下面是小编给各位读者分享的数学教案-整数大小的比较和求一个整数的近似数(共含13篇),欢迎大家分享。同时,但愿您也能像本文投稿人“小禅”一样,积极向本站投稿分享好文章。
教学目标
1.使学生掌握亿级的数的大小比较方法.
2.会用“四舍五入法”求亿以上的数的近似数.
3.建立自然数的概念.
4.培养学生比较、分析的思维方法.
教学重点
比较亿以内的数的大小
教学难点
省略亿后面的尾数,求近似数
教学过程
一、教学自然数概念.
我们数物体的个数用的1,2,3,4,…,10,11,…叫做自然数.
提问:
1.这些自然数是怎样排列的?
2.每相邻的两个自然数的差是几?
3.最小的自然数是几?
4.有没有最大的自然数?
引导学生得出:自然数每相邻的两个数中,后面的一个数比前面的一个多1,最小的自然数是1,没有最大的自然数,因为数数总也数不完,数出一个很大的数以后还可以再数出一个比它大1的数,所以自然数的个数是无限多的.
提问:
1.一个物体也没有怎样表示?
2.0是不是自然数?
引导学生得出:一个物体也没有,用0表示.0不是自然数.
自然数和0都是整数,我们在小学学的是大于0和等于0的整数,其它的整数以后再学,可以用图来表示.
二、教学整数大小的比较.
1.复习准备.
在下面○里填上“>”、“<”或“=”.
99999999○100000000 65432○75432 8909034○8908034
提问:
(1)每一组两个数是怎样比较的?
两个数的位数不同,位数多的数就大,八位数小于九位数,所以填“<”.
(2)第二组两个数都是五位数,你是怎样比较的?
两个五位数比较,万位上大的那个数就大;所以应该填“<”.
(3)第三组的两个数你是怎样比较的?
这两个数的位数相同,就从最高位比起;如果最高位上数相同,依次比较下一位……相同数位上数大的那个数大,所以应填“>”.
2.新课引入.
我们已经学过亿以内的数比较大小,今天我们要学习的第一个内容是亿以上数比较大小.(板书课题:整数大小的比较)
3.出示例4.
比较下面每组中两个数的大小.
999999999○1000000000 65430○754320000 8909034000○8908034000
第一组:
提问:
(1)这两个数各是几位数?它们的最高位各是什么位?应填什么符号?
(2)如果两个数的位数不同,怎样比较大小呢?
(两个数的位数不同,位数多的那个数大)
第二组:
思考:这两个数有什么特点?怎样比较它们的大小?
(这两个数位数相同,从最高位比起,6亿多比7亿多小,应该填“<”=
第三组:
提问:这两个数都是十位数,并且左起第一位都是8,你怎样比较?
(左起第一位相同,依次比较左起第二位……到第四位数百万位上的9比第二个数百万位上的8大,所以应填“ >”)
4.总结比较数的大小的方法.
提问:
(1)比较两个数的大小有几种情况?
(2)位数相同的`两个数怎样比?先从哪一位比?如果左起第一位上的数也相同,怎么比呢?
5.练习.
比较下面每组中两个数的大小.
1231500000○9078000008036700000○796300000
40870000000○41050000000
三、教学求近似数.
1.复习.
我们学过求一个亿以内数的近似数,请你们把下面各数省略万后面的尾数,求出近似数.
729380 5384000
提问:省略万后面的尾数,根据哪一位上的数进行四舍五入?并说出求近似数的方法.
2.新课引入.
省略亿后面的尾数,我们也可以用同样的方法求它的近似数,这就是我们今天要学习的另一个内容.(板书课题:求近似数)
3.出示例5、省略下面各数亿位后面的尾数,求它们的近似数.
(1)1034500000 (2)20897000000
学生试做,集体反馈
教师强调:省略亿后面的尾数,只要看省略尾数的左边起第一位上的数是不是满5.不要管尾数后的几位是多少.
如第(1)题:
千万位上的数不满5,把亿位后面的尾数舍去.
如第(2)题;
千万位上的数满5,把亿位后面的尾数舍去,在亿位上加1 4.总结求近似数的方法.
求一个整数的近似数,要看所省略尾数的左起第一位上的数是不是满5.如果不满5,就把尾数都舍去;如果满5,把尾数都去后,要在它的前一位上加1.
四、课堂练习.
1.写出最大的九位数和最小的十位数.
提问:应该怎样想?
(要想使九位数是最大的,那么从高位起每一位上的数都必须是最大的,因此只能是9,因而可以得出最大的九位数.同样想最小的十位数,每一位上的数必须是最小的,只能是0,但0不能做自然数的首位,所以最小的十位数是1000000000)
2.判断正误.
4528800000=45亿( )
1214000000人≈12亿( )
608754000000≈6088( )
强调三种错误原因:
(1)求近似数应用“≈”符号.
(2)省略尾数后不要忘记写单位名称.
(3)求出一个数的近似数后,要写上计数单位.
3.总结性提问:
(1)怎样比较两个整数的大小?
(2)怎样省略亿后面的尾数,求它的近似数?
五、课后作业 .
1.省略下面各数亿位后面的尾数,求出它们的近似数.
428000000 668000000 5083000000
2.先写出下面各数,再用“亿”作单位写出它们的近似数.
二亿零八百九十六万 五十九亿八千三百万
四亿九千九百七十万 六百二十九亿四千万
六、板书设计 .
教学内容:教科书第42―43页的例4、例5,练习十的第1―4题。
教学目的:使学生掌握亿级数的大小比较,会用“四舍五入”求比亿大的数近似数。
教学重点:亿级数的大小比较
教学难点 :用“四舍五入”求比亿大的数近似数
教具准备:小黑板
教学过程 :
1、 教学整数大小的比较
1. 教学自然数。
教师:我们数物体个数用的1、2、3、4、5、6、7、8、9、10、11……叫做自然数。
提问:
“这些自然数是怎样排例的?”
“每相邻的两个自然数的差是几?”
“最小的自然数是几?”
“有没有最大的自然数?”
通过问答,使学生知道自然数每相邻的两个数中后面一个数比前面一个多1,最小的自然数是0,没有最大的自然数,自然数的个数是无限的,无限就是一个一个地数,总能数出一个比前一个数多1的数,总也数不完。
2.教学整学。
教师:自然数都是整数,我们在小学学的整数仅限于自然数范围,其他的整数以后再学。
3.教学整数大小的比较
(1)复习。
让学生在 里填上“>”、“<”或“=”。
999999 1000000
6543200 7543200
89093400 89083400
引导学生说出比较亿以内数的大小的方法:比较两个数的大小,如果位数不同,那么位数多的那个数就大;如果位数相同,左起第一位上的数大的那个数就大;如果左起第一位上的数相同,就比较左起第二位上的数;……
(2)导入 新课。
教师:我们已经学会了比较亿以内的数大小的方法,下面我们来看一看这种方法对亿以上的数适用不适用?这就是这节课要学习的内容。板书课题:整数大小的比较
(3)教学例4。
教师将上面的复习题改变成例4,让学生先自己比较,比较完后,说一说是怎样比较的,使学生明确比较亿以内的数大小的方法对亿以上的数是完全适用的。最后教师引导学生总结出比较整数大小的一般方法。
(4)让学生独立完成练习十的第1题,做完后,说一说是怎样比较的。
二、教学求一个整数的近似数
1.复习引入。
教师:我们在第七册学过用四舍五入法法语一个亿以内的数的近似数。请大家用四舍五入法把下面各数万位后面的尾数省略,求出它们的近似数。
729380 1034500
学生做完后,着重让他们说一说各是根据哪一位上的数的进行四舍五入的。使学生明确:用四舍五入法省略一个数万位后面的尾数,要根据千位上的数进行四舍五入。
2.教学例5。
教师:刚才我们复习了用四舍五入法求一个亿以内的数的近似数,你能用同样的方法,省略亿们后面的尾数,求出比亿大的数的近似数吗?
(1)教师板书出1034500000,指名学生读出来,然后让学生省略亿位后面的尾数,求出它的近似数。
做完后,共同订正,并让学生说一说是怎样想的,为什么要把亿位数后面的尾数省略?使学生明确:求比亿大的近似数的方法,同样可以用四舍五入法,所不同的是要根据亿后面第一位上的数进行四舍五入。因为这个数亿位后面的尾数最高位是3不满5,所以要把亿位后面的尾数舍去。
(2)教师板书出20897000000,让学生先说一说怎样省略亿位后面的尾数,求出近似数,多让几个学生说说。
(3)引导学生总结出求近似数的方法
教师:到现在我们已经学过了求万以内、亿以内、亿以上数的'近似数的方法,也就是学过了求一个整数的近似数的方法,下面我们来总结一下。求一个整数的近似数,要根据哪一位上的数进行四舍五入。
由此总结出求近似数的一般方法:
还应一个整数的近似数,要看所省略的尾数的左起第一位上的数是不是满5。如果不满5,就把尾数都舍去;如果满5,把尾数舍去后,要在它的前一位上加1。
教师说明:这种求近似数的方法,叫做四舍五入。
(5) 做例5后面“做一做”中的习题。
三、巩固练习
做练习十的第2―4题。
4. 做第2题。
做题前,先让学生讨论一下这道题怎样想,启发学生根据比较数的大小来想:要使九位数是最大的,从高位起,每一位上的数都必须是最大的,因此只能都是9。同样可以想出最小的十位数是1000000000。
5. 独立做第3、4题。
教学目标
(一)使学生掌握亿级的数的大小比较方法.
(二)会用“四舍五入法”求亿以上的数的近似数.
(三)建立自然数的概念.
(四)培养学生比较、分析的思维方法.
教学重点和难点
比较亿以上的数的大小是重点,省略亿后面的尾数,求近似数是学习的难点.
教学过程设计
(一)教学自然数概念
我们数物体的个数用的1,2,3,4,…10,11…叫做自然数.
提问:
1.这些自然数是怎样排列的?
2.每相邻的两个自然数的差是几?
3.最小的自然数是几?
4.有没有最大的自然数?
引导学生得出:自然数每相邻的两个数中,后面的一个数比前面的一个多1,最小的自然数是1,没有最大的自然数,因为数数总也数不完,数出一个很大的数以后还可以再数出一个比它大1的数,所以自然数的个数是无限多的.
提问:
1.一个物体也没有怎样表示?
2.0是不是自然数?
引导学生得出:一个物体也没有,用0表示.0不是自然数.
自然数和0都是整数,我们在小学学的是大于0和等于0的整数,其它的整数以后再学,可以用图来表示.
(二)教学整数大小的比较
1.复习准备
在下面○里填上“>”、“<”或“=”.
99999999○100000000 65432○75432 8909034○8908034
提问:
(1)每一组两个数是怎样比较的?
引导学生说出:两个数的位数不同,位数多的数就大,八位数小于九位数,所以填“<”.
(2)第二组两个数都是五位数,你是怎样比较的?
引导学生说出:两个五位数比较,万位上大的那个数就大;所以应该填“<”.
(3)第三组的两个数你是怎样比较的?
引导学生说出:这两个数的位数相同,就从最高位比起;如果最高位上数相同,依次比较下一位……相同数位上数大的那个数大,所以应填“>”.
2.新课引入.
我们已经学过亿以内的数比较大小,今天我们要学习的第一个内容是亿以上数比较大小.
(板书课题:整数大小的比较)
3.出示例4.
比较下面每组中两个数的大小.
999999999○1000000000
提问:
(1)这两个数各是几位数?它们的最高位各是什么位?应填什么符号?
(2)如果两个数的位数不同,怎样比较大小呢?
最后得出:两个数的位数不同,位数多的那个数大.
出示第二组数,把复习题中的第二组数末尾各添4个0.
65430○754320000
学生观察后独立解答,思考这两个数的特点,怎样比较它们的大小.
从而得出:这两个数位数相同,从最高位比起,6亿多比7亿多小,应该填“<”.
出示第三组数,把复习题中的第三组两个数末尾各添3个0.
8909034000○8908034000
这两个数都是十位数,并且左起第一位都是8,你怎样比较?
学生独立比较后说出:左起第一位相同,依次比较左起第二位……到第四位数百万位上的9比第二个数百万位上的8大,所以应填“>”.
启发学生逐步总结出完整的比较数的大小的方法.
提问:
(1)比较两个数的大小有几种情况?位数不同的怎么比?
(2)位数相同的两个数怎样比?先从哪一位比?如果左起第一位上的数也相同,怎么比呢?
在学生讨论的基础上总结出整数大小比较的一般方法,(把复习时的板书补充完整)明确以前总结的方法同样适用于比较亿以上的数.
练一练
完成练习十的第1题.
(三)教学求近似数
1.复习.
我们学过求一个亿以内数的近似数,请你们把下面各数省略万后面的尾数,求出近似数.
729380 5384000
提问:
省略万后面的尾数,根据哪一位上的数进行四舍五入?并说出求近似数的方法.
2.新课引入.
省略亿后面的尾数,我们也可以用同样的方法求它的近似数,这就是我们今天要学习的另一个内容.(板书课题:求近似数)
3.出示例5.
省略下面各数亿位后面的尾数,求它们的近似数.
(1)1034500000 (2)20897000000
同学们自己试做.
共同订正,让学生说一说是怎么想的.
根据学生的回答,教师强调,省略亿后面的尾数,只要看省略尾数的左边起第一位上的数是不是满5.不要管尾数后的几位是多少.
如第(1)题:10eq x(3)45000000154≈10亿
千万位上的数不满5,把亿位后面的尾数舍去.
如第(2)题:208eq x(9)7000000≈209亿
千万位上的数满5,把亿位后面的尾数舍去,在亿位上加1.
启发同学自己总结出求一个整数的近似数的方法.
阅读课本43页的求近似数的方法,并明确这种求近似数的方法叫做四舍五入法.(板书)
练一练
第43页“做一做”的第1,2题.
(四)课堂练习
1.指导学生做练习十第2题:写出最大的九位数和最小的十位数.
应该怎样想?相邻的二人讨论.
教师启发学生根据数的大小比较来想.要想使九位数是最大的,那么从高位起每一位上的数都必须是最大的,因此只能是9,因而可以得出最大的九位数.同样想最小的十位数,每一位上的数必须是最小的,只能是0,但0不能做自然数的首位,所以最小的十位数是1000000000.
2.判断正误:
4528800000=45亿( )
1214000000人≈12亿( )
608754000000≈6088( )
通过分析错误之处,启发同学说出求一个数的近似数应注意什么.
(1)求近似数应用“≈”符号.
(2)省略尾数后不要忘记写单位名称.
(3)求出一个数的近似数后,要写上计数单位.
3.总结性提问:
(1)怎样比较两个整数的大小?
(2)怎样省略亿后面的尾数,求它的近似数?
(五)作业
练习十 第3,4题.
课堂教学设计说明
本节课是在学生掌握了多位数的读写法以后,学习整数大小的比较,以及以亿为单位,用四舍五入法求它的近似数.这部分知识与旧知识联系紧密,因此教学过程的设计,紧密联系旧知识,运用知识迁移规律,引导学生自己探索出新方法.
本课分为三个部分.首先建立自然数的概念.第二部分是整数大小的比较,由复习亿以内的数比较大小,引申到亿以上的数比较大小,分成数位相同和数位不同两种情况,引导学生总结出整数大小的比较方法.第三部分是求一个整数的近似数,是由复习省略万后面的尾数求近似数,类推到省略亿后面的尾数求近似数的方法,即四舍五入法,以培养学生推理能力.
练习采取边讲边练的形式,对课本习题适当指导.通过判断练习,纠正学生易错之处.
板书设计
整数大小的比较
99999999 100000000位数不同,位数多的数大
65432 75432位数相同,从最高位比,
8909034 8908034……
例4
999999999 1000000000
654320000 754320000
8909034000 8908034000
求一个整数的近似数 四舍五入法
省略万后面尾数求近似数
729380≈73万 5384000≈538万
例5 省略亿后面尾数,求近似数
判断正误.
(1)4528800000=45亿(×)
(2)1214000000≈12亿(√)
(3)6087540000000≈60875(×)
教学目标
1.使学生掌握亿级的数的大小比较方法.
2.会用“四舍五入法”求亿以上的数的近似数.
3.建立自然数的概念.
4.培养学生比较、分析的思维方法.
教学重点
比较亿以内的数的大小
教学难点
省略亿后面的尾数,求近似数
教学过程
一、教学自然数概念.
我们数物体的个数用的1,2,3,4,…,10,11,…叫做自然数.
提问:
1.这些自然数是怎样排列的?
2.每相邻的两个自然数的差是几?
3.最小的自然数是几?
4.有没有最大的自然数?
引导学生得出:自然数每相邻的两个数中,后面的一个数比前面的一个多1,最小的自然数是1,没有最大的自然数,因为数数总也数不完,数出一个很大的数以后还可以再数出一个比它大1的数,所以自然数的个数是无限多的.
提问:
1.一个物体也没有怎样表示?
2.0是不是自然数?
引导学生得出:一个物体也没有,用0表示.0不是自然数.
自然数和0都是整数,我们在小学学的是大于0和等于0的整数,其它的整数以后再学,可以用图来表示.
二、教学整数大小的比较.
1.复习准备.
在下面○里填上“>”、“<”或“=”.
99999999○100000000 65432○75432 8909034○8908034
提问:
(1)每一组两个数是怎样比较的?
两个数的位数不同,位数多的数就大,八位数小于九位数,所以填“<”.
(2)第二组两个数都是五位数,你是怎样比较的?
两个五位数比较,万位上大的那个数就大;所以应该填“<”.
(3)第三组的两个数你是怎样比较的?
这两个数的位数相同,就从最高位比起;如果最高位上数相同,依次比较下一位……相同数位上数大的那个数大,所以应填“>”.
2.新课引入.
我们已经学过亿以内的数比较大小,今天我们要学习的第一个内容是亿以上数比较大小.(板书课题:整数大小的比较)
3.出示例4.
比较下面每组中两个数的大小.
999999999○1000000000 654320000○754320000 8909034000○8908034000
第一组:
提问:
(1)这两个数各是几位数?它们的最高位各是什么位?应填什么符号?
(2)如果两个数的位数不同,怎样比较大小呢?
(两个数的位数不同,位数多的那个数大)
第二组:
思考:这两个数有什么特点?怎样比较它们的大小?
(这两个数位数相同,从最高位比起,6亿多比7亿多小,应该填“<”=
第三组:
提问:这两个数都是十位数,并且左起第一位都是8,你怎样比较?
(左起第一位相同,依次比较左起第二位……到第四位数百万位上的9比第二个数百万位上的8大,所以应填“ >”)
4.总结比较数的大小的方法.
提问:
(1)比较两个数的大小有几种情况?
(2)位数相同的两个数怎样比?先从哪一位比?如果左起第一位上的数也相同,怎么比呢?
5.练习.
比较下面每组中两个数的大小.
1231500000○9078000008036700000○796300000
40870000000○41050000000
三、教学求近似数.
1.复习.
我们学过求一个亿以内数的近似数,请你们把下面各数省略万后面的尾数,求出近似数.
729380 5384000
提问:省略万后面的尾数,根据哪一位上的数进行四舍五入?并说出求近似数的方法.
2.新课引入.
省略亿后面的尾数,我们也可以用同样的方法求它的近似数,这就是我们今天要学习的另一个内容.(板书课题:求近似数)
3.出示例5、省略下面各数亿位后面的尾数,求它们的近似数.
(1)1034500000 (2)20897000000
教学内容:教科书第4243页的例4、例5,练习十的第14题。
教学目的:使学生掌握亿级数的大小比较,会用四舍五入求比亿大的数近似数。
教学重点:亿级数的大小比较
教学难点:用四舍五入求比亿大的数近似数
教具准备:小黑板
教学过程:
1、教学整数大小的比较
1. 教学自然数。
教师:我们数物体个数用的1、2、3、4、5、6、7、8、9、10、11叫做自然数。
提问:
这些自然数是怎样排例的?
每相邻的两个自然数的差是几?
最小的自然数是几?
有没有最大的自然数?
通过问答,使学生知道自然数每相邻的两个数中后面一个数比前面一个多1,最小的自然数是0,没有最大的自然数,自然数的个数是无限的,无限就是一个一个地数,总能数出一个比前一个数多1的数,总也数不完。
2.教学整学。
教师:自然数都是整数,我们在小学学的整数仅限于自然数范围,其他的整数以后再学。
(1)复习。
让学生在 里填上>、<或=。
999999 1000000
6543200 7543200
89093400 89083400
引导学生说出比较亿以内数的大小的`方法:比较两个数的大小,如果位数不同,那么位数多的那个数就大;如果位数相同,左起第一位上的数大的那个数就大;如果左起第一位上的数相同,就比较左起第二位上的数;
(2)导入新课。
教师:我们已经学会了比较亿以内的数大小的方法,下面我们来看一看这种方法对亿以上的数适用不适用?这就是这节课要学习的内容。板书课题:整数大小的比较
(3)教学例4。
教师将上面的复习题改变成例4,让学生先自己比较,比较完后,说一说是怎样比较的,使学生明确比较亿以内的数大小的方法对亿以上的数是完全适用的。最后教师引导学生总结出比较整数大小的一般方法。
(4)让学生独立完成练习十的第1题,做完后,说一说是怎样比较的。
二、教学求一个整数的近似数
1.复习引入。
教师:我们在第七册学过用四舍五入法法语一个亿以内的数的近似数。请大家用四舍五入法把下面各数万位后面的尾数省略,求出它们的近似数。
729380 1034500
学生做完后,着重让他们说一说各是根据哪一位上的数的进行四舍五入的。使学生明确:用四舍五入法省略一个数万位后面的尾数,要根据千位上的数进行四舍五入。
2.教学例5。
教师:刚才我们复习了用四舍五入法求一个亿以内的数的近似数,你能用同样的方法,省略亿们后面的尾数,求出比亿大的数的近似数吗?
(1)教师板书出1034500000,指名学生读出来,然后让学生省略亿位后面的尾数,求出它的近似数。
做完后,共同订正,并让学生说一说是怎样想的,为什么要把亿位数后面的尾数省略?使学生明确:求比亿大的近似数的方法,同样可以用四舍五入法,所不同的是要根据亿后面第一位上的数进行四舍五入。因为这个数亿位后面的尾数最高位是3不满5,所以要把亿位后面的尾数舍去。
(2)教师板书出20897000000,让学生先说一说怎样省略亿位后面的尾数,求出近似数,多让几个学生说说。
(3)引导学生总结出求近似数的方法
教师:到现在我们已经学过了求万以内、亿以内、亿以上数的近似数的方法,也就是学过了求一个整数的近似数的方法,下面我们来总结一下。求一个整数的近似数,要根据哪一位上的数进行四舍五入。
由此总结出求近似数的一般方法:
还应一个整数的近似数,要看所省略的尾数的左起第一位上的数是不是满5。如果不满5,就把尾数都舍去;如果满5,把尾数舍去后,要在它的前一位上加1。
教师说明:这种求近似数的方法,叫做四舍五入。
(5) 做例5后面做一做中的习题。
三、巩固练习
做练习十的第24题。
4. 做第2题。
做题前,先让学生讨论一下这道题怎样想,启发学生根据比较数的大小来想:要使九位数是最大的,从高位起,每一位上的数都必须是最大的,因此只能都是9。同样可以想出最小的十位数是1000000000。
5. 独立做第3、4题。
教学目标
1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.
2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.
教学重点
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.
教学难点
使学生能够区别求近似数与改写求准确数的方法.
教学步骤
一、铺垫孕伏.
1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)
986534 58741 31200
50047 398010 14870
2.下面的□里可以填上哪些数字?
32□645≈32万 47□05≈47万
学生填完后,说一说是怎么想的.
二、探究新知.
1.导入 新课.
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.
(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?
教师提问:保留两位小数,要看哪一位?怎样取近似数?
使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.
学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?
使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0. 2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.
分组讨论:保留一位小数3.0十分位上的“0”能不能去掉?为什么?
教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……
(3)求下面小数的近似数.
3.781(保留一位小数)
0.0726(精确到百分位)
(4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?
①教师出示线路图:(投影出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.
(5)小结.
教师提出问题:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的'近似数要注意两点:
①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是合还是人.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.
(6)分组合作学习,填表.
在下表的空格里按照要求填出近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数
4.3808
3.教学例2:我国生产家用电风扇61581400台.把这个数改写成用“万台”作单位的数.
(1)教师提问:把61581400台改写成用“万台”作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?
(根据学生回答教师板书:61581400台=6158.14万台)
教师总结说明:把较大数改写成用“万”作单位的数,只要在万位的右边,点上小数点,在数的后面加写“万”宇.
(2)做一做.
把248000改写成用“万”作单位的数.
4.教学例3:19我国生产水泥573000000吨.把这个数改写成用“亿吨”作单位的数.再保留一位小数.
(1)学生讨论:把一个数改写成用“亿吨”作单位的数,应该怎么办?
学生独立改写成573000000吨=5.73亿吨≈5.7亿吨,并说出改写的方法.
教师提问:如果要求保留一位小数怎么办?
启发学生自己得出≈1.4亿吨,并说出保留一位小数的方法.
教师总结说明:把较大数改写成用“亿”作单位的数,只要在亿位的右边,点上小数点,在数的后面加写“亿”字.如果小数位数比较多,可以根据需要保留前几位小数.
(2)“做一做”第2题.
把750000000改写成用“亿”作单位的数.
“做一做”第3题.
把34562800000改写成用“亿”作单位的数后,保留两位小数.
5.区别对比.
例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)
三、巩固发展.
1.填空.
求一个小数的近似数,要根据需要用( )法保留小数数位.保留整数,表示精确到( )位;保留一位小数表示精确到( )位;保留两位小数表示精确到( )位……
2.填空.
近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了( )位,6表示精确到了( )位,所以6.0后面的“0”不能丢掉.
3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?
5.28 12.71 4.86 7.05
4.按照四舍五入法写出表中各小数的近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数9.9564
0.9053
1.4639
5.(1)年北京市从事工程技术的人员共10人,改写成用“万人”作单位的数.
(2)1999年我国出版图书730000册(张),改写成用“亿册(张)”作单位的数.
四、全课小结.
今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.
五、布置作业 .
1.把下面各小数四舍五入.
(1)精确到十分位:3.47 0.239 4.08
(2)精确到百分位:5.344 6.268 0.402
2.把下面各数改写成用“亿”作单位的数.
(1)保留一位小数:3672800000 648500000
(2)保留两位小数:4853900000 288160000
板书设计
例1 2.95保留二位小数,一位小数和整数,它的近似数各是多少?
2.953≈2.95
2.953≈3.0
2.953≈3
求一个小数的近似数要注意:
①要根据题目的要求取近似值.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.
例 2 61581400台=6158.14万台
在万位右边点上小数点,在数的后面加写万字.
例3 573000000吨=5.73亿吨 .5.7亿吨
在亿位右边点上小数点,在数的后面加写亿字.
一、教学目标
1.掌握用四舍五入的方法求小数的近似数的方法。并能利用所学知识解决一些实际问题。
2.学生利用已有知识和迁移类推的方法,探索用”四舍五入:法求小数近似数的方法。培
养学生的探索能力、迁移能力和抽象概括能力。
3.感受近似数在生活中的应用。培养学生细致、认真的学习习惯。
二、教学重点
求小数近似数的方法。
三、教学难点
对精确度的理解及对四舍五入后小数末尾“0”的处理。
四、教学具准备
课件
五、教学过程
(一)创设情境引入
课件出示:小明妈妈昨天去菜市场买水果,鸭梨1.25元1斤,挑了几个鸭梨,称得的重量是3.7斤,商贩用计算器算得的结果是4.625,妈妈应付给商贩多少元?
生:4.63元
师:为什么要付4.63元?
看来在生活中解决一些问题时,需要求一个小数的近似值,今天我们就来学习求小数的近似值。
(二) 教学求近似值的方法
1.学习保留两位小数的方法
(1)刚才你们是怎样求出4.625的近似值的?谁再来讲一讲你的'方法。
用四舍五入的方法,4.625保留两位小数,看千分位的5,比4大,就向百分位进1。
(2)师小结:求一个小数的近似数一般都要用“四舍五入法”
(3)巩固:将下面小数四舍五入保留两位小数:2.582 12.807 0.849
(4)怎样将一个小数四舍五入保留两位小数?
看千分位上的数,千分位上的数大于4,就向百分位进1;千分位上的数小于或等于4,就将百分位后面的数舍去。
2.自主探究保留一位小数的方法
(1)但是最后小商贩说零分钱不要了,妈妈又该付他多少元呢?
学生回答:将4.625保留一位小数,看百分位的2,比4小就舍去。小学数学教案:四年级下册求一个小数的近似数教案
(2)巩固。
将下面小数四舍五入保留一位小数:2.582 12.807 0.849
(3)说一说怎样将一个小数四舍五入保留一位小数?
看百分位上的数,百分位上的数大于4,就向十分位进1;百分位上的数小于或等于4,就将十分位后面的数舍去。
3.迁移类推,总结方法。
(1)我们已经知道了怎样将一个小数用四舍五入的方法保留一位小数、两位小数的方法,现在你能试着完成下面的练习吗?
出示:将下面的小数用四舍五入的方法保留整数,保留三位小数。
6.0778 31.5784
保留整数:6.0778≈6 31.5783≈32
保留三位小数:6.0778≈6.078 31.5783≈32.578
(2)说一说怎样将一个小数用四舍五入的方法保留整数、保留三位小数?
保留整数的方法:看十分位上的数,十分位上的数大于4,就向个位进1;十分位上的数小于或等于4,就将个位后面的数舍去。
保留三位小数的方法:看万分位上的数,万分位上的数大于4,就向千分位进1;万分位上的数小于或等于4,就将千分位后面的数舍去。
(3)怎样用四舍五入的方法取小数的近似值,你能用一句话概括出来吗?两个人一组先互相说一说。
(4)汇报交流,得出方法。
要保留几位小数,就看要保留的位数的下一位上的数 ,如果这个数大于4,就向前一位进1,如果这个数小于或等于4,就舍去。
4.巩固拓展
出示:将2.953分别精确到个位、十分位、百分位,各是多少?
(1)“精确到个位、十分位、百分位”是什么意思?
精确到个位表示保留整数;精确到十分位表示保留一位小数;精确到百分位表示保留两位小数,……
(2)学生独立完成
(3)全班反馈答案
教师要根据学生答案的情况,引导学生重点讨论保留一位小数出现的两个答案:
2.953≈3.0 2.953≈3
师:哪个答案正确?小组讨论讨论。
出示讨论题:
(1)近似数是3.0的两位小数的取值范围是多少?近似数是3的两位小数的取值范围是多少?
(2)3.0和3表示的取值范围一样吗?哪个更精确?
(4)全班交流讨论的结果,最后教师利用课件讲解道理。
课件出示:
通过课件演示和教师的讲解使学生明确:保留一位小数是3.0,原数的取值在2.95与3.05之间.保留整数为3,原数的取值在2.5与3.5之间,所以3.0比3精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。
因此近似数3.0末尾的0不能去掉。
(5)通过解决这个问题,你觉得在求小数的近似数的时候应注意什么?
(在表示近似数时,小数末尾的0不能去掉。)
(三)应用提高
1.P74做一做
2.世界最高的山峰――珠穆朗玛峰,海拔8844.43米(保留整数)。
答案:8844.43米≈8844米
3.马拉松长跑比赛的赛程是42.195千米(保留两位小数)。
答案:42.195千米≈42.20千米
4.世界第一大洋――太平洋总面积是1.7868亿平方千米,(保留一位小数)。
答案:1.7868亿平方千米≈1.8亿平方千米
5.近似数8.0是把准确数8.□□按四舍五入法取得的,问8.□□的小数部分可以是哪些数字?
答案: 01 02 03 04
(四)全课总结
今天你有什么收获?
板书:
RelativesTime Limit:1000MSMemory Limit:65536KB64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2407 Appoint description:
Description
Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x >1, y >0, z >0 such that a = xy and b = xz.Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.Output
For each test case there should be single line of output answering the question posed above.Sample Input
7120
Sample Output
64
题意:给一个数n,求出不大于n且与n互素的数的个数,
POJ 2407Relatives(求一个整数的欧拉函数值)
,
#include