下面是小编为大家整理的化学高二选修4重难点《化学平衡》(共含8篇),仅供参考,大家一起来看看吧。同时,但愿您也能像本文投稿人“六鱼儿”一样,积极向本站投稿分享好文章。
高二化学化学平衡教案
第一课时化学反应速率
教学目标
知识与技能
1、学会描述化学反应速率、以及其表示方法、表达式、单位,学会用化学反应速率进行简单的计算。
2、认识影响化学反应速率的因素,并尝试应用化学反应速率说明生产生活中的实际问题。
过程与方法
1、通过由浅到深、由感性到理性的认知思维学习化学反应速率。
2、通过对影响过氧化氢分解速率的因素的探究培养自己的观察、分析能力设计简单实验的能力。
3、通过运用函数图像观察和描述特定化学反应的速率,了解化学反应速率随时间的变化情况,提高自己的理解能力和表达能力。
情感态度与价值观
1、培养对化学反应研究的兴趣,能够在对化学反应原理的探究过程中找到成功的喜悦,激发学习化学、探究原理的动力。
2、增强合作、创新与求实精神。
教学重点
1、学会应用化学反应速率进行简单的'计算
2、认识影响化学反应速率的因素
教学难点:独立设计实验的能力
教学方法:发现探究式教学法
教学过程
教师活动
学生活动
设计意图
引入:日常生活和生产中我们会遇到很多化学反应,有的反应进行地轰轰烈烈,而有些反应却是在潜移默化中完成的。
展示图片:炸药的爆炸、溶洞的形成、牛奶的变质
提出问题:这几幅图片所描述的化学反应进行的快慢如何?
引导:对前两个反应过程的快慢大家都能迅速作出判断,但对牛奶变质进行快慢产生了分歧,同学们有自己的想法很不错,我们不妨换个思考方式,牛奶变质与溶洞形成相比较它的快慢如何?在和炸药爆炸相比较快慢又如何?
提问:你从比较牛奶变质中对化学变化的快慢有何新的认识?
讲解:不同的化学反应进行的快慢千差万别,“快”与“慢”是相对而言的,在科学研究和实际应用中,需要用一个统一的定量标准来衡量或比较。与物理学中物体的运动快慢用“速度”表示相类似,化学反应过程中进行的快慢用“化学反应速率”来表示。
阅读教材p28第3、4段,回答下列问题:
1、定义:
2、表示方法:
3、表达式:
(用v表示化学反应速率,△c表示浓度的变
化量,△t表示时间的变化量)
4、推断单位:___________________________
投影学生的答案,交流讨论。
应用1 :在体积为2l的容积不变的密闭 容器中充入0.8mol的氮气与1.6mol氢气,一定条件下发生反应。4min后,测得容器内生成的氨气为0.24mol,求:
①用nh3的浓度变化表示的反应速率。
②分别用h2 、n2 的浓度变化表示的反应速率。
应用2.向一个容积为1l的密闭容器中放入2molso2和1molo2,在一定的条件下,2s末测得容器内有0.8molso2,求2s内so2、o2、so3的平均反应速率和反应速率比
化学电池
1、电池的分类:化学电池、太阳能电池、原子能电池
2、化学电池:借助于化学能直接转变为电能的装置
3、化学电池的分类:一次电池、二次电池、燃料电池
4、常见一次电池:碱性锌锰电池、锌银电池、锂电池等
5、二次电池:放电后可以再充电使活性物质获得再生,可以多次重复使用,又叫充电电池或蓄电池。
6、二次电池的电极反应:铅蓄电池
7、目前已开发出新型蓄电池:银锌电池、镉镍电池、氢镍电池、锂离子电池、聚合物锂离子电池
8、燃料电池:是使燃料与氧化剂反应直接产生电流的一种原电池。
9、电极反应:一般燃料电池发生的电化学反应的最终产物与燃烧产物相同,可根据燃烧反应写出总的电池反应,但不注明反应的条件。负极发生氧化反应,正极发生还原反应,不过要注意一般电解质溶液要参与电极反应。以氢氧燃料电池为例,铂为正、负极,介质分为酸性、碱性和中性。当电解质溶液呈酸性时:负极:2H2—4e—=4H+正极:O2+4 e—4H+ =2H2O当电解质溶液呈碱性时:负极:2H2+4OH——4e—=4H2O正极:O2+2H2O+4 e—=4OH—另一种燃料电池是用金属铂片插入KOH溶液作电极,又在两极上分别通甲烷(燃料)和氧气(氧化剂)。
10、电极反应式为:负极:CH4+10OH——8e— =CO32—+7H2O;正极:4H2O+2O2+8e— =8OH—。电池总反应式为:CH4+2O2+2KOH=K2CO3+3H2O 10、燃料电池的优点:能量转换率高、废弃物少、运行噪音低
11、废弃电池的处理:回收利用
离子共存
1、由于发生复分解反应,离子不能大量共存。
(1)有气体产生。
如CO32—、SO32—、S2—、HCO3—、HSO3—、HS—等易挥发的弱酸的酸根与H+不能大量共存。
(2)有沉淀生成。
如Ba2+、Ca2+、Mg2+、Ag+等不能与SO42—、CO32—等大量共存;Mg2+、Fe2+、Ag+、Al3+、Zn2+、Cu2+、Fe3+等不能与OH—大量共存;Pb2+与Cl—,Fe2+与S2—、Ca2+与PO43—、Ag+与I—不能大量共存。
(3)有弱电解质生成。
如OH—、CH3COO—、PO43—、HPO42—、H2PO4—、F—、ClO—、AlO2—、SiO32—、CN—、C17H35COO—、等与H+不能大量共存;一些酸式弱酸根如HCO3—、HPO42—、HS—、H2PO4—、HSO3—不能与OH—大量共存;NH4+与OH—不能大量共存。
(4)一些容易发生水解的离子,在溶液中的存在是有条件的。
如AlO2—、S2—、CO32—、C6H5O—等必须在碱性条件下才能在溶液中存在;如Fe3+、Al3+等必须在酸性条件下才能在溶液中存在。这两类离子不能同时存在在同一溶液中,即离子间能发生“双水解”反应。如3AlO2—+3Al3++6H2O=4Al(OH)3↓等。
2、由于发生氧化还原反应,离子不能大量共存。
(1)具有较强还原性的离子不能与具有较强氧化性的离子大量共存。如S2—、HS—、SO32—、I—和Fe3+不能大量共存。
(2)在酸性或碱性的介质中由于发生氧化还原反应而不能大量共存。如MnO4—、Cr2O7—、NO3—、ClO—与S2—、HS—、SO32—、HSO3—、I—、Fe2+等不能大量共存;SO32—和S2—在碱性条件下可以共存,但在酸性条件下则由于发生2S2—+SO32—+6H+=3S↓+3H2O反应不能共在。H+与S2O32—不能大量共存。
3、能水解的阳离子跟能水解的阴离子在水溶液中不能大量共存(双水解)。
例:Al3+和HCO3—、CO32—、HS—、S2—、AlO2—、ClO—等;Fe3+与CO32—、HCO3—、AlO2—、ClO—等不能大量共存。
4、溶液中能发生络合反应的离子不能大量共存。
如Fe3+与SCN—不能大量共存;
一、化学反应的限度
1、化学平衡常数
(1)对达到平衡的可逆反应,生成物浓度的系数次方的乘积与反应物浓度的系数次方的乘积之比为一常数,该常数称为化学平衡常数,用符号K表示。
(2)平衡常数K的`大小反映了化学反应可能进行的程度(即反应限度),平衡常数越大,说明反应可以进行得越完全。
(3)平衡常数表达式与化学方程式的书写方式有关。对于给定的可逆反应,正逆反应的平衡常数互为倒数。
(4)借助平衡常数,可以判断反应是否到平衡状态:当反应的浓度商Qc与平衡常数Kc相等时,说明反应达到平衡状态。
2、反应的平衡转化率
(1)平衡转化率是用转化的反应物的浓度与该反应物初始浓度的比值来表示。如反应物A的平衡转化率的表达式为:
α(A)=
(2)平衡正向移动不一定使反应物的平衡转化率提高。提高一种反应物的浓度,可使另一反应物的平衡转化率提高。
(3)平衡常数与反应物的平衡转化率之间可以相互计算。
3、反应条件对化学平衡的影响
(1)温度的影响
升高温度使化学平衡向吸热方向移动;降低温度使化学平衡向放热方向移动。温度对化学平衡的影响是通过改变平衡常数实现的。
(2)浓度的影响
增大生成物浓度或减小反应物浓度,平衡向逆反应方向移动;增大反应物浓度或减小生成物浓度,平衡向正反应方向移动。
温度一定时,改变浓度能引起平衡移动,但平衡常数不变。化工生产中,常通过增加某一价廉易得的反应物浓度,来提高另一昂贵的反应物的转化率。
(3)压强的影响
ΔVg=0的反应,改变压强,化学平衡状态不变。
ΔVg≠0的反应,增大压强,化学平衡向气态物质体积减小的方向移动。
(4)勒夏特列原理
由温度、浓度、压强对平衡移动的影响可得出勒夏特列原理:如果改变影响平衡的一个条件(浓度、压强、温度等)平衡向能够减弱这种改变的方向移动。
化学反应的速率
1、化学反应是怎样进行的
(1)基元反应:能够一步完成的反应称为基元反应,大多数化学反应都是分几步完成的。
(2)反应历程:平时写的化学方程式是由几个基元反应组成的总反应。总反应中用基元反应构成的反应序列称为反应历程,又称反应机理。
(3)不同反应的反应历程不同。同一反应在不同条件下的反应历程也可能不同,反应历程的差别又造成了反应速率的不同。
2、化学反应速率
(1)概念:单位时间内反应物的减小量或生成物的增加量可以表示反应的快慢,即反应的速率,用符号v表示。
(2)表达式:
(3)特点对某一具体反应,用不同物质表示化学反应速率时所得的数值可能不同,但各物质表示的化学反应速率之比等于化学方程式中各物质的系数之比。
3、浓度对反应速率的影响
(1)反应速率常数(K)反应速率常数(K)表示单位浓度下的化学反应速率,通常,反应速率常数越大,反应进行得越快。反应速率常数与浓度无关,受温度、催化剂、固体表面性质等因素的影响。
(2)浓度对反应速率的影响增大反应物浓度,正反应速率增大,减小反应物浓度,正反应速率减小。增大生成物浓度,逆反应速率增大,减小生成物浓度,逆反应速率减小。
(3)压强对反应速率的影响压强只影响气体,对只涉及固体、液体的反应,压强的改变对反应速率几乎无影响。压强对反应速率的影响,实际上是浓度对反应速率的影响,因为压强的改变是通过改变容器容积引起的。压缩容器容积,气体压强增大,气体物质的浓度都增大,正、逆反应速率都增加;增大容器容积,气体压强减小;气体物质的浓度都减小,正、逆反应速率都减小。
4、温度对化学反应速率的影响
(1)经验公式阿伦尼乌斯总结出了反应速率常数与温度之间关系的经验公式:式中A为比例系数,e为自然对数的底,R为摩尔气体常数量,Ea为活化能。由公式知,当Ea>0时,升高温度,反应速率常数增大,化学反应速率也随之增大。可知,温度对化学反应速率的影响与活化能有关。
(2)活化能Ea。活化能Ea是活化分子的平均能量与反应物分子平均能量之差。不同反应的活化能不同,有的相差很大。活化能Ea值越大,改变温度对反应速率的影响越大。
5、催化剂对化学反应速率的影响
(1)催化剂对化学反应速率影响的规律:催化剂大多能加快反应速率,原因是催化剂能通过参加反应,改变反应历程,降低反应的活化能来有效提高反应速率。
(2)催化剂的特点:催化剂能加快反应速率而在反应前后本身的质量和化学性质不变。催化剂具有选择性。催化剂不能改变化学反应的平衡常数,不引起化学平衡的移动,不能改变平衡转化率。
有机化学计算
1、有机物化学式的确定
(1)确定有机物的式量的方法
①根据标准状况下气体的密度ρ,求算该气体的式量:M = 22·4ρ(标准状况)
②根据气体A对气体B的相对密度D,求算气体A的式量:MA = DMB
③求混合物的平均式量:M = m(混总)/n(混总)
④根据化学反应方程式计算烃的式量。
⑤应用原子个数较少的元素的质量分数,在假设它们的个数为1、2、3时,求出式量。
(2)确定化学式的方法
①根据式量和最简式确定有机物的分子式。
②根据式量,计算一个分子中各元素的原子个数,确定有机物的分子式。
③当能够确定有机物的类别时。可以根据有机物的通式,求算n值,确定分子式。
④根据混合物的平均式量,推算混合物中有机物的分子式。
(3)确定有机物化学式的一般途径
(4)有关烃的混合物计算的几条规律
①若平均式量小于26,则一定有CH4
②平均分子组成中,l < n(C)< 2,则一定有CH4。
③平均分子组成中,2 < n(H)< 4,则一定有C2H2。
《化学平衡的移动》说课稿 苏教版化学选修说课稿
【设计理念】
在《高中化学课程标准》的指导下:
1、课程的设计以的发展为本,关注学生科学探究的学习过程和方法。
2、以学生对新知预言、主动探究为主,以教师引导为辅。
3、重视实验设计,设计注重学生的心理与认知水平、认知发展相结合。
【教材分析】
1、教材的地位及其作用
苏教版第三单元《化学平衡的移动》,本节内容是中学化学重要的基础理论,是整个中学化学教材中的重点和难点。与原教材相比,原教材比较注重知识的传授,强调知识的接受,新课程强调让学生形成积极的、主动的学习态度。在影响化学反应速率的条件和化学平衡等知识的基础上进行本节的教学,系统性较好,理论性强。
2、教学目标分析
1)知识与技能:理解浓度、压强和温度等条件对化学平衡的影响,理解平衡移动的原理,使实验设计能力和探究思维能力得到较大的培养。
2)过程与方法:采用“以问题为索引、学生为主体”的自主探究的方法,让学生通过“使学生亲历科学的历程”。
3)情感态度:
①领略实验学习乐趣,培养学生实事求是的科学态度,体验个人及学科价值。
②通过学习让学生懂得“诺贝尔化学奖获得者”研究问题的方法、灵感和智慧,从而获得学习的信心和勇气。
③通过学习激发学生强烈的好奇心和求知欲,并在学习中学会主动意识和合作精神。
3、教学重点、难点
浓度、压强、温度对化学平衡的影响平衡移动原理。
【学情分析】
本节课的教学对象是高二选修化学的学生,他们具有独立思考问题的能力,已经学习了“化学反应速率、影响化学反应速率的因素、化学平衡”等理论,了解了浓度、温度等外界条件对化学反应速率的影响等内容,不仅在知识上为本节的教学奠定了基础,而且其探讨问题的思路和方法,也可迁移用来指导学生进行本单元的学习,可以以此为契机,激发学生学习的主动性。
【教法和学法分析】
本节课设计“以问题为索引,学生为主体”的科学探究过程,采用启发诱导法、实验探究法,并与多媒体有机的结合,在教学过程中宜突出情景设置、突出学法指导,培养思维品质,做到“授之以渔”,有利于启发学生思考,便于学生接受。
学生:预言实验设计实验观察实验现象分析得出结论,在活动中相互交流、相互评价,学生成为课堂的`主体。
【教学过程】
(一)、创设问题情境
【引言投影】教师:播放材料和展示图片:“18英国物理学家克鲁克斯发出警告:人口增长,士地变
得狭小,长此下去,人类将面临饥荒危机。要拯救人类,必须尽快寻找到新的氮肥。” 19哈伯运了
一个原理找到了合成氮肥的新方法,从而荣获了诺贝尔化学奖。以哈伯运用了一个原理找到了合成氮的
新方法来创设出问题情景。
学生:观看思考:哈伯使用了什么高深的原理呢?
【设计意图】用情境激发兴趣,设疑问激发求知欲,引出本课题:第三单元化学平衡的移动
【知识回顾】教师:回顾化学平衡的几大特征,其中一大特征涉及“变”,“变”——改变外界条件抓住本质:原平衡被破坏重新建立新平衡
(V正≠V逆)(V正=V逆)
教师:研究化学平衡是否“变”的关键是什么?
学生:速率(V正与V逆)的相对大小!
【设计意图】以旧引新,焦点切入抓住本质引出:浓度对化学平衡的影响
(二)、重点难点的突破
1、浓度、压强、温度对化学平衡的影响
【学生互动】学生分成4个小组并以小组为单位分别进行分析,首先预言浓度、压强、温度分别对化学平衡移动的影响。
(1)、浓度对化学平衡的影响
【4组学生预言】
① Fe3++SCN—?[Fe(SCN)]2+ ② 2H++S2O32—?S+SO2+H2O
③ 2CrO42—+2H+?Cr2O72—+H2O ④ Br2+H2O?H++Br—+HBrO
讨论预言影响情况,学生互学、互问、分析
【比一比】得出最佳实验设计方案,经分析①、③的设计实验现象明显、操作简单,是可行的实验,再用实验验证此实验的正确性,学生上台演示实验,归纳总结。
【教师】适时点拔评述,介绍教材实验,画V—t图,加深浓度对化学平衡的影响,对学生的讨论结果进行归纳小结。
(2)、压强对化学平衡的影响
【学生】分小组抢答:得出最佳设计:2NO2?N2O4将NO2和N2O4混合气体装在密封的针筒内,通过压缩或外拉,观察气体颜色变化,得出压强对平衡移动的影响。加压,气体颜色先变深再变浅,说明平衡向正反应方向移动;反之,则向逆反应方向移动,分析实验现象。
【教师】对实验设计作适当提示,借助多媒体投影演示2NO2?N2O4实验。
【学生尝试】用平衡常数只受温度影响,解释压强对平衡移动的影响情况
【教师】适时点拔评述,画V—t、NO2%—P图,归纳小结,加深压强对化学平衡的影响。
(3)、温度对化学平衡的影响
【学生】设计实验并讨论得出其中的最佳实验设计方案,再用实验验证此实验的正确性,学生上台演示此实验
2NO2?N2O4 △H<0
红棕色无色
升高温度降低温度
现象:红棕色变深现象:红棕色变浅
(平衡向逆反应方向移动)(平衡向正反应方向移动)
【学生比一比】画出最佳方案中的NO2的物质的量分数与温度的关系图
【教师】适时评述、分析NO2%—T关系图,介绍分析教材实验
Co2++4Cl—?CoCl42— △H>0加深温度对平衡动影响知识的认识。
粉红色蓝色
升高温度现象:粉红色变蓝色
降低温度现象:蓝色变粉红色
【设计意图】生生互动,以焦点切入,设疑激发学生尝试探究化学问题的方法和途经,实验设计能力得到培养,竞争意识、合作意识得到加强。
2、化学平衡移动原理
【学生回顾】要求学生分别用最简洁的语言表示外界条件对平衡移动的影响,通过三个外界条件对平衡移动影响情况的学习,尝试概括出一个共同的结果:即平衡移动原理。
【教师评述】如果改变影响平衡的一个条件(如浓度、温度等),平衡将向减弱这种改变的方向移动─平衡移动原理,又称勒夏特列原理。也就是哈伯研究合成氨并获得诺贝尔化学奖的一个基本原理。
【设计意图】培养学生提取信息及归纳总结能力,自然轻松中突破了难重点,通过感受前人的研究过程,获取信心和勇气。
(三)、互动实践
【要求】注重实际,加深理解,各小组为另三个小组命一题,用平衡移动原理来判断平衡移动。
【设计意图】用练习巩固新知识,对新知识熟练应用。
(四)教师总结
总结:浓度、压强、温度对平衡移动的影响,希望同学们学好科学,敢于超越前人,为人类作贡献。
(五)布置作业
课后习题于作业本。
【板书设计】
第三单元化学平衡的移动
“变”:条件改变,原平衡被破坏(V正≠V逆),可逆反应将重新建立新的平衡(V正=V逆)
条件改变一、浓度影响二、压强影响三、温度影响
预言(根据学生实际情况定)(根据学生实际情况定)(根据学生实际情况定)
实验设计Fe3++3SCN—?[Fe(SCN)]2+ 2NO2?N2O4 Co2++4Cl—?CoCl42— △H>0
实验结论增大Fe3+浓度,增大压强,升高温度,
平衡向正方向移动平衡向逆反应方向移动平衡向正反应方向移动
理论解释增大反应物浓度,V正>V逆(学生阅读)(学生预计温度影响了平衡常数K)
收获如果改变影响平衡的一个条件(如浓度、温度等),平衡将向减弱这种改变的方向移动——————平衡移动原理
1.原电池的定义
电能的把化学能转变为装置叫做原电池。
2.原电池的工作原理
将氧化还原反应中的还原剂失去的电子经过导线传给氧化剂,使氧化反应和还原反应分别在两个电极上进行,从而形成电流。
3.构成条件
两极、一液(电解质溶液)、一回路(闭合回路)、一反应(自发进行的氧化还原反应)。
4.正负极判断
负极:电子流出的极为负极,发生氧化反应,一般较活泼的金属做负极
正极:电子流入的极为正极,发生还原反应,一般较不活泼金属做正极
判断方法:
①由组成原电池的两极电极材料判断:一般是活泼的金属为负极,活泼性较弱的金属或能导电的非金属为正极。
注意:Cu-Fe(Al)与浓HNO3组成的原电池以及Mg-Al与NaOH溶液组成的原电池例外。
②根据电流方向或电子流动方向判断:电流是由正极流向负极;电子流动方向是由负极流向正极。
③根据原电池两极发生的变化来判断:原电池的负极总是失电子发生氧化反应,其正极总是得电子发生还原反应。
④根据现象判断:溶解的电极为负极,增重或有气泡放出的电极为正极
⑤根据离子的流动方向判断:在原电池内的电解质溶液,阳离子移向的极是正极,阴离子移向的极是负极。
5.电子、电流、离子的移动方向
电子:负极流向正极
电流:正极流向负极
阳离子:向正极移动
阴离子:向负极移动
6.电极反应式(以铜-锌原电池为例)
负极(Zn):Zn-2e-=Zn2+(氧化反应)
正极(Cu):Cu2++2e-=Cu(还原反应)
总反应:Zn+Cu2+=Zn2++Cu
7.原电池的改进
普通原电池的缺点:正负极反应相互干扰;原电池的电流损耗快。
①改进办法:
使正负极在两个不同的区域,让原电池的氧化剂和还原剂分开进行反应,用导体(盐桥)将两部分连接起来。
②盐桥:
把装有饱和KCl溶液和琼脂制成的胶冻的玻璃管叫做盐桥。胶冻的作用是防止管中溶液流出。
③盐桥的作用:
盐桥是沟通原电池两部分溶液的桥梁。盐桥保障了电子通过外电路从锌到铜的不断转移,使锌的溶解和铜的析出过程得以继续进行。导线的作用是传递电子,沟通外电路。而盐桥的作用则是沟通内电路。
a.盐桥中的电解质溶液使原电池的两部分连成一个通路,形成闭合回路
b.平衡电荷,使原电池不断产生电流
④盐桥的工作原理:
当接通电路之后,锌电极失去电子产生锌离子进入溶液,电子通过导线流向铜电极,并在铜电极表面将电子传给铜离子,铜离子得到电子变成铜原子。锌盐溶液会由于锌溶解成为Zn2+而带上正电,铜盐溶液会由于铜的析出减少了Cu2+而带上了负电,从而阻止电子从锌片流向铜片,导致原电池不产生电流。
盐桥中的钾离子进入硫酸铜溶液,盐桥中的氯离子进入硫酸锌溶液,使硫酸铜溶液和硫酸锌溶液均保持电中性,使氧化还原反应得以持续进行,从而使原电池不断产生电流。
【说明】盐桥使用一段时间后,由于氯化钾的流失,需要在饱和氯化钾溶液中浸泡,以补充流失的氯化钾,然后才能正常反复使用。
⑤原电池组成的变化:
原电池变化:改进后的原电池由两个半电池组成,电解质溶液在两个半电池中不同,两个半电池中间通过盐桥连接。
改进后电池的优点:原电池能产生持续、稳定的电流。