运动力学中机械结构设计应用探析论文

| 收藏本文 下载本文 作者:心迟创意生活馆

下面是小编给大家带来关于运动力学中机械结构设计应用探析论文(共含10篇),一起来看看吧,希望对您有所帮助。同时,但愿您也能像本文投稿人“心迟创意生活馆”一样,积极向本站投稿分享好文章。

运动力学中机械结构设计应用探析论文

篇1:运动力学中机械结构设计应用探析论文

摘要:运动力学是研究物体运动规律的,通常指的是物体的运动.随着现代运动力学理论的不断延伸发展,其在很多领域已经有了比较深入的应用.基于此,在本文的研究中,主要对运动力学在机械结构设计中的应用进行论述,并结合一些实际机械设计案例,对运动力学的应用价值和作用进行分析,希望可以对相关机械结构设计领域对运动力学的科学运用起到一定的参考和启发作用.

关键词:运动力学;零部件链接;机械结构;设计应用;疲劳力学

机械结构设计过程中,会运用很多原理,其中运动力学原理发挥着非常重要的理论指导作用.在物理学的很多力学实验中,运动力学也是受到很多研究人员重视和关注的.可以说,运动力学作为机械科学与物理学科的一种连接纽带,通过科学合理的应用运动动力学,对于机械结构设计的改良和优化,具有十分有价值的指导意义.机械机构设计质量和效率的提升,离不开运动力学理论的支撑.因此,本文通过对运动力学进行深度解析,并将机械结构设计的要素进行系统归纳总结,结合一些实际案例,对运动力学在机械结构设计中的应用问题进行分析.

1机械结构设计在应用中的技术要素

机械结构设计是机械工艺技术革新的重要技术手段,而在结构设计中很多关键技术要素,正是决定机械机构设计水平的基础.运动力学在机械结构设计中,不仅要实现关键技术要素的改良优化,并且在设计工艺、生产效率方面也要得到提升.机械机构设计在几何层面、理论原理层面,要遵循精密设计技术的原则指导,保证零部件之间实现精细紧密的咬合,并保证咬合力得到一定程度的提升.在机械机构运动过程中,咬合力能够随着机械零部件的转动,而实现动态的变化,保持同机械运动作业要求相符合的力度要求.机械结构设计中要对不同的面进行优化,通过应用运动力学原理,保证每一个不同的面上的用力、收礼以及摩擦阻力等,在机械设备运转的过程中,达到和动态平衡变化.

篇2:运动力学中机械结构设计应用探析论文

运动力学的应用是一项比较复杂的系统过程,需要机械结构设计人员做到整体的把握,并且做好其他相关理论的论证和实验.在本文的研究过程中,通过对一些实际设计案例的分析,基本上总结出如下几个方面的设计步骤程序.

4.1形成运动力学设计的整体策略

运动力学的应用,要从结构设计大的方面确定整体策略.有了一个比较完善的整体策略,在全局观的视角下,形成运动力学在不同细小分支部件的应用模型.这对于设计者来说,首先在整体策略中,要考虑好哪些大的部件结构,需要运用运动力学,其运用的实际效果能够达到什么程度,这就需要形成一个比较模糊的设计形象概念.比较精密的机械结构设计,还需要运用一些科学算法,如数学模糊算法、微积分计算等,得到运动力学的设计应用参数范围.在这个基础上,设计者可以基本上确定机械结构设计的大小尺寸,占用空间等.尺寸设定好之后,需要对结构部件的材料进行选择,材料的确定,要考虑对应的力学参数,以及在结构运动过程中,参数的变化.

4.2对机床的结构方式进行确定

在机械结构设计过程中,一些重要的部位零部件,不仅要在图纸上进行理论论证说明,分析运用力学的应用逻辑,而且在实际结构部件组装时,还要能够顺畅对接.这就需要做好机床加工的结构布置方案.机床是冲压各种零部件的重要设备,在冲压过程中,会对一些关键的结构部位进行力度检验,运动力学运用是否合理,通过机床结构方式的变化,能够进行反复试验.所以,对于机械结构来说,运动力学的应用,必须要做到图纸与实物的顺畅对接,不能出现在设计图纸上论证可行的理论,而在实物机械结构中不能发挥作用的现象.机床的结构方式,同实际机械结构设备的设计模型要匹配,在运动力学原理的应用方法,机床内部的结构方式、动力作用传输、结构控制等,要做好设计科学,使用合理,这样才能够为机械结构的合理设计,提供良好的基础架构支撑.

4.3合理设定机械结构的各部件及总成结构形式功能

运动力学在机械结构运作时,要显示出其应用优势和特点,就需要对总体的结构形式机器功能进行合理设定.机械结构中的部件功能、性质,以及组合方式,要能够确保在发生一些较小的物理碰撞下,保持完好.各种组件的安装和拆卸,要考虑设计空间结构的便利性.例如,在内部空间结构比较小的情况下,一般耗材部件的更换,如果能够通过科学的设计,改变部件的一些形式,则会使得部件的更换变得省时省力.运动力学中常用的一些动力传输工具,例如齿轮、皮带、链条等,在这些传递部件中,皮带是比较容易损坏的.在考虑综合结构部件合理、性能达到要求的情况下,如果能够在设计中减少对皮带的使用,或者使用一些较小的齿轮代替,则会大大减小更换皮带的时间.这在实际机械设备施工作业中,往往会影响效率和实际作业质量.所以,对于机械结构设计中,很多部件更换问题,通过运动力学相关理论的融合与指导,变化动力、机械运动方式,保证其功能作用不受影响,这样才能够充分体现运动力学的应用价值.

4.4做好运动力学相关理论的计算校核

运动力学在机械结构设计应用方面,是需要进行比较复杂的计算和校核的.因此,对于设计技术人员一定要掌握必要的计算方法.例如支持PLC或数控系统或运动控制卡等这一类东西所需要的程序逻辑算法.举个简单的例子就是比如解决一只N轴联动的机械手的算法问题.需要考虑当臂关节平面移动,臂关节转动,肘关节平面移动,肘关节转动,腕关节转动,指关节摆动等一切运动所遵循的运动轨迹方程.要紧密联系物理现象的计算.比如静力学,运动力学,弹性力学,流体力学等.当设计某个零件时,首先要考虑这个零件所要承担或完成什么任务,再结合这些任务去确定这个零件的形状,确定形状和所需要满足的运动关系尺寸后再去针对这个零件的受力状态和受力性质以及材质同时考虑转速、热变形以及设计寿命等等诸多因素后到最后才能下手去确定各个部位的形状和位置尺寸.对于零件或部件加工或组装时候的工时以及各项工艺参数的计算,就比如制造某款设备,铁板下料部分需要进行铁板排料的计算.金加工部分对于不同的加工性质有不同的加工参数的计算以及不同的加工方法排列的计算,以及在这样的工艺参数下各个步骤所需要的加工时间的计算.

5结语

通过对运动力学的理论阐释及对其在机械结构设计应用中的使用角度和应用范围进行深度分析,便可得知运动力学对机械设计所具有的非比寻常的指导作用和干预影响.由于机械产品的使用在当今经济活动中,与运动设备之间的联系越发紧密,因此在机械结构的设计活动中,需要机械运动理论的深度化透析和研究,并且紧随市场需求的步伐,进行相应的技术改革与理念创新,为国家的机械制造业提供更为便捷的服务.

参考文献:

〔1〕刘宇怀,冀林海,梁永红,王莉.ANSYS在机械结构设计中的应用研究[J].科技展望,(08).

〔2〕乔栋.解析运动力学在机械结构设计中的应用[J].绿色环保建材,2016(08).

〔3〕彭嘉斌,戴祝,廖瑛,陈志伟.运动力学对线在全膝关节置换术中的应用[J].国际骨科学杂志,2016(11).

〔4〕刘小东,肖沪生,徐芳.超声技术检测动脉血管管壁运动力学的方法[J].中国中西医结合影像学杂志,(03).

〔5〕张生芳,王志勇.运动力学原理在体育运动中的应用探讨[J].牡丹江大学学报,(02).

篇3:运动力学中机械结构设计应用探析论文

运动力学在机械结构设计中,有着很高的应用价值.从当前的实践应用情况来看,其价值主要体现在如下两个方面:

2.1在机械结构零部件的链接方面

机械结构设计过程中,会用到很多零部件,而对零部件的链接,不同的链接方式,其效果和作用也不相同.例如,应用较多的零部件链接模式,间接链接和直接链接.在实际运用时,会出现相差较大的表现.不过在运动力学的核心指导思想上,机械结构设计中的关键要素在根本上是相同的.例如,很多机械结构,通过观测力矩的不同变化,然后计算不同联接点之间的摩擦力和压力,根据这些数据就可以合理的选择零部件的链接方式,并对零部件的材料选择、工艺制作等,提出更加的科学建议.运动力学在精确计算下,能够为机械零部件的指标性选择,提供更加有力的理论支撑.在一些工业机械设备中,常见到由于动力输出、链接方式的不恰当,容易导致结构整体功能发挥不出来,或者是动力传输效率低下,这些都与运动力学的运用情况有关,合理的运动力学应用设计,能够提高机械设备的`运作效率.对于减少不合理的动力输出减损,提高传输效率,有着很重要的作用.

2.2指导合理解决零部件的损耗

机械结构包含丰富的零部件,机械结构整体作用的发挥,主要是依靠零部件的运动实现的.而在对机械零部件进行操作环节,由于各种零件之间会产生摩擦,所以摩擦损耗几乎是不可避免的.在这种情况下,运动力学的原理和理念,就可以发挥非常重要的指引作用.通过借助运动力学的机械运动理论,根据机械机构中的零部件在摩擦运动中的实际做功情况,可以比较精确的计算不同结构部位的损耗系数.机械结构设计如果掌握了各种零部件比较精确的损耗系数,则会在零部件的材质选择、调试保养方式方面,进一步提高水平,从而降低机械结构的损耗程度,延长使用寿命.在一些比较重要的精密机械结构中,例如,医疗设备、分析仪器等,里面往往有一些容易损耗的材料,如果相关的结构的力学设计不合理,会导致局部作用力的偏大失衡,其结构就是导致一些抗磨性较差的部件发生损坏,从而影响实际使用效果.因此,通过对运动力学应用的科学分析,梳理每一个结构部件的运动力学应用情况,对存在问题的,要进行调整优化.

3机械结构设计中,运动力学的常用设计准则

3.1要能够满足力学的各方面综合要求

机械结构的设计,是一项比较复杂、系统的工作,而在设计过程中,很多地方运用到运动力学原理以及其他方面的物理力学原理.这就要求在设计机械结构时,要综合考虑各种情况下,力学原理的使用准则.例如,对于在使用时,不断运动的机械结构,要考虑运动力学在不同结构部位运用是否合理,机械结构自身的强度、运转速度等,都会影响运动力学原理的最终表现效果.机械设备在运转作业时,不同的结构部位,其所受到的作用力不同,也会使得结构部件的抗疲劳性能发生变化,从这个角度来说,在研究运动力学应用的同时,也需要考虑到材料力学、疲劳力学以及其他可能发生的物理变化的,在综合各方面要求的基础上,通过合理的设计,发挥运用力学的综合指导作用,提高机械结构设计的合理性.

3.2创新机械结构的设计理念

运动力学在现代机械结构设计中,运用的方式方法在不断创新变化.而机械结构设计的理念,也要随着新的技术的应用突破,进行不断创新.机械结构设计中运用较多的设计理念,就是变元设计方法.变元设计理念的核心内涵就是定元、定向控制设计,找到影响结构设计的关键因素,并通过对变量的调整变化,设计好机械结构变化情况下运动力学适用模型.很多创新结构和新的结构模型,在使用过程中表现的效果非常好.运用运动力学,既要达到结构设计的科学合理,同时,又要保证机械结构设计使用的经济效益.在很多大型的机械设备运转时,有结构组织的变化,可能会导致结构部件之间的作用力发生变化,在这种情况下,定元、定向的设计方法,就能够控制好机械结构的关键程序,实现最优化的设计,减少不当的设计失误.

篇4:机械结构设计中运动力学的应用论文

机械结构设计中运动力学的应用论文

0引言

工业经济虽然在知识经济时代的来临和冲击之下,逐渐走向了式微的发展阶段,但这并非意味着在社会生活和经济生产中,已经失去了往昔的主导地位,仍旧存在着不可忽略的价值和功能,并在国家复兴的进程中,具有强大的助推作用。作为传统工业部门中的代表,机械制造业不但在经济发展的助推中,作用绝非可有可无,而且在当前科技创新的研究领域中,其平台作用也是不可小觑。在机械结构的设计原理中,运动力学在其中的干预作用最大,在物理学的实验活动中,也最受研究人员的重视和关注。

1机械结构设计的在应用中的技术要素

作为机械结构设计环节中的重要组成部分,结构设计中的关键要素,正是促进技术革新的重要手段之一。伴随着科研活动中的理论基础的日益夯实和技术应用范围的日趋扩大,物理学中的相关原理也逐渐拥有了充足的用武之地,在实际机械结构的设计中,不断满足着机械结构的符合要求,并促进生产水平的解放和提升。在机械结构设计层面的几何要素上进行分析,机械结构的设计原理,秉持着其精密的设计技术的指导和应用,在零部件之间能够实现咬合力的提高,并实现位置关系的明确定位和精密确定。在这种几何要素的关系体系之内,机械结构设计中最为关键的因素,便是不同的面,在这些不同的面上,通过完善和优化的考量,来保证在零件的不同接触面上,都可以进行合理的安排。

2运动力学在机械结果设计中的应用

运动力学在机械结构设计中的应用价值,主要体现在2个方面:

(1)在零部件的链接方面。在这一环节中,诚如上文中论述的那样,存在着直接链接和间接链接的差别,由于存在着应用方面的差别,所以在运动力学的应用潜力上,也存在着截然相异的表现。但是作为机械设计中的核心要素,运动力学所产生的抽象指导上,从根本上也是如出一辙。例如,利用力矩的变化,通过计算不同联接点的摩擦力和压力,从而可以了解到不同的节点的`压力和零件的材料选择等。在力学计算和相应的选择性指标的衡量下,构成决定零件的选材和位置的排列组合等等,都体现出这一点。

(2)在机械零件的操作过程中,一旦发生损耗等相关问题,运动力学的理念和技术原理同样存在着必要的指引作用,特别是在行动与摩擦之后产生的损耗之后,借助运动力学的相关理论,便能够依照运动做工,实现计算机的损耗系数,并且对零件的损耗程度进行相应的预定,还能够在根本上实现材质遴选的科学性。总之,充分利用运动力学,是保证机械结构设计的基础,也是未来的发展方向。

3运动力学在机械结构中的设计准则

3.1满足力学要求的设计准则

在进行机械产品结构设计过程中,必须要考虑到材料力学、弹性力学、疲劳力学等相关的力学准则,并且在此基础上,通过相应力学的强度计算法则,实现设计合格化的机械产品,积极引用在生产活动之中。在运动力学的物理学术体系中,疲劳力学便是一个值得参照的对象。由于其与轴承、齿轮以及轴的使用寿命等存在着直接的关联,因此在设计过程中,研究人员通常会依据不同机械零件的载荷变化,实现力学计算的灵活化处理,进而实现产品结构的优化,并延长机械产品的使用寿命和利用周期。由于零件的截面尺寸的变化,能够带动其内应力变化适应能力的提高,这便能够使得各截面的强度相等。而按等强度原理设计的结构,材料才可以得到充分的利用,提高经济效益。

3.2创新机械结构的设计理念

如今的机械结构创新设计活动,大体是指采用机械结构设计变元法,通过针对机械结构设计中相关因素的遴选和改变,以实现机械结构在实用层面上的技术革新和理念创新,以便满足于应用上的诸多需求。在这种呼之欲出的科研背景之下,创新型结构在便利性和经济性等多方面上均能够优于传统设计结构的主要原动力,就是近年来推出的变元法。这种机械结构的设计法则主要包括多种装配原理,例如数量变元、形状变元、材料变元、位置变元以及装配联接变元等等,在变元中实现机械结构设计方案的革新,并在数学模型的引导和助推下,计算和测试其结构性能,便能够选择出最优化的机械结构设计。

4结语

通过对运动力学的理论阐释及对其在机械结构设计应用中的使用角度和应用范围进行深度分析,便可得知运动力学对机械设计应有所具有的非比寻常的指导作用和干预影响。由于机械产品的使用在当今经济活动中,与运动设备之间的联系越发紧密,因此在机械结构的设计活动中,需要机械运动理论的深度化透析和研究,并且紧随市场需求的步伐,进行相应的技术改革与理念创新,为国家的机械制造业提供更为便捷的服务。

篇5:建筑结构设计中剪力墙结构设计方法及应用初探论文

建筑结构设计中剪力墙结构设计方法及应用初探论文

摘要:如今,我国经济快速发展、技术水平不断提高,建筑事业的发展也在突飞猛进。作为我国重要的支柱性产业,建筑行业在近年的结构设计中,普遍采用剪力墙结构,这和剪力墙结构较好的抗震性和抗侧刚度大的特点是密不可分的。文章对剪力墙结构设计方法及建筑结构设计的应用进行了分析,保障了建筑结构中剪力墙的正确使用。

关键词:剪力墙;结构设计;应用分析

剪力墙在建筑中具有结构刚度大、整体好、抗震性强等优点,从而被广泛应用到建筑结构设计中。剪力墙在应用中具有众多优点,得到了开发商和业主的普遍青睐。在应用中,要仔细分析剪力墙的优缺点,以提高剪力墙结构的综合利用率,更好的促进建筑事业的发展。

1.剪力墙结构设计中的基本概念及其分类

1.1剪力墙结构的基本概念。剪力墙高和宽尺寸都比较大,但其厚度却非常小,这就决定了剪力墙的几何特征和受力形态。其几何特征类似于板,但受力形态却和柱子惊人的相似,在比值上与柱子有一定的区别。在剪力墙的结构中,墙是一个平面结构,承受着竖向压力和其平面作用下的水平剪力的双重力量。在地震作用和风载下剪力墙仅满足刚度强度是远远不够的,还必须满足非弹性形变反复循环下的延性、能量消耗和控制结构断裂而不倒的要求。所以,在剪力墙的设计中要求将其设计成延性弯曲型。

1.2剪力墙结构的分类。剪力墙结构主要可以分为四类,而分类的依据则是剪力墙是否开洞和其开洞的大小。

(1)实体墙或者截面剪力墙不开洞或者开洞的'面积小于15%,这种剪力墙就会变成曲型,其就像一个整体的悬壁墙,在整个墙肢的高度上,弯矩图既没有弯点,也不会发生突变;

(2)整体小开口剪力墙。虽然这种剪力墙的开口比较小,但是开洞面积已经大于15%。整个剪力墙的变形主要为弯曲型,但是整个墙肢的高度基本上没有反弯点,弯矩图的主要位置发生了突变;

(3)双肢或多肢剪力墙。这种剪力墙一般开口较大,或者其洞口成列分布。虽然在开口上与整体小开口剪力墙不同,但是受力特点却十分类似;

(4)壁式框架。这种剪力墙洞口尺寸很大,连梁线刚度和墙肢线的刚度比较接近,整个受力墙的变形为剪切型,受力特点与框架结构类似。壁式框架在大多数高层建筑的楼层中会出现反弯点,弯矩图在楼层的地方也会产生突变。

2.剪力墙结构设计的方法

剪力墙长度和宽的尺寸比较大,但是其厚度比较小。根据其设计的长度和厚度的比值可以将其按照柱形和双向受压构件设计。

2.1剪力墙结构厚度的选取。抗震规范6.4.1条有明确规定,剪力墙底部加强墙厚一、二级抗震等级最好大于200mm,而且不得低于楼层高度的1/16,其它地方则不得小于160mm。在剪力墙结构设计中,遇到特殊情况的建筑物应该采取概念设计分析,有效控制墙肢轴压的比值,确保整体的连结从而达到减少墙厚度的效果。

2.2墙肢长度的选取。剪力墙墙肢截面的高度就是剪力墙墙肢的长度,这个长度一般不应超过8m。在剪力墙结构设计中应确保剪力墙结构的延性,为了避免脆性的剪切破坏,可以将高宽比大于2的细高剪力墙设计成弯曲破坏的延性剪力墙。但有的墙体长度很长,为了确保墙体的高宽比值大于2,就要开设洞口,将长墙分成均匀、长度较小的连肢墙,而其洞口则最好采用约束弯矩比较小的弱连梁。

3.剪力墙结构设计计算的原则

在剪力墙的设计过程中,不能盲目地采取手段,应该根据设计规范具体考察结构的设计是否合理。在进行设计时,在技术层面上应遵循一些原则,这样才能促进剪力墙结构设计的规范化、合理化。

3.1楼层之间最小剪力系数的调整原则。为了减轻结构的自重,避免地震的发生,在建筑过程中可以减少布置剪力墙,但是要求短肢剪力墙承受的第一振型底部地震倾覆力矩占结构总底部地震倾覆力矩的比值不超过40%,可以采取大开间剪力墙,使其结构拥有更好的侧向刚度,确保楼层最小剪力系数不小于规范限值,这样可以大大减少工程造价。

3.2楼层层间最大位移与层高之比的调整原则。对于普通的建筑,设计重点是楼层之间的扭转变形和剪切变形。剪切变形的控制大多以竖向构件的多少来衡量,如果竖向构件数量很多,就会造成剪重比偏大,造成设计不合理,导致扭转变形过大,同样不能有效满足楼层间位移的需要。所以,在建筑物中应尽量避免扭转变形,而不能仅靠增加竖向构件的刚度来调整楼层之间的位移。

3.3剪力墙连梁超限的调整原则。剪力墙跨高比小于2.5的连梁比较容易出现剪力和弯矩超过规定限度的情况,因此一般规定剪力墙连梁的跨高比最好大于2.5.跨高比大于5的连梁最好按照框架梁来设计,而跨高比在5-6之间,连梁刚度不减的情况下,会出现剪力或弯矩超出规定限度。所以在剪力墙结构设计过程中应该充分利用连梁超限的调整原则,这样回大大节省工程造价,能有效的节约工程的投资。

4.认真分析剪力墙结构体系特点,采取有效措施优化结构设计

4.1剪力墙结构体系特点。剪力墙作为建筑结构中不可或缺的构件,逐渐被人们发现了不足之处,其具有承载力和平面内刚度大的优势,但剪切变形相对来说较大,且平面外较薄弱,加上开动后剪力墙形式复杂多变,受力非常繁琐。剪力墙的抗剪、抗弯以及抗侧刚度都比较大,在地震作用下,可以吸收地震的能量,减小地震力对建筑结构的破坏性。所以,使用剪力墙结构的建筑质量更高,出现安全的事故的概率也更低。剪力墙结构设计比较复杂,而且施工成本较高;剪力墙的高度一般比普通墙面要高很多,墙体相比较为平整,外形更加美观。剪力墙的类型很多,不同的施工要求以及施工场地对剪力墙的结构有着不同的选择,为了提高施工的质量,设计人员需要先实地考察,这样也有助于设计出科学、合理的建筑。剪力墙在建筑中数量不宜过多,否则会影响建筑的整体结构以及布置的合理性。在设计剪力墙结构时,要考虑到不同墙面的承重能力不同,这样才能充分显现剪力墙的作用与价值。

4.2剪力墙优化设计的有效措施。在优化剪力墙结构的设计中,为了使受力达到均衡,应当采取有效的措施。剪力墙结构的安全可靠度非常高,每一个结构能够同时发挥最大作用,这样能够使设计达到经济合理。所以在剪力墙的优化设计中首先应该考虑到工程的造价和安全性,结合这两项因素对剪力墙的布置进行合理的调整,这样能够促进建筑结构设计中剪力墙结构的优化。另外,为了节省工程造价,可以从技术手段和原材料的应用这两方面入手。

5.结语

剪力墙结构在民用建筑中应用广泛,对剪力墙结构设计进行有效分析的过程中,我们应该重视剪力墙结构基本概念的设计,认真把握设计中遵守的各项原则,合理选用剪力墙结构的长度和宽度,使设计达到最优效果。只有这样才能保证建筑结构经济安全,有效减少工程费用,促进整个工程建设的持续稳定发展。

篇6:智能扭力扳手机械结构设计论文

智能扭力扳手机械结构设计论文

0引言

扭力扳手是一种能够实时反馈并控制拧紧力矩的常用工具,可以施加准确的拧紧力矩。现有的扭力扳手都要先设定所需扭矩值再进行拧紧操作,这要求操作者对螺栓所需扭矩值有一定的掌握。对此,课题组研制了一款根据螺栓规格自动设定所需扭矩值的智能扭力扳手。该智能扭力扳手可实现自动识别螺栓规格,辅助设置相关参数,自动计算螺栓的许用扭矩,采用扭矩传感器采集施加的扭矩值与许用扭矩值比较,达到许用值时扳手手柄出现微动失效,及时卸载并提示不再加力。机械机构部分主要实现自动计算许用扭矩和加力达到所需值时及时卸载失效,防止因用力过猛损坏零部件。

1设计思路

智能扭力扳手由控制系统和机械结构2部分组成。机械结构部分主要包括无级定位夹持机构和过载微动失效机构。夹持机构不但要适应不同规格的螺栓,还要实现关联螺栓规格与所需扭矩值的传感器功能。因此选用无级定位的方式既能实现夹持装置活动端任意位置定位,用于夹持不同规格的螺栓,并且在加力时保持稳定,又可通过活动端与电位器关联实现开口大小的检测;过载微动失效机构实现过载后在电磁铁的驱动下实现扳手头部和手柄连接铰链的轻微转动,及时减小施加载荷,并提示操作者不再加力。

2设计原理

(1)无级定位夹持机构

夹持机构用于夹持螺栓六角头,为了适应不同规格的螺栓,夹持开口大小必须可调。传统的活动口扳手的调整是利用蜗轮蜗杆机构实现的,利用蜗轮蜗杆机构的反向自锁实现活动端的定位,但是这种机构传动效率低,扳手开口调节较慢。本文所设计的无级定位夹持机构通过滑块在定位轨道中滑动调节开口大小,调节大小一步到位,效率较高,利用接触面的摩擦力实现定位,稳定可靠。

(2)夹持机构原理分析

无级定位夹持机构由扳手头主体、滑块、活动端、销轴等几部分组成。如图1所示,滑块与活动端通过销轴铰接,滑块在扳手头主体的导槽中滑动,活动端的下表面在导轨上表面上滑动,活动端中间部位的三角形凸起用于夹持螺栓头的定位。

(3)过载微动失效机构原理分析

由于智能扳手控制系统的输出电压最大为12V,低电压电磁铁的电磁力是有限的,因此利用钢珠的滚动摩擦系数低特性,实现大载荷微动机构的低电压驱动。过载失效机构原理。该机构由扳手头部、联接销轴、扳手手柄、卡栓、复位弹簧、钢珠、锁紧套、电磁铁等零部件组成,扳手头部和手柄通过联接销轴铰接,卡栓圆柱面有凹槽来配合钢珠并在锁紧套的作用下将卡栓定位。电磁铁为动力元件,不通电时,锁紧套在复位弹簧的作用下将钢珠和卡栓锁紧,卡栓的上表面与扳手头部下表面相接触,铰接处无法转动。当拧紧螺栓时,控制系统检测施加的扭矩值并与所需值比较,当到达所需扭矩值时,给电磁铁通电,锁紧套在磁铁吸力的作用下向下运动使钢珠和卡栓解脱,卡栓解脱后在施加扭矩的作用下铰接处发生转动,转到头部与手柄壁接触为止。扳手拧紧螺栓过程中力量较大,小电压驱动的电磁铁力量比较小,此机构巧妙的'运用钢珠摩擦系数小的特性,使用较小的驱动力使扳手在施加扭矩值达到所需值后及时卸载,有效防止扭矩值的进一步增大。

3仿真与优化

(1)有限元仿真

扳手头部夹持机构受力较大,运用大型有限元分析软件ANSYS对其进行静力学仿真,验证设计的合理性,并根据仿真结果进一步对模型进行优化。装配体的有限元分析计算中,需要考虑各零件之间的接触问题,本设计中接触面之间的摩擦系数是重要参数。因此,首先要建立合理的力学模型,正确设置各接触面的接触类型及摩擦系数。扳手拧紧螺栓时,夹持端面会受到被夹持件的反作用力。对夹持机构的夹持接触面施加法向载荷,模拟螺栓的拧紧过程,有限元网格划分模型如图4所示。该扳手的使用范围为M5~M24。经计算,拧紧M24的普通六角头螺栓需要施加260Nm的扭矩,M24的螺栓六角头对边距为36mm,需要2个夹持面各施加大小约7kN的力。因此,分别对2个夹持端面施加法向载荷,大小均为7kN,设置活动端和滑块与扳手主体的摩擦系数为0.3,在机构与手柄联接处施加固定约束。

(2)结构优化

仿真结果显示,该机构设计模型存在严重的应力集中现象,受力不均匀,这是由于模型设计中形状突变造成的,可通过结构优化改善此问题。根据各个零件的应力云图,各个零件分别做以下优化:①扳手主体。在夹持头与主体联接突变处,添加肋板进行加固,并将突变处更改为圆角过渡;②活动端。在活动端中间部位销轴上方的突变处进一步加固,将圆角过渡更改为肋板,在活动端与主体接触摩擦面位置受力较大处,对通槽中无干涉位置进行实体填充,直角改为圆角。

4结语

针对智能扭力扳手的总体方案,设计了其机械机构部分。巧妙的运用钢球组合机构解决了小力驱动控制大力机构的微动,分析了夹持机构利用摩擦力实现无级定位的可行性。并运用ANSYS软件对夹持机构的受力进行了静力学分析,根据结果进行结构优化,优化后各部位的应力值满足设计要求。机械结构的设计满足了智能扭力扳手的设计需求,智能扭力扳手能有效解决技术资料在工程实际中运用较少的问题,能够快速准确地施加拧紧力矩,智能化程度进一步提高。

篇7:定律运动力学原理分析论文

关于定律运动力学原理分析论文

碰撞是宇宙天体形成和演化的基础,传统物理学中的牛顿万有引力存在着一定的缺陷,根据其性质,简易论将它修改为碰撞定律,从而使物理学运动力学得到完善。

简易论碰撞定律是简易论三大定律当中的第一个定律,是作者在研究双星运动规律时得出的。作者发现,只具有两个物体组成的系统,在运动的过程中必须具有外力的作用,否则是不能保持运动的,一旦运动起来几乎是呈直线碰撞。而牛顿万有引力定律仅仅注明了计算两个物体引力大小的计算方法,没有注明两个物体以外的物体对两个物体运动的影响,物理学又没有其它解释天体碰撞现象的定律,为此,根据牛顿万有引力定律的性质,简易论将其修改为碰撞定律。

简易论三大定律都着重强调了第三物体和第三物体以上的物体,在天体运动过程中的重要性,牛顿万有引力定律只能运用于计算天体质量的大小,它应该属于一个数学定律。而实际上,人们已经把它当作物理学定律运用了几百年,并认为运用它成功的发现了海王星,但在运用到太阳系以外时,万有引力定律就失灵了,原因就在如此。

事实上,宇宙空间的一切天体都不同程度的自然受到了各种外力的影响,单一两个物体作用的运动是不存在的。在太阳系,银河系银盘的转动也是保持太阳系各成员运动的基础,这个作用甚至超过了单一第三物体对两个物体运动的影响,在简易论中,将其列为第三物体以上的物体的范围。

碰撞是宇宙天体形成和演化的基础,简易论认为,宇宙的一切天体都是在碰撞的过程中形成的。在太阳系,把小行星带和太阳作为两个物体的运动,木星作为它们的第三物体,由于小行星带中的群体数量大,它们形成了一个行星环,在小行星和木星围绕太阳运行的过程中,小行星的平均公转周期约为木星公转周期的一半,在木星围绕太阳运行一周时,小行星即可运行二周。当小行星运行至木星和太阳之间时,作为第三物体的木星的作用力产生,当小行星运行到木星和太阳的对面时,作为第三物体的木星的作用力消失,从而使各小行星的轨道不断发生改变,并使各小行星轨道发生交叉,从而引起运动过程中的碰撞。

小行星带是太阳系天体碰撞最频繁的区带,符合天文观测事实。由于火星紧靠小行星带,火星受到的撞击较太阳系其它成员严重,其次为月球,大大小小的撞击坑构成月球基本的外貌。地球由于受到月球的保护,使地球受到小行星撞击的.频率大大降低,金星和水星由于远离小行星带,受到小行星撞击的可能性更小,水星上的陨石坑大多为早期发生的。

简易论碰撞定律也可解释地球表面的碰撞现象,如一个苹果挂在树上,树身于地面相连,应该把它看作一个物体,当果柄与树枝脱离时,苹果与地球构成两个物体,这时由于苹果距离地球太近,任何第三物体的作用都不能抗拒地球巨大的引力,苹果落地就是一种碰撞。

近地飞行的飞机,发动机的发动,可视为第三物体的作用,飞机保持运动,当发动机停止发动时,飞机必将坠地发生碰撞。其它如汽车的运动,由于轮子着地,只可与地球视为一个物体,即使停止运动也不构成碰撞。

通常最常见的碰撞,在地球上以陨石为主,它们的主要来源是彗星的彗尾,由于质量太小难以形成稳定的轨道,受地球引力的影响容易坠向地球,但由于地球具有大气层保护,对地球生命不构成大的威胁。

陨石与小行星的主要区别在质量上,只有陨石的质量达到一定大时,陨石才可成为一颗小行星,质量越大的小行星,轨道的稳定性越强,撞击地球的可能性就越小。凡能对地球生命构成严重威胁的小行星,应该不会撞击地球,因为地球的公转速度快于小行星的公转速度,同时又有月球围绕地球运动,受地球离心力的影响,小行星在接近到地球一定距离时,就会改变轨道,使向公转速度慢于小行星20倍,又没有离心力的月球。

更大质量的小行星,当平均轨道接近地月系统时,通常会改变轨道,先变成地球的卫星,当它的轨道缓慢向地球靠近时,都将被月球拦截撞到月球上。

凡对地球造成比较严重的撞击,一般为彗星撞击,如通古斯大爆炸等。由于彗星的运行速度远快于地球,地球没有躲避彗星撞击的能力,但地球具有大气层保护的能力,在彗星高速使向地球的时候,彗星体会因急剧加热膨胀在空中爆炸,大大降低对地球生命的威胁。

木星距离太阳的距离比地球距离太阳的距离远5倍,遭受大质量彗星撞击的可能性远大于地球,凡能通过地球轨道的彗星的质量一般不会太大,地球不会发生象木星那样严重的彗星撞击。因此,人们不必过分担心小行星撞击地球。

篇8:生活中的力学论文

力学在生活中的应用

人走路是利用了鞋与地面的摩擦力,向后蹬是给地施加了一个向后的作用力,然后由于物体间作用力是相互的,所以地也给人一个向前的作用力。

给气球充上密度比空气小的气体,如氢气、一氧化碳,气球就会受到空气对它的向上的大于其本身重力的力,然后我们就看到气球飞向空中。

因为重力,我们无论离地面多远,都不必担心会像太空中在空中飘浮,终有落到地面的时刻。又因为重力,人类想要飞的梦想还没实现,而飞船卫星的起飞是花费的巨大的能量才克服重力的影响。

当别人用手打你肩膀的时候,你受到了他给你的作用力,但是你的肩膀也打了他。两个力是相同的,只不过因为压强的不同,产生的效果也就不一样・・・・・・

力学知识在日常生产、生活和现代科技中应用非常广泛。下面,我就几个方面谈一谈我对生活中力学的认识吧。

(一)重力的应用

我们生活在地球上,重力无处不在。如工人师傅在砌墙时,常常利用重锤线来检验墙身是否竖直,这是充分利用重力的方向是竖直向下这一原理;羽毛球的下端做得重一些,这是利用降低重心使球在下

落过程中保护羽毛;汽车驾驶员在下坡时关闭发动机还能继续滑行,这是利用重力的作用而节省能源;在农业生产中的抛秧技术也是利用重力的方向竖直向下。假如没有重力,世界不可想象,水不能倒进嘴里,人们起跳后无法落回地面,飞舞的尘土会永远漂浮在空中,整个自然界将是一片混浊。

(二)摩擦力的应用

摩擦力是一个重要的力,它在社会生产生活实际中应用非常广泛。如人们行走时,在光滑的'地面上行走十分困难,这是因为接触面摩擦太小的缘故;汽车上坡打滑时,在路面上撒些粗石子或垫上稻草,汽车就能顺利前进,这是靠增大粗糙程度而增大摩擦力;鞋底做成各种花纹也是增大接触面的粗糙程度而增大摩擦;滑冰运动员穿的滑冰鞋安装滚珠是变滑动摩擦为滚动摩擦,从而减少摩擦而增大滑行速度;各类机器中加润滑油是为了减小齿轮间的摩擦,保证机器的良好运行。可见,人类的生产生活实际都与摩擦力有关,有益的摩擦要充分利用,有害的摩擦要尽量减少。

(三)浮力的应用

轮船能漂浮在水面的原理:钢铁制造的轮船,由于船体做成空心的,使它排开水的体积增大,受到的浮力增大,这时船受到的浮力等于自身的重力,所以能浮在水面上。它是利用物体漂浮在液面的条件F浮=G来工作的,只要船的重力不变,无论船在海里还是河里,它受到的浮力不变。根据阿基米德原理,F浮=ρ液gV浮,它在海里和河里浸入水中的体积不同。轮船的大小通常用它的排水量来表示。所谓

排水量就是指轮船在满载时排开水的质量。抽水马桶,气球飞机浮标之类,生活中还有游泳,化工实验会用到密度计,流量计等等,都是利用了浮力的原理。

www.wenku1.com/news/55D77ED0B2D980D8.html近来,洛阳的“最牛教师”凭靠他的应用力学原理在菜刀上做俯卧撑走红了网络。这位教师曾经在一年内做俯卧撑157万余次,创下吉尼斯世界记录,且至今无人打破该项记录。这位力学教师说不用刻意拘谨在什么地方,只要有一块干净的地板,就可以练习俯卧撑。他拿出一块木板,又从厨房拿来两把老伴日常切菜的菜刀,刀刃向上卡在木板上的槽子中,再将手掌放在刀刃上,连续做了5个俯卧撑。在他的两只手掌上分别留有两道深度均匀的印痕,是刀刃的压力所致,然而并无割伤。这是运用了什么力学原理呢?这位老教师解释,原来是手掌和刀刃的接触面越长,单位受力面积内的压强也就越小,加上他常年坚持练习俯卧撑,手掌上有一层厚厚的老茧,故而不会受伤。看来,力在我们的生活中必不可少啊!

像这样的例子不计其数,举不胜举。力学在我们生活中的应用太普遍太广泛了。假如没有了力学,真是难以想象世界会变成什么样子。对于我们学土木工程的学生来说,力学更是作为“家常小菜”出现在我们的生活中。无论是基础的理论力学、材料力学,还是专业的弹性力学、结构力学等等,都是我们通往专业的必经之路。我想,不管将来我选择了什么专业,我都会努力学习好力学这门学科的。

篇9:浅析抗震设计在房屋建筑结构设计中的应用论文

浅析抗震设计在房屋建筑结构设计中的应用论文

房屋建设越来越重视抗震的设计要求,这对于多发地震的地区有很大的意义,房屋的抗震性越强,房屋的安全越有保证,不仅可以减少财产的流失,而且在很大程度上可以保证人员的身体安全。所以,重视建筑的抗震性对于现实生活有不可估量的作用。

1 房屋建筑抗震的现实意义

对房屋的抗震性的研究,不仅仅对于多发地震的山区有很大的意义,于城市而言,意义也很大,城市的经济发达,就业机会多,自然而然的吸引更多的就业人员,人口密度大,一旦发生地震,会损失很多的财产。这些引起了建筑专家和相关部门的重视,为此还为房屋的建筑抗震性作出了规定,这些标准一定程度上成为房屋建筑标准,房屋在遇到不同等级的地震时均应该满足不同的要求,力求减少人们的经济损失。

2 实现抗震设计的措施

抗震设计是房屋建筑设计的一部分,对于实现房屋建筑抗震性要求,最重要的是从房屋结构设计等方面来考虑,为此,房屋结构设计的情况与工程建筑的质量状况密切相关。所以,要重视房屋建设的合理性与科学性,从而更好地去追求房屋的抗震性。

2.1 建筑结构状况影响房屋抗震性能

第一,在考虑房屋结构的基础上,了解房屋建筑的情况,比如房屋建造选择的地基情况,地基稳定性应该是否满足建设的要求,选择地基稳固,抗震性良好的位置来安排房屋建筑。房屋的地基稳固,房屋整体构造就会有坚实的承载力。第二,房屋的结构类型在一定程度上也会影响房屋建筑的抗震性,对于结构相同的房屋建筑最好选择地基性质相同的,房屋建筑最好具有规则性,这样可以很好的在地震发生时减少房屋的扭曲程度。第三,房屋建筑抗震性的提高,应该从整体入手,设置抵抗防线,把握房屋的受力情况,减少因不满足设计要求而引起失误。这三个方面从建筑结构入手,考虑地基、结构构造等因素全面增强房屋建筑抗震性能。

2.2 地震设防标准设计应该严格遵守

地震设防标准是根据一定的事实依据制定的,遵守地震设防标准对于房屋建筑抗震性的实现有很大的帮助。将四个房屋建筑分命名为ABCD,对于A和B这两个建筑要求抗烈度要求高于本地的地震设防要求,至少不低于一度;对于C房屋建筑类型,房屋的抗震性与当地的地震设防要求相当;对于D房屋建筑类型,房屋的'抗震性建设要求低于当地的地震设防标准。但是必须要满足当地抗震性的要求。由此观之,房屋的抗震性的要求在很大程度上与当地的地震设防性相关,但是也可以根据房屋的建筑类型来考虑房屋实际的抗震要求,这样在满足当地房屋抗震要求的基础之上,也可以更好地追求房屋建筑的经济利益。

2.3 从提高房屋建筑刚度性入手

从提高房屋建筑刚度性入手,就是要重点考虑房屋建筑的用途和合理刚度,努力从各个方面来提高房屋建筑抗震性要求。为此,可以从以下方面入手。第一,房屋建筑的选材很重要,尤其是钢筋混凝土的选择,在很大程度上会影响房屋的刚度,所以在建筑中应该选择合适的钢筋和混凝土。第二,为进一步增强钢筋的坚固程度可以使用加装钢结构的方法,这样可以让房屋的坚固效果达到更好地程度。第三,可以对部分的建筑设置钢结构,参照一定的规范标准设计房屋结构,从建筑本身构照来提高房屋建筑的抗震性。

2.4 缓解因地震对而房屋建筑造成影响的方法

缓解因地震而对房屋建筑造成影响的方法有很多,在建筑设计要求上,可以安装反摆装置,这种装置可以在通过增加建筑的阻力基础上,增加建筑的抗震性,查看反摆装置移动方向可以判断房屋的状况。在建设过程中,可以安装隔震层,可以减少建筑主体破坏程度。但要注意的是,隔震层应该安装在建筑主体结构和基础之间,这样可以达到很好的效果。

3 抗震设计的重点要求

在总体上把握房屋的建筑要求,也应从以下方面入手:

3.1 重点要求要关注建筑构件和建筑主体的选择

在房屋建筑过程中可以使用很多的构件形式,品种繁多的构件在很大程度上可以实现建筑房屋抗震性的提高,所以,为了更好地提高房屋建筑的抗震性,在设计房屋时要重视这方面,选择合适的建筑构件,根据实际情况决定,此外,还应该确保建筑主体结构符合要求。

3.2 设计限值应该准确控制

设计限值关乎建筑的总体高度和层数两个方面。房屋的涉及限值在很大程度上会影响房屋建筑抗震性,一般而言,房屋的设防烈度会影响房屋的建筑层数,建筑层数和总体高度均是由设防烈度决定的,在满足设防烈度的情况下,进行房屋建设,也应该考虑到房屋建筑的框架结构和建筑高度。

4 结论

重视房屋建筑抗震性,是为了保护居民的生命和财产安全,对于社会都有很大的意义,在实现高度的抗震性路途上,还需要做出很大的努力 ,专业人员加强学习研究和借鉴外国的优秀经验,提高自身的文化素养,牢记实践得真知,加强实践的交流互动,努力提高房屋建筑的抗震性能。

参考文献:

[1]袁兵,官小均.浅谈房屋建筑结构施工的常见問题[J].四川水泥,(03).

[2]曾庆生.刍议房屋建筑结构的加固设计及施工技术[J].建材与装饰,2017(09).

篇10:机械自动化对土木工程中的应用论文

1施工机械自动化技术要点

工程建设,由于平常的施工条件相对较差,因此我们采用机械施工,为了减少施工的难度,同时又要确保施工完成的质量。工程建设应用于工程机械是复杂的地形,工作环境恶劣的现场施工条件,要想更顺利更省力的完成施工,就应该考虑如何引入机械自动化控制技术。应该研究自动化的控制系统、工程机械和设备位置的识别功能。其功能是确保机械设备不会产生碰撞。施工现场机械设备较多的时候,引导更多的机械操作,并确保机械操作不影响。接下来对土木工程机械自动化技术进行具体功能分析。

1.1机械自动化技术的位置诱导

在自动化建设过程中我们应该要考虑到如何实现位置诱导,也就是说让设备必须依照原定路线执行,对于识别能力会得知它已经偏离了课程建设、设备会有自动复位功能,即表示位置感应控制功能,这台机器可以使机械设备速度以及方向始终走在设置路径。

1.2机械自动化技术的全管理

在建筑工地,各种机械和各种操作的同时,对于我们施工过程中的材料以及设备等等的存放于管理会给工程机械操作带来阻力,变成阻碍机械无人操作。因此机械本身应该意识-警告-停止-安全域感应等功能。

1.3机械自动化技术的位置识别

工程机械自动化技术也就是说具备自动化技术以及自动识别能力。在目前国内民用建筑方面,机械设备用于民用建筑工地安装自动识别系统,但是一些设备可以选择外部位置识别方法。内部识别需要设置几个指标,然后利用超声波来实现这样的识别;外部识别不需要通过借助现场,而只是需要使用测速传感器或者其他一些传感器来实现识别设备的一个具体的位置。

1.4认识和评价施工对象

施工机械和设备,随时了解和掌握施工对象信息。比较经常用到的就是的超声波传感技术还有通过这个图像处理技术来识别的一个过程。通过使用超声信号无人液压挖掘机上面的一个传感器,来实现了通过超声波传感器安装在液压挖掘机斗来判定具体的一个形状。

1.5机械自动化技术的机群控制

机群控制功能是一项全面的管理能力。当施工工程中,很难避免可以有多个工作同时施工的情况下,这就需要同时操作各种机械设备。若要保证现场秩序,不同的机械之间的合作,有必要实现机械设备的自动化。发送各种各样的机器工作来判定状态是必须具备的,从而来实现这样一个中央控制室每个机械设备施工方案的指挥控制系统。

静力触探技术中探头的机械结构设计

机械论文

结构设计的论文参考

高速公路工程中机械设备管理论文

浅谈产学研一体化在机械教学中的应用分析论文

如何在建筑结构设计中提升安全性论文

工业建筑结构设计优化的论文

市政道路路面结构设计探索论文

混凝土的结构设计研究论文

高中数学中德育教育的应用论文

运动力学中机械结构设计应用探析论文(精选10篇)

欢迎下载DOC格式的运动力学中机械结构设计应用探析论文,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档