条形图(相应于上面的三维柱形图而画) 由深、浅染色的高可见两种情况下所占比例,由数据可知 要比 小得多,由于差距较大,因此,说明两分类变量 和 有关系的可能性较大,两个比值相差越大两分类变量 和 有关的可能性也越的.否则是无关系的. 重点:通过图形以及所占比例直观地粗略地观察是否有关,更重要的一方面是提供了构造随机变量进行独立性检验的思想方法。 ④等高条形图(相应于上面的条形图而画) 由深、浅染色的高可见两种情况下的百分比;另一方面,数据 要比 小得多,因此,说明两分类变量 和 有关系的可能性较大, 否则是无关系的. 重点:直观地看出在两类分类变量频数相等的情况下,各部分所占的比例情况,是在图2的基础上换一个角度来理解。 三、考点剖析 考点一:排列组合 【方法解读】 1、解教学内容
人教版《义务教育课程标准实验教科书数学》三年级上册P112例1、例2
教学准备:教师用多媒体课件一套、每组学生准备一套衣服学具。
教学目标与策略选择:
排列与组合不仅是组合数学的最初步知识和学习概率统计的基础,而且也是日常生活中应用比较广泛的数学知识。在二年级上册教材中,学生已经接触了一点排列与组合知识,学生通过观察、猜测以及实验的方法可以找出最简单的事物的排列数和组合数。本册教材就是在学生已有知识和经验的基础上,继续让学生通过观察、猜测、实验等活动找出事物的排列数和组合数。为落实新课程的理念,根据教材和学生实际,我组织许多与教学内容紧密相连的活动,运用小组共同合作、探究的学习方式,让学生互相交流,互相沟通,通过观察、猜测,实验等活动,向学生渗透数学思想,并初步培养学生有顺序地、全面地思考问题的意识。为此,将采取以下教学策略:1、创设生活情境,激发学习兴趣。2、动手实践体验,探究解决问题。3、关注合作交流,引发数学思考
根据以上分析以及课标要求,我拟订这节课的教学目标为:
1、 使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。
2、 培养学生有顺序地、全面地思考问题的意识。
3、 使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的问题。
4、 使学生在数学生活动中养成与人合作的良好习惯,并初步培养学生表达解决问题的大致过程和结果。
教学流程设计及意图:
教学流程 设计意图
一、导入新课
今天小丸子要带我们去一个很有趣的地方!出示:数学广角。
二、情境一服饰搭配
1、探究:既然参加活动,就要穿得漂亮些。衣柜里有这样几件衣服,小丸子一共有几种不同的穿法呢?
(1)观察并同桌讨论
(2)小组合作,动手实践
老师为你们准备几种不同的搭配方法,每人选择一种搭配方法试试看。搭配的时候要注意怎么搭配才能不重复不遗漏。搭配好的小朋友可以和你组里的小朋友说说你是怎样想的。看看你们组有几种不同的方法。等下把你们认为组里面最棒的方法推荐给同学。
2、归纳、演示:
搭配方法一:用学具摆一摆。先确定上装,再确定上装。或先确定下装,再确定上装。
搭配方法二:连线。
搭配方法三:列式
搭配方法四:用编号
[备选]若学生提出其他搭配方法,只要有道理都给予肯定。
3、小结:你们真能干,想出了这么多的办法,有的把所有的穿法都表示出来了,有的用画画的方法,有的用连线的方法,还有的用编号的方法,还有一些特别聪明的同学一下子算出了有六种穿法。而且一个都没有漏掉,也没有重复。那你最喜欢哪一种方法?为什么?怎么样才能做到不重复,也不漏掉?
不管是用什么方法只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
三、情境2--早餐搭配
1、出发前,小丸子的妈妈还为她准备了丰富的早餐(出示练习题中的早餐图)
2、合理的早餐应该是一种饮料配一种点心,看看这儿共有几种不同的吃法?
3、学生独立思考
4、展示学生的方法,同时让学生说说自己的搭配方法。哪种方法更好?
5、如果加上一杯果汁,一共有几种搭配方法呢?同桌互相说说想法。
6、小结:生活中看似平常、简单的事情,都藏着数学知识,可见数学知识和生活的关系密不可分。学好数学知识,就可以解决生活中的许多问题!像这样的数学问题需要按一定的顺序思考,找出所有的搭配方法。
四、情境三--游玩数字乐园
1、探究:猜数游戏
这个数是由937字组成的3位数,有几种可能性?
你能不能像刚才穿衣服,吃早餐那样按一定的顺序,不重复、不遗漏地写出这些三位数
3、独立思考
再四人小组交流,互相学习。
4、师生归纳:
同学们都能有条有理地思考,不错!介绍一下,你们是怎样想的?
这样想有什么好处吗?
5、小结:这三个数字可以有条有理、按一定顺序地进行排列。可以先定百位,再写十位和个位,这样写就不会重复、不会遗漏。生活中有许多像这样的“排列组合”问题。
6、确定范围:由9、3、7组成的最大三位数
五、情境四--活动乐园
小丸子要从儿童乐园经百鸟园到猴山(电脑出示练习题)在媒体上出示编号①②③④⑤有几种线路可以选择
1、 独立思考,指名回答。
你能简单地画一画吗?
2、 师:是不是这6条路都要选呢?如果是你,你选哪一条?为什么?
师:对,在生活中,可以根据实际情况,选择一条最佳路线。
六、情境五--游戏乐园
(一)跑道问题
小羊小猴跟小虎要进行跑步比赛,一人一个跑道的话有几种不同的站法呢?
(二)词语搭配
“小”大搭配河,树,山,船你有几种搭配方法
哪种方法好?
同学们能从不同的角度想出不同的方法,并且能从中选出最佳方案。真了不起!
四、情感沟通,全课总结:
1、 本次数学广角,你玩得开心吗?你最感兴趣的是什么?从这里你学到了什么吗?
2、 生活中经常会遇到,是不是所有的方案都要选择呢?怎么办?
通过“猜想--讨论--实践--汇报--比较--归纳”等环节,充分展开探索过程。学生可以有各自的表达方法,包括数学化和非数学化的表达方式,从而体现解决问题的多样化和个性化。
通过进一步的活动,给学生一个比较宽泛的问题,给学生探索的空间,初步培养学生有顺序、全面地思考问题,体验、经历数学活动的过程。
选择最佳方案,联系了生活实际,体现数学的应用价值。
与语文学科结合,数学的搭配理念也可以拓展到别的学科。
教学片段实录:
小组对衣服的搭配方法交流后归纳、演示:
师:哪一组愿意把你们组的想法和大家一起分享?
生:6种。
师:你能说说理由吗?
生:因为红色裤子跟衣服连起来,再把其他连起来。
师:你能上来连一连吗?(生上来板演)你能向大家解释一下为什么这么连吗?
生:这样按顺序连不会漏掉
师:这个方法简单明了,确实是个好方法。谁还有不一样的方法?
生:写序号,编上1-5号,1号跟3号搭配,1号跟4号,1号跟5号,2号跟3号,2号跟4号,2号跟5号。
师:这个方法很方便,即使我们没有图片也能把他表示出来。还有没有其他方法?
生:摆一摆
(生板演)
师:请你仔细观察,他刚才是先确定什么,再确定什么的?
生:他是先用兰色的衣服跟裤子配,再用黄色的衣服跟裤子配。
师:也就是先确定上装再确定下装。如果先确定下装,你会不会摆呢?
(生板演)
师:他现在是先确定?
生:下装,再确定上装
师:不管是上装不动还是下装不动,这样的搭配方法都非常有规律。
生:我是算出来的,一件衣服可以跟三件衣服搭配,另外一件衣服也跟三件裤子搭配所以3*2
师:他是怎么算的,你们有没有听明白。
生:一件衣服可以配三件下装,两件就是6种。
师小结:你们真能干,想出了这么多的办法,有的把所有的穿法都表示出来了,有的用画画的方法,有的用连线的方法,还有的用编号的方法,还有一些特别聪明的同学一下子算出了有六种穿法。而且一个都没有漏掉,也没有重复。那你最喜欢哪一种方法?为什么?怎么样才能做到不重复,也不漏掉?不管是用什么方法只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
教学反思:
排列与组合这一数学思想将一直影响到学生的后继学习,在高中数学的学习中,学生将全面学习相关知识,组合知识在生活生产中应用很广泛,由于其思维方法的新颖性与独特性,学习时要遵循“不重不漏”的原则,它又是培养学生思维能力的不可多得的好素材。出于这样的考虑本课教学中我在改变学生学习方式方面做了些尝试,同时训练学生的数学思维。
1、创设生活情境,激发学习兴趣。
在教学《排列组合》时,我没有按知识结构为主线,而是围绕学生的学习情感与体验来组织教学。创设“游数学广角”的故事情境,穿衣服--吃早点--游数字乐园(数字搭配)--游活动乐园(线路选择)--游游戏乐园(跑道问题,词语搭配)一系列的情境。内容贴近学生生活实际,使学生体会数学的应用价值。学生乐意学,主动学,不仅获得了知识,更获得了积极的情感体验。
2、动手实践体验,探究解决问题。
问题空间有多大,探究的空间就有多大。在本节课一开始,我就放手让学生自己去去探究衣服的几种不同的搭配方法,通过“猜想--讨论--实践--汇报--比较--归纳”等环节,充分展开探究过程。
3、关注合作交流,引发数学思考
本节课我运用了分组合作,共同探究的学习模式,让学生互相交流,互相沟通。比如9、3、7这三个数字可以组合成多少个三位数,这个问题不是学生一眼就能看出的,一下子就能想明白的,它需要认真观察、思考。因此安排了学生独立思考、独立完成、小组合作交流选择最佳方案再汇报。目的是通过给学生一个比较宽泛的问题,给学生自己动脑思考的空间,再通过小组交流,让所有的学生获得表现自我的机会,也可以实现信息在群体间的多向交流。
同时我也思考:在这节课中,很多同学表现非常出色,对这部分同学该怎么处理?在孩子起点高时是否可以让学生通过这节课的学习能够进行整合分类?即是否能够让学生初步感知排列数与组合数的区别呢?
执教:潘亚曼
设计:潘亚曼 指导:曾秀真
潘亚曼
温州市黄龙第一小学
325000
13858874820
★ 排列组合教后反思
★ 教案
★ 风筝 教案
★ 《数一数》教案