考研数学:用简单的知识解决复杂问题

| 收藏本文 下载本文 作者:jiandanai1985

下面是小编整理的考研数学:用简单的知识解决复杂问题(共含9篇),欢迎大家阅读分享借鉴,欢迎大家分享。同时,但愿您也能像本文投稿人“jiandanai1985”一样,积极向本站投稿分享好文章。

考研数学:用简单的知识解决复杂问题

篇1:考研数学:用简单的知识解决复杂问题

考研数学:用简单的知识解决复杂问题

每年考研数学考试都不乏满分试卷和高分试卷,对于数学基础相对薄弱的考生来说,高分似乎是可望而不可即的事情,但其实事情并没有大家想象中的那么困难。考研数学一来依靠基础,二来依靠方法,大家要学会利用最简单的知识去解决最复杂的问题,才能在短时间内提升自己的水平。

教材为本,扎实基础

考研数学考察的侧重点还是基础,包括基本定理、基本概念的理解,基本方法的运用。考试中考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,解题不得要领。所以在考研数学复习初,一定要狠抓基础,扎实基础,不可来半点虚的,不可有半点投机取巧。提醒考生,大家在复习时要把精力放在课本上,对一些基础知识进行记忆和理解。如果要做练习,要以教材课后练习为主。

紧扣考纲,注重练习

考研数学命题范围有明确的规定,所以考生在复习之初,可以把考纲作为复习的指导性工具。详细了解考试的基本要求,题型、类别和难度特点等,并准确定位。大家对考纲中每个知识点进行了解后,要把头脑中的知识联系起来,因为考研数学很少单独考某个知识点,而是几个知识点结合起来考察考生的分析能力和综合解题能力。

抛弃题海,勿缺勿滥

考研数学的特点,要求考生进行大量联系,但并不赞成考生机械的题海战术。在考研练习方面,考生一定要从题海战术跳出,进行技术性的'练习。在练习的过程中,考生要不断反省,对的题要思考,错的题要总结,争取做到做一道题会一类题,练就举一反三的本领。

合理休息,反对押题。

考研复习过程中,每个考生的学习量都很大,有的考生把自己的休息时间都“借”给了复习。殊不知量的积累会导致质变,长时间超负荷的学习,考生很容易崩溃,所以在复习过程中,考生一定要调整好休息、学习、娱乐之间的关系。在考研考试来临之际,考生都会把希望寄托于押题上,提醒这很不科学,而且风险性很大,所以即便到了考试的最后一刻,考生也要按照自己的步伐进行复习,千万不要因外界的变动影响到复习规划。

篇2:考研数学三大纲相关知识

一.试题结构

考试形式

1、试卷满分及考试时间

试卷满分为150分,考试时间为180分钟.

2、答题方式

答题方式为闭卷、笔试.

试卷内容结构

微积分 56%

线性代数 22%

概率论与数理统计 22%

试卷题型结构

单项选择题选题8小题,每题4分,共32分

填空题 6小题,每题4分,共24分

解答题(包括证明题) 9小题,共94分

二.考试内容

微积分

函数、极限、连续

考试要求

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

2.了解函数的有界性.单调性.周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.了解数列极限和函数极限(包括左极限与右极限)的概念.

6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.

7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.

8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.

一元函数微分学

考试要求

1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.

2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.

3.了解高阶导数的概念,会求简单函数的高阶导数.

4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.

5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.

6.会用洛必达法则求极限.

7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.

8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.

9.会描述简单函数的图形.

一元函数积分学

考试要求

1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.

2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.

3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.

4.了解反常积分的概念,会计算反常积分.

多元函数微积分学

考试要求

1.了解多元函数的概念,了解二元函数的几何意义.

2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.

3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.

4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.

5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.

无穷级数

考试要求

1.了解级数的收敛与发散.收敛级数的和的概念.

2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.

3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.

4.会求幂级数的收敛半径、收敛区间及收敛域.

5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.

6.了解 e的x次方, sin x, cos x, ln(1+x)及(1+x)的a 次方的麦克劳林(Maclaurin)展开式.

常微分方程与差分方程

考试要求

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.

2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.

3.会解二阶常系数齐次线性微分方程.

4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.

5.了解差分与差分方程及其通解与特解等概念.

6.了解一阶常系数线性差分方程的求解方法.

7.会用微分方程求解简单的经济应用问题.

线性代数

行列式

考试内容:行列式的概念和基本性质 行列式按行(列)展开定理

考试要求

1.了解行列式的概念,掌握行列式的性质.

2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

矩阵

考试要求

1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.

2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.

5.了解分块矩阵的概念,掌握分块矩阵的运算法则.

向量

考试要求

1.了解向量的概念,掌握向量的加法和数乘运算法则.

2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.

3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.

4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.

5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

线性方程组

考试要求

1.会用克莱姆法则解线性方程组.

2.掌握非齐次线性方程组有解和无解的判定方法.

3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.

4.理解非齐次线性方程组解的结构及通解的概念.

5.掌握用初等行变换求解线性方程组的方法.

矩阵的特征值和特征向量

考试要求

1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.

2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.

3.掌握实对称矩阵的特征值和特征向量的性质.

二次型

考试要求

1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.

2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.

3.理解正定二次型.正定矩阵的概念,并掌握其判别法.

概率统计

随机事件和概率

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.

2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.

3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

随机变量及其分布

考试要求

1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.

3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为

5.会求随机变量函数的分布.

多维随机变量及其分布

考试要求

1.理解多维随机变量的分布函数的概念和基本性质.

2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.

3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.

4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.

5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.

随机变量的数字特征

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.

2.会求随机变量函数的数学期望.

3.了解切比雪夫不等式.

大数定律和中心极限定理

考试要求

1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.

数理统计的基本概念

考试要求

1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为

2.了解产生 变量、变量和 变量的典型模式;了解标准正态分布、t分布、F分布和分布得上侧 分位数,会查相应的数值表.

3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.

4.了解经验分布函数的概念和性质.

参数估计

考试内容:点估计的概念 估计量与估计值 矩估计法 最大似然估计法

考试要求

1.了解参数的点估计、估计量与估计值的概念.

2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.

篇3:考研数学重点知识梳理

考研数学重点知识梳理

》20的考研序幕已然拉开,很多同学开始了不分昼夜的复习。对于公共课数学来说,基础阶段大家的主要任务是全面整理基本概念、定理、公式,初步总结复习重点,把握命题基本题型,为强化期的复习奠定基础。为了帮助提高大家高效复习,考研专家们为大家梳理了考研数学的难重点,希望大家不要盲目复习。

一、高等数学

高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。具体说来,大家需要重点掌握的知识点有几以下几点:

1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法

由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。

二、概率论与数理统计

在数学的三门科目中,同时它还是考研数学中的难点,考生得分率普遍较低。与微积分和线性代数不同的是,概率论与数理统计并不强调解题方法,也很少涉及解题技巧,而非常强调对基本概念、定理、公式的深入理解。其主要知识点有以下几点:

1.随机事件和概率:包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的独立性);全概公式与贝叶斯公式;伯努利概型。

2.随机变量及其概率分布:包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机变量概率密度及其性质;随机变量分布函数及其性质;常见分布;随机变量函数的分布。

3.二维随机变量及其概率分布:包括多维随机变量的概念及分类;二维离散型随机变量联合概率分布及其性质;二维连续型随机变量联合概率密度及其性质;二维随机变量联合分布函数及其性质;二维随机变量的边缘分布和条件分布;随机变量的独立性;两个随机变量的简单函数的分布。

4.随机变量的'数字特征:随机变量的数字期望的概念与性质;随机变量的方差的概念与性质;常见分布的数字期望与方差;随机变量矩、协方差和相关系数。

5.大数定律和中心极限定理,以及切比雪夫不等式。

6.数理统计与参数估计

三、线性代数

一般而言,在数学三个科目中,很多同学会认为线性代数比较简单。事实上,线性代数的内容纵横交错,环环相扣,知识点之间相互渗透很深,因此不仅出题角度多,而且解题方法也是灵活多变,需要在夯实基础的前提下大量练习,归纳总结。线性代数的重要知识点主要有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化。

总之,基础阶段的复习最重要的是吃透基本概念,理清知识脉络。这个阶段的学习应该以课本为主,题目可以适量地做一些。做题的目的是为了巩固基本知识,不要为了做题而做题。一般来说,将课本上的课后题做三分之一到一半即可。这个阶段扎扎实实打好基础,再通过后阶段强化冲刺的不断巩固提升,就能在最终的考试中取得好成绩了。最后,祝大家复习顺利!

[InstallDir_ChannelDir]

篇4:《用数学解决幽灵堵车》阅读答案

《用数学解决幽灵堵车》阅读答案

每个月,你有多少时间浪费在堵车中?答案:难以计算。最让人沮丧的是那些表面上看似没有任何起因的堵塞:没有事故,没有停顿车辆,也没有封闭施工的车道,道路却会莫名其妙地突然出现堵塞,很长一段时间过后,车流又会毫无征兆的顺畅起来。

这种莫名奇妙的堵塞现象被交通专家称为“幽灵堵车”。在拥挤的公路上,很可能仅仅由于某个司机急刹车、突然变道或者超车,造成短暂的停顿,就会在这辆车的后方引发一连串的停顿——这条道路像撞上幽灵一样发生了堵车。哪怕第一辆车停下来后只需要2秒钟就能启动,可到最后一辆汽车启动时,所需的时间可能就要几十分钟了。研究显示,如果处于繁忙的高速公路上,那么一名新手司机的急刹车就可能引发一场“交通海啸”,受影响的路段可长达80公里。

其实,道路并没有真正被“堵”,只是产生了汽车行驶的时间差越大。由于第一辆车的刹车,后面所有的司机也必须刹车,后面所有的司机也必须刹车,一辆一辆车传递下去,带来的“波动效应”,就会导致大面积的公路交通整体减速。

此外,人们的反应千差万别,也是“幽灵堵车”不断扩张的原因。如果所有人都能做出正确的反应,那么几秒钟的停顿就很容易化解。但事实正好相反,越是堵车的时候,便越有人想钻空子,希望能插队往前,而这只能让已经堵塞的路况更为恶化。

麻省理工学院的数学家们试图通过数学模型分析,找到解决“幽灵堵车”的方法。他们发现,这种爆炸后所产生的爆震波,这种爆震波是一个可以自我持续的波形,不断向外扩展。而且在这种波形中还存在一个临界点,就像黑洞的“事件视界”一样。当发生“幽灵堵车”时,位于临界点内外的司机都无法得知对方区域的.情况,相应的他们也无法判断交通状况何时才能得到改善。

在掌握这些情况后,麻省理工学院的数学家团队试图利用流体力学方程来计算造成交通拥挤的变量,从而控制堵车蔓延的趋势。

同时,数学模型也表明,如果驾驶员降低车速并以固定的速度行驶而不是急停急驶,不但可以节省燃料,更有望消除“幽灵堵车”现象。例如在高速公路上,以80公里/小时的速度均速行驶,比以110/小时走走停停要好得多。在车辆众多的一般道路上亦是如此。

22、根据文意,请给“幽灵堵车”下一个定义。(2分)

23、不符合原文文意的一项是(2分)

A、因为交通条件的限制,我们每次出行时大部分时间都浪费在车路上。

B、第一辆车刹车,后面也必须刹车,从而带来连锁反应,车辆走走停停,导致大面积的公路交通整体减速。

C、人们的反应千差万别,虽然在极短的时间内就能解决的问题,往往也不能做出正确的判断。

D、如果我们降低车速并以固定的速度行驶,不但可以节省燃料,而且有可能避免“幽灵堵车”现象的发生。

24、文章第二段划线句子运用了哪些说明方法?有什么作用?(2分)

25、结合今年“双节”严重堵车的现象,你认为交通部门要制定哪些措施或在公路上设立哪些标语缓解堵车现象呢?(2分)

参考答案:

22、“幽灵堵车”是指在拥挤的公路上表面看来没有任何起因,却莫名其妙地突然出现交通堵塞的现象。

23、A

24、举例子、打比方、列数字;具体、准确、生动地说明了人为因素能给道路交通造成严重后果。

25、交通部门要制定措施,严禁让新手上高速和限制违规较多的驾驶员上高速公路;限制车速;在道路上增设电子牌,及时通告前方交通信息。标语如:请不要无故变道等。

篇5:考研数学科目重要知识盘点

考研数学科目重要知识盘点

以数学来说,每一门课程我们都提倡全面复习,但不是没有重点,眉毛胡子一把抓。每年的考试也是在重要知识点上考大题,在这些重点知识里,你是不是复习透彻了,比如极限,这是每年要考的东西,如何求数列的极限,如何求函数的极限,微分学和积分学,尤其是积分学里变上限积分,这是年年都会考到的内容,你是不是复习透彻了?只要出现与变限积分有关的题你就要会做。

而变限积分考得最多的问题就是变限积分的求导,而且在函数里如何求导。多元函数、复合函数的求导,求高阶偏导,这也是重点内容。

还有重积分的计算,尤其是二重积分的计算,每年都会考大题,这部分内容是不是复习透彻了?如何理解二重积分复习透彻,也就是我们看到一个二重积分的计算题就必须要想一想下面这几个特点:

第一,积分区域关于坐标轴的对称性以及轮换对称性,这部分考虑到没有。

第二,被积函数的奇偶性。

第三,被积函数的分段性考虑到没有。有几个表达式的问题,你会不会处理。

第四,这个题要不要做变量替换?

第五,按照常规思路,这个题应该是先对X积分,但如果这个积分不好做,你是不是应该考虑交换积分次序?如果一道二重积分的计算题这五点都想到了,那这题你就会做,统考这么多年,二重积分年年都会考,全部都掌握了,才能把重要内容复习好。

再就是无穷级数,也是考查的重点,主要是收敛性的判断,给你一个幂级数,如何把和函数求出来。

至于线性代数这门课程,我认为考试的重点主要是矩阵的运算,这是需要熟练掌握的,再就是向量的线性关系的判断,它是相关的,还是无关的?这是一个重点内容。还有线性方程组的判定,以及带了未知参数方程组的求解。另外就是方程组的同解,方程组的公共解。  再就是特征值、特征向量这地方,这个地方主要的重点题型是矩阵对角化的问题,是不是很熟练。再就是二次型的标准化,如何化成标准型。

再就是《概率统计》,这是《数学一》、《数学三》的考生要考的`。这里的重点内容一是如何计算概率的问题,再就是如何求分布,给你一个随机实验,如何把分布律或者联合分布、密度函数求出来,或者把一个随机变量函数、两个随机变量函数的分布求出来。求分布,这是第一个重点。第二就是求数学期望,这是广义的,实际上我们求方差、协方差,都属于求数学期望的范围,当然,严格来说,是求函数的数学期望,整个数字特征,只要把如何计算随机变量函数的数学期望,就把所有问题都解决了。所以,如何计算随机变量函数的数学期望是绝对的重点内容。

至于统计,有两个东西是重点:一是求统计量的数字特征,二是点估计。点估计的两种方法一定要掌握,一是矩估计的方法,二是最大似然估计法。

篇6:考研数学 消化知识练就内功

考研数学 消化知识练就内功

随着2015考研脚步的日益临近,各位考生纷纷加入到数学复习的队伍中。在考研数学领域中,高数作为其中较难的一部分,许多考生在复习高数时都会出现这样那样的问题。为了帮助大家更多得进行复习,考研教育网编辑团队在这里将就高数复习这一问题提出两点建议,希望各位考生能够从中有所收获。

一、有针对性复习,提高常见题型解题技巧

考研不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。每年许多考生容易在看似不起眼的选择题和填空题上失很多分。其实选择与填空题在数学考卷中所占的比重很大,这些题目的解答往往会“一失足成千古恨”,稍不留神,一步做错就全军覆没。在现阶段一定要有针对性地进行复习,所做题目的难度不能太小,当然也不能过于偏,而且复习要形成系统的知识体系结构。将做过的.题目进行总结。目前阶段不要过于钻研偏题怪题。复习中,遇到比较难的题目,自己独立解决确实能显着提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。要充分借助老师、同学的帮助,将题目弄通搞懂、下次自己会做即可,不要耽误太多时间。另外无论是大题还是小题,都要细心。不能说只要考场上认真,仔细地做题就不会有“会做但做错”的情况出现,应该平时做题就态度认真。

二、真正消化知识点 练就解题的内功

如何才能真正吸收消化这些知识以成为自己的知识呢?根据自己的总结或在权威考研辅导机构的帮助下,考生可以知道常规的题型和解题方法与技巧,考生要进行相当量的综合题型的练习。因为在复习过程中,不少考生会渐渐地有能力解答一些考研的基本题目,但如果给他一道较为综合的大题,就无从下手了。所以要做一定量的综合题。

不要现看到没做过的题就犯怵,一些大题目都是可以分解为若干个小题目去分别解答的。考生要掌握的东西就显然被分为了两个大方向。一是小题目,实质上也就是基础知识点的掌握与常规题型的熟练掌握;二是要能够将大题目拆分为小题目,也就是说能够逆出题专家的思维方式来推测此大题目是想考我们什么知识点。这两个方面的知识是考生平时复习整个过程中要加以思考的问题,因为基础知识点要不断地巩固加强,平时要多多积累将大问题细分的能力是平时的日积月累而形成的能力。

篇7:考研数学 初期不宜用题海战术

考研数学 初期不宜用题海战术

对于数学考试来说,就是解题,理论再好也要应用于实践。可以说,题海战术对于深化所学知识和锻炼解题技巧还是很有必要性的。在这样的指导思想下,很多同学就将做题看成是复习的全部,通过做题发现问题,又只用做题来解决问题。这种方法在考研数学复习的初始阶段是不宜采用的。下面,重点介绍下正确的数学复习方法:

1.考研复习的第一步是对复习资料的选择。在暑假进行的基础复习阶段,考生务必要从教材入手,为打好扎实的.基础提供良好的条件。考研数学资料有两类,第一类是教科书,第二类是考研辅导专家针对考研而编写的资料。基础复习时选用的教科书应是深广度适当,叙述详略得当,通俗易懂,便于自学的正规出版物,如同济版的《高等数学》(第五版)、浙大版的《概率论与数理统计》(第三版),同济版的《线性代数》(第三版)或北大版的《高等代数》(上册)。这些参考书可以说是公认的考研数学基础复习教材,因为这些课本同时也是很多高校的数学教材,所以对考生来说非常熟悉,也利于复习备考。至于第二类的考研资料也就是各名家的辅导书,适用于重点复习阶段,因为它的针对性较强,可以作为课本的补充,但绝对不能取代课本。

2.按章节对课本进行复习,深刻理解每一个定义、定理、公式等。注意,在考研大纲出来之前,不要轻易放弃任何一个知识点。首先,全面复习就是要对考研数学建立一个整体的框架,缺少任何一个知识点都会使这个框架显得残缺;其次,在基础复习阶段放弃的知识点,非常有可能成为你后期备考的一个盲点,到最后往往需要花更多的时间来弥补。

同时,要想快速、正确地解题,大脑中一定要储存大量的消化了的公式、推论和定理等,并且到达一定的熟练程度,需要时可随时调用。在此建议大家基础复习阶段一定要以看书为主,附带着做一些简单题目,做这些题目是为了更好地理解概念、公式和推论。

3.按章节对课后习题进行练习。首先应该明确,我们基础复习阶段做练习的目标,那就是对各个知识点的巩固。而课后习题就是最到位、最合适的巩固练习,此外,你还可以通过这些简单的练习,及时地了解自己对各知识点的掌握情况,为下一阶段的复习重点提供参照。

4.及时总结,总结是一个良好的复习方法,是使知识的掌握水平上升一个层次的方法。在单独复习好每一个知识点的时候一定要联系总结,建立一个完整的考研数学的知识体系结构。比如,在复习好积分这个知识点的时候,要能建立积分、二重积分、多重积分之间的关联,由此及彼,深刻理解掌握每一个知识点。

最后,提醒同学们,暑假进行的是基础复习,是一个打基础的阶段,而做题是为了更好地理解基础知识,或者在有扎实的基础之后的一个能力提升。所以做题必须与看书、总结密切结合,一味的题海战术或追求偏难怪的题型只会让你劳而无获。

大学网考研频道。

篇8:考研数学 历年真题怎么用

考研数学 历年真题怎么用

考研数学 理清顺序 从容应对考试

2014考研数学 沉下心去做题

2014考研数学 口诀心机为你助力

2014考研数学 三步解决证明题

一、把握复习重点

在基础复习阶段,很多人都以为这个时候还用不到历年真题,只看教材做练习题就够了。这种观点是片面的,其实这个时候,要看历年真题,但可以不做,看至少五年真题涉及到的知识点,把涉及到的知识点都列出来并把重复出现的知识点特别标出,或者结合市面上一些对历年真题解析分类的辅导书,把考过的知识点以及知识点出现的频率列出来,做到心中有数。建议的考生在复习时,对于在真题中重复出现的知识点要重点加强、全面细致的复习;对于真题涉及到的知识点和题型要重点复习。当然,结合去年的考试大纲(此阶段可能新考试大纲还没出来),对其他知识点按照大纲要求也要全面复习。这样,会使复习有侧重点,便于考生把握复习重点,更接近考研。 考研 教育\网

二、感受出题思路

到了巩固提高阶段,考生就应该有意识的做历年的题,比如复习到极限的时候,除了作自己计划的`巩固提高题目之外,还要把最近五年出现的极限真题都做一下,感受一下这几年命题中心在这个知识点上是如何出题的,并尝试一下自己在这类题型上是否胸有成竹。做过之后,可以发现自己的复习与真题的差距,从而寻找出合适的缩短差距的办法,以使自己的提高落到实处。

三、发现命题规律

在巩固训练阶段,考生可能按照知识点分别练习了真题中的题目。在模拟训练阶段,复习以作套题的形式出现。这个时候,要按照时间成套的做模拟题,当然也要成套的做历年真题,争取在规定的考试时间内把5-7年的真题分套练习。这样,可以整套把握真题的出题规律,从而让自己习惯这类题的出题方式。一般短期内,命题思路和规律不会有太大的改变,所以熟悉了之前几年的命题规律,有利于坦然面对考试。

四、寻找考试感觉

在最后一个月,基本上是查缺补漏阶段了,虽然这个阶段主要是查找薄弱地方,赶快弥补,但还是要保持做整套题的感觉。这个时候做套题还是以做历年真题为宜,虽然上个阶段可能已做过几遍。这个时候还要做一做,是要找到那种上“战场”的感觉。

希望通过以上总结,考生们能够从中学会历年真题的正确复习方法从而轻松应对考研数学的复习,祝大家复习顺利!

篇9:考研数学 初期不宜用题海战术

2015年考研数学 初期不宜用题海战术

对于数学考试来说,就是解题,理论再好也要应用于实践。可以说,题海战术对于深化所学知识和锻炼解题技巧还是很有必要性的。在这样的指导思想下,很多同学就将做题看成是复习的全部,通过做题发现问题,又只用做题来解决问题。这种方法在考研数学复习的初始阶段是不宜采用的。

1.考研复习的第一步是对复习资料的选择。在暑假进行的基础复习阶段,考生务必要从教材入手,为打好扎实的基础提供良好的条件。考研数学资料有两类,第一类是教科书,第二类是考研辅导专家针对考研而编写的资料。基础复习时选用的教科书应是深广度适当,叙述详略得当,通俗易懂,便于自学的正规出版物,如同济版的《高等数学》(第五版)、浙大版的《概率论与数理统计》(第三版),同济版的《线性代数》(第三版)或北大版的《高等代数》(上册)。这些参考书可以说是公认的考研数学基础复习教材,因为这些课本同时也是很多高校的数学教材,所以对考生来说非常熟悉,也利于复习备考。至于第二类的考研资料也就是各名家的辅导书,适用于重点复习阶段,因为它的针对性较强,可以作为课本的补充,但绝对不能取代课本。

2.按章节对课本进行复习,深刻理解每一个定义、定理、公式等。注意,在考研大纲出来之前,不要轻易放弃任何一个知识点。首先,全面复习就是要对考研数学建立一个整体的框架,缺少任何一个知识点都会使这个框架显得残缺;其次,在基础复习阶段放弃的知识点,非常有可能成为你后期备考的一个盲点,到最后往往需要花更多的时间来弥补。

同时,要想快速、正确地解题,大脑中一定要储存大量的消化了的公式、推论和定理等,并且到达一定的`熟练程度,需要时可随时调用。在此建议大家基础复习阶段一定要以看书为主,附带着做一些简单题目,做这些题目是为了更好地理解概念、公式和推论。

3.按章节对课后习题进行练习。首先应该明确,我们基础复习阶段做练习的目标,那就是对各个知识点的巩固。而课后习题就是最到位、最合适的巩固练习,此外,你还可以通过这些简单的练习,及时地了解自己对各知识点的掌握情况,为下一阶段的复习重点提供参照。

4.及时总结,总结是一个良好的复习方法,是使知识的掌握水平上升一个层次的方法。在单独复习好每一个知识点的时候一定要联系总结,建立一个完整的考研数学的知识体系结构。比如,在复习好积分这个知识点的时候,要能建立积分、二重积分、多重积分之间的关联,由此及彼,深刻理解掌握每一个知识点。

《用方程解决简单实际问题》的教学反思

用数学

《用数学—简单的乘法应用题》的说课稿

《用“平均分”解决实际问题》教案

考研政治:解决主要矛盾和次要矛盾

考研数学证明题

考研数学 常见考点简单但仍需重视

用知识充实自己作文

学生造句知识用好像造句

考研英语知识素材10

考研数学:用简单的知识解决复杂问题(共9篇)

欢迎下载DOC格式的考研数学:用简单的知识解决复杂问题,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档