求一个小数的近似数教学方案

| 收藏本文 下载本文 作者:Enpmore

以下是小编帮大家整理的求一个小数的近似数教学方案(共含19篇),供大家参考借鉴,希望可以帮助到您。同时,但愿您也能像本文投稿人“Enpmore”一样,积极向本站投稿分享好文章。

求一个小数的近似数教学方案

篇1:求一个小数的近似数教学方案

【教学目标】

1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。

2、通过学生自主探索、合作交流,培养学生的探索能力。

【教学重点】使学生掌握求一个小数的近似数的方法。

【教学难点】使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。

【教具】多媒体

【教学过程】:

一、课前预习

1、怎样用“四舍五入”法求出一位小数的近似数?

2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?

二、展示交流

(一)创设情境,引入新知

出示豆豆,看看小豆豆的身高是多少呢?

今天下午我们就来研究求一个小数的近似数。

(二)求小数的近似数的方法

1、同学们还刻求整数的近似数的方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?

2、探究新知

(1)同桌讨论回忆什么是“四舍五入”法?

(2)讨论尝试

①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。

②出示例1,讨论求0.984的近似数

③保留一位小数时,末尾的`“0”为什么应该写呢?

(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。

(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数

1、出示教材第74页例2

①讨论:通过图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?

②结论:改写成用“亿”或“万”作单位的数。

2、从算理入手,理解改写方法。

①讨论:怎样改写呢?

②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。

三、检测反馈

1、教材第74页上、下的“做一做”。

2、教材第75页练习十二第一、2题。第3、4题

四、板书设计教

篇2:求一个小数的近似数教学方案

四舍五入法

保留两位小数0.984≈0.98 142800千米=14.28万千米

保留一位小数0.984≈1.0 778330000千米=7.7833亿千米

≈7.8亿千米

保留整数0.984≈1

注意:在表示近似数时,小数末尾的0不能去掉

教学反思:

现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。

篇3:求一个小数的近似数

教学目标

(一)使学生能根据要求用四舍五入法求一个小数的近似数.

(二)使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.

教学重点和难点

求一个小数的近似数及把较大数改写成以“万”或“亿”作单位的小数是教学重点.

把较大数改写成以“万”或“亿’作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点.

学习新课

(一)复习准备

我们已经学过求一个整数的近似数,请大家回忆一下:23956省略万后面的尾数约是多少?省略千后面的尾数约是多少?

启发学生说出:省略万后面的尾数,看千位上的数是3,根据“四舍五入”法要舍去,得出23956≈2万;省略千位后面的尾数,要看百位上的数是9,应该入上去,23956≈24千.

师:求一个整数的近似数用的是“四舍五入”法.在实际应用小数的时候,往往没必要说出它的准确数,只要说出它的近似数就够了.例如,量得大新身高是1.625米,平常不需要说得那么准确,只说大约1.6米或1.63米.

求一个小数的近似数与求整数的近似数相似,我们今天来研究怎样求一个小数的近似数.

篇4:求一个小数的近似数

例1 2.953保留两位小数,一位小数和整数,它的近似数各是多少?

“四舍五入”法

2.953≈2.95 省略百分位后面的尾数

2.953≈3.0 省略十分位后面的尾数

2.953≈3 省略个位后面的尾数

例2 1992年我国生产洗衣机7127000台,把这个数改写成用“万台”作单位的数.

7127000台=712.7万台

例3 1991年我国原油产量是139000000吨,把这个数改写成用“万吨”作单位的数.再保留一位小数.

139000000吨=1.39亿吨

≈1.4亿吨

求近似数与改写的区别

意义上

方法上

符号上

小数末尾0的处理上

篇5:求一个小数的近似数

例1 2.953保留两位小数、一位小数和整数,它的近似数各是多少?

(1)首先要理解保留整数、一位小数、两位小数……的含义.还可以怎样表述?

引导学生理解,保留整数就是省略整数后面的尾数;保留一位小数就是省略十分位后面的尾数,或者说精确到十分位;保留两位小数就是精确到百分位,也就是省略百分位后面的尾数

(2)求一个小数的近似数的方法是什么?

引导学生明确,仍然采用“四舍五入”法,看省略部分的最高位,是5以上的数,省去后在前一位加1,是4以下的数舍去.

在明确上述两点的基础上,让学生自己试算,得出:2.953≈2.95.

板书:2.953≈3.0 2.953≈3

引导学生分别说明省略的方法.

提问:

(1)上面求出的近似数3.0,为什么末尾的0不能去掉?

(2)上面求出的两个近似数3.0和3,哪个更精确些?

引导学生讨论后明确:3.0是保留一位小数,表示精确到十分位,3是保留整数,表示精确到个位,所以3.0要更精确些.由此可知近似数末尾的0是不能去掉的,因为它表示近似数的精确度的.

总结求近似数应注意什么?

在学生议论的基础上,概括出注意两点:

(1)要根据题目的要求取近似值.保留整数,就要看十分位;保留一位小数,就要看百分位……然后按照“四舍五入”法决定舍还是入.

(2)取近似值时,在保留的小数位里,小数末一位或几位是0的,应保留,不能去掉.

反馈:完成115页“做一做”(上面).

订正时说明保留的方法.

2.改写成以“万”或“亿”作单位的数.

例2 1992年我国生产洗衣机7127000台.把这个数改写成用“万台”作单位的数.

提问:

(1)把7127000台改写成用“万台”作单位的数,应该用多少来除?

(2)应该把7217000缩小多少倍?

(3)小数点应该向哪个方向移动几位?

学生回答后,教师说明,为了简便只在万位后面点上小数点,去掉小数末尾的0.

板书;7127000台=712.7万台

反馈:把348000改写成以“万’作单位的数.

348000=34.8万

师启发提问:既然把一个数改写成以“万”作单位的数,只要在万位后面点上小数点,再写上单位“万”,那么要把一个数改写成以“亿”作单位的数,应该怎么办?

3.改写成以亿作单位的数后,再求近似数.

例3 1991年我国生产原油139000000吨.把这个数改写成用“亿吨”作单位的数.

学生独立改写成139000000吨=1.39亿吨,并说出改写的方法.

提问:如果要求保留一位小数怎么办?

启发学生自己得出(接上题)≈1.4亿吨,并说出保留一位小数的.方法.

反馈:完成115页下面“做一做”

订正时要注意,防止改写与省略混淆.

4.区别对比.

例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?

引导学生讨论后明确:

(1)求近似数需要省略某位后面的尾数.保留整数,表示精确到个位,就要看十分位是几,……然后按照“四舍五入”法决定是舍还是入.求出的是近似数,应用“≈”表示,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.最后要注意别忘记写单位“万”或“亿”,遇有单位名称的要写上单位名称.

(2)把一个数改写成以“万”或“亿”作单位的数,求的是准确数,就在“万”或‘亿”位后面点上小数点,小数末尾的0要去掉,遇有单位名称的要写上单位名称,应用“=”表示,并写上单位“万”或“亿”.

(三)巩固反馈

1.我国第二大岛海南岛的面积是32200平方千米,把这个数改写成以“万平方千米”作单位的数,再保留一位小数.

2.把135000000人改写成以“亿人”作单位的数,再保留一位小数.

(四)作业

练习二十四第1~5题.

课堂教学设计说明

本节课把求一个数的近似数与把一个数改写成以“万”或“亿”作单位的数两个概念同时进行,便于学生区别对比.

求一个数的近似数与求一个整数的近似数一样,也是根据需要用“四舍五入”法保留位数.由于保留的位数不同,求得的近似数的精确度也不一样,特别是末尾的0不能去掉的道理要让学生明白.

把一个数改写成以“万”或“亿”作单位的数,也是在前边学习的基础上进行的,最后通过对比明确这两个概念的区别,从意义、方法、符号以及末尾0的处理几方面分清,共同点是都不要忘记写单位“万”或“亿”及单位名称.

练习时采用讲练结合方式,最后通过综合练习形成熟练技巧.

板书设计

篇6:求一个小数的近似数教学设计

教学内容

教科书第73页的例题1。

教学目标

1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.

2.能正确的按需要用“四舍五入法”保留一定的小数数位.

3·使学生理解保留小数数位越多,精确程度越高。

教学重点

篇7:求一个小数的近似数教学设计

四舍五入法

保留两位小数0.984 ≈0.98 142800千米=14.28万千米

保留一位小数0.98 4≈1.0 778330000千米=7.7833亿千米

≈7.8亿千米

保留整数0.9 84≈1

注意:在表示近似数时,小数末尾的0不能去掉

篇8:《求一个小数的近似数》教学反思

《求一个小数的近似数》教学反思

本节课教授的是求一个小数的近似数的方法。在学习之前,我先让学生复习了求整数求近似数的方法――四舍五入法,让学生明确了整数的尾数是改写成“0”。同时感受求一个小数的.近似数跟求一个整数的近似数实质是一样的。在求小数近似数的过程中,引导学生理解保留几位小数的含义也是这节课教师的重要教学任务。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。

但是上完之后,我总觉得:学生掌握得不好,尤其是根据一个小数的近似数求原数可能是多少,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。

说真的,有几个后进生真的让我非常痛苦,我对他们只能从头开始,从最简单的做起,因为他们对求一个整数的近似数都没掌握好,基础知识不扎实,所以面对基础差异大的学生,要处理好教学是一个难点。

篇9:求一个小数的近似数教学设计

教学内容

五年制小学数学课本第七册第54页,信息窗5。

教学目标

1.结合生活实际,感受近似数的意义。

2.学会用“四舍五,人”法求小数的近似数。

3、能根据需要保留一定的小数位数。

教学重点、难点

教学重点:掌握用“四舍五入”法求小数的近似数的方法:

教学难点:小数近似数末尾的0不能去掉。

教学过程

(一)创设情境,引人课题。

1、谈话:快乐的七天长假,你们都忙什么?

然后引入老师去“易初莲花”购物需付款81.69元,根据温馨提示:本超市对于分币已采用“四舍五入”法,那么,老师实际会付多少元呢?

学生回答后引出课题,我们今天就要来学习求小数的近似数。

2、结合生活实际,感受近似数的意义。

小数的近似数在我们的生活中是无处不在的,比如课桌长1.10米,高0.7米,数学课本封面的面积是5.8平方分米,中国的人口13.1亿等等。小数的近似数与我们的生活息息相关,所以,我们必须要掌握求近似数的方法。

今天我们就继续用“四舍五入”法研究怎样求一个小数的近似数。

[意图:

1、创设生活情境,重组教材。由于学生对教材信息窗出示的情境图——绿毛龟蛋的长径、宽径,以及游标卡尺都比较陌生,不容易引起学生的共鸣,因此,我选择学生身边熟知的、喜闻乐见的购物情境,激起了他们的学习兴趣,同时实现了从“教教材”到“用教材教”的转变。2、结合生活实际,感受近似数的意义,感受生活中的数学。]

(二)探究方法

[1、求小数的近似数的方法。

①师生互动

结合81.69元≈81.7元,81.69元≈82元。在师生交流中使学生明确由于对精确度要求不同,所以就有不同的近似数。

根据刚才的研究,我们得知求一个小数的近似数时,依然运用了“四舍五入”法,关键是要看精确到哪一位。

板书:81.69元≈82元 保留整数,表示精确到个位 十分位

81.69元≈81.7元 保留一位小数,表示精确到十分位 百分位

②举例——归纳

师:你们愿意举几个小数,求它的近似数吗?

通过板书学生的举例,让学生在探究中,教师进一步完善板书。

1、1111≈1、11 保留两位小数,表示精确到百分位……百分位

③学生讨论:求小数的近似数有什么规律?

小结:保留几位小数,就要对它的后一位进行“四舍五入”

[意图:

1、有“扶”到“放”让学生学会探索知识。

2、注重学习方法的指导:举例——归纳,让学生体会到不完全归纳方法的合理性。]

④完成56页的自主练习第一题。

[2、小数近似数末尾的0不能去掉

通过出示转笔刀并测量它的宽为3.02厘米,提出问题:约是多少厘米?(保留一位小数)

质疑:

①近似数3.0的“0”可以去掉吗?为什么?

不能去掉,因为这个“0”表示看这个近似数的精确度。

②想一想:近似数3.0和近似数3分别与3.02比较,哪个数精确些?

[意图:让学生在解决 □.□≈3 与 □.□□≈3.0中,通过对比寻根究底,加深理解。]

③总结:小数近似数末尾的0不能去掉。

④完成56页的自主练习第二题。

订正时,关注学习有困难学生出错的原因并及时指导。

(三)这节课你有什么收获?

交流后齐读课本紫色块内容。[紫色块内容是学生必须掌握的知识]

篇10:求一个小数的近似数教学设计

教学难点

使学生能够理解保留小数数位越多,精确程度越高.

教学步骤

一、铺垫孕伏.

1.把下面各数省略万后面的尾数,求出它们的近似数.

986534 58741 31200

50047 398010 14870

2.下面的□里可以填上哪些数字?

32□645≈32万 47□05≈47万

学生填完后,说一说是怎么想的.

二、探究新知.

1.导入新课.

我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:在商店买菜时,电子秤上显示总价是7.53元,而营业员只收我们7元五角钱。平常不需要说得那么精确,只要知道它的'近似数,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)

2.教学例1:求一个小数的近似数.

(1)教师谈话:出示豆豆测量身高的情境图。量得豆豆的身高是0.984米,在实际应用小数是,往往没有必要说出他的准确数,只要它的近似数就可以了。

教师:豆豆的身高约是0.98米或说约是1米。那是怎样得出豆豆的身高的近似数呢?

(2)学生小组讨论任何求一个数的近似数。思考:整数是任何求近似数的?小数能不能用同样的方法来求近似数?

小结:求一个小数的近似数,同求一个整数的近似数相似,都可以根据“四舍五入”保留一定的小数数位。

(3)教师讲解:0.984保留两位小数,要看哪一位?怎样取近似数?

使学生明确:0.984保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数0.98.

学生讨论:0.984保留一位小数和整数,要看哪一位?怎样取近似数?

篇11:求一个小数的近似数的教学反思

求一个小数的近似数的教学反思

教学之前,学生已经掌握了四舍五入求一个数的近似数。从上学期学生的各个项目反馈来看,掌握得还是比较乐观。而小数的知识刚刚习得,为此本堂课对于大部分学生新知识的理解,我个人觉得难度不是很大。所以本堂课,我把教学重心放在学生对于理解求小数近似数的三种表述,如何根据要求表述求一个小数的近似数,以及在表示近似数时小数末尾的0不能随便改动。

课堂上,将1.666……怎样表示更恰当。学生呈现了2元,1.7元,因为在之前的练习中我们已经接触了给物体正确标价.当学生提出这样的观点的.时候,立刻引起其他学生意见,这样的表示不够合理,当以元为单位时,应该是两位小数.故,马上有学生想到改为1.70元.我顺势板书1.70元.看者这个数字底下学生议论纷纷,心急的学生脱口而出:“这个1.70怎么来的?”我们继续倾听学生自己的理解.在表达的过程,学生自己也 意识到了错误所在,同学们也明白了错误根源.此时我提出,“以元为单位,小数部分保留了几位?”“省略的是哪一位后面的尾数,”“是舍还是进,看哪一位?”这连续的三个问题,帮助学生整理思考的过程。同时也连接了“保留两位小数”“省略百分位后面的尾数”二者之间的联系,以及回顾四舍五入方法。

掌握了保留方法之后,再引导学生区分在求近似数时1.0和1之间的不同之处。学生自己畅所欲言,表达自己的观点,在生生交流中明确近似数中的0不能随意去掉。

最后讨论取值范围。

整堂课前奏非常顺利,学生看似一下子就能掌握基本方法,顺利完成任务。但是总感觉学生的上课热情不高,时常观察到学生懒散地坐着,思绪也肆意放飞,心不在焉。课堂节奏绵软无力。可见课堂的趣味性有待提高。

篇12:《求一个小数的近似数》教学反思

本节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。

教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似数。

在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0。984≈0。98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0。984≈1。0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0。984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。

但在“保留几位小数、精确到什么位、省略什么位后面的尾数”都出现以后,没有把它们之间的联系梳理出来,这样就会给学生造成要求太多记不住的麻烦。如果让学生明白保留两位小数就是要精确到百分位,省略百分位后面的尾数也是要精确到百分位,学生审题后就会自然地归到精确什么位,看什么位进行四舍五入的思维模式,这样就有了更加清晰的思维。

篇13:数学教案-求一个小数的近似数

教学目标

1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.

2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.

教学重点

求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.

教学难点

使学生能够区别求近似数与改写求准确数的方法.

教学步骤

一、铺垫孕伏.

1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)

986534 58741 31200

50047 398010 14870

2.下面的□里可以填上哪些数字?

32□645≈32万 47□05≈47万

学生填完后,说一说是怎么想的.

二、探究新知.

1.导入  新课.

我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)

篇14:数学教案-求一个小数的近似数

(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.

(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?

教师提问:保留两位小数,要看哪一位?怎样取近似数?

使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.

学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?

使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0. 2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.

分组讨论:保留一位小数3.0十分位上的“0”能不能去掉?为什么?

教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……

(3)求下面小数的近似数.

3.781(保留一位小数)

0.0726(精确到百分位)

(4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?

①教师出示线路图:(投影出示)

②引导学生小组讨论交流:

使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.

(5)小结.

教师提出问题:求一个小数的近似数应注意什么?

引导学生讨论知道:求一个小数的'近似数要注意两点:

①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是合还是人.

②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.

(6)分组合作学习,填表.

在下表的空格里按照要求填出近似数.

保留整数

保留一位小数

保留两位小数

保留三位小数

4.3808

3.教学例2:我国生产家用电风扇61581400台.把这个数改写成用“万台”作单位的数.

(1)教师提问:把61581400台改写成用“万台”作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?

(根据学生回答教师板书:61581400台=6158.14万台)

教师总结说明:把较大数改写成用“万”作单位的数,只要在万位的右边,点上小数点,在数的后面加写“万”宇.

(2)做一做.

把248000改写成用“万”作单位的数.

4.教学例3:19我国生产水泥573000000吨.把这个数改写成用“亿吨”作单位的数.再保留一位小数.

(1)学生讨论:把一个数改写成用“亿吨”作单位的数,应该怎么办?

学生独立改写成573000000吨=5.73亿吨≈5.7亿吨,并说出改写的方法.

教师提问:如果要求保留一位小数怎么办?

启发学生自己得出≈1.4亿吨,并说出保留一位小数的方法.

教师总结说明:把较大数改写成用“亿”作单位的数,只要在亿位的右边,点上小数点,在数的后面加写“亿”字.如果小数位数比较多,可以根据需要保留前几位小数.

(2)“做一做”第2题.

把750000000改写成用“亿”作单位的数.

“做一做”第3题.

把34562800000改写成用“亿”作单位的数后,保留两位小数.

5.区别对比.

例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)

三、巩固发展.

1.填空.

求一个小数的近似数,要根据需要用( )法保留小数数位.保留整数,表示精确到( )位;保留一位小数表示精确到( )位;保留两位小数表示精确到( )位……

2.填空.

近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了( )位,6表示精确到了( )位,所以6.0后面的“0”不能丢掉.

3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?

5.28 12.71 4.86 7.05

4.按照四舍五入法写出表中各小数的近似数.

保留整数

保留一位小数

保留两位小数

保留三位小数9.9564

0.9053

1.4639

5.(1)年北京市从事工程技术的人员共10人,改写成用“万人”作单位的数.

(2)1999年我国出版图书730000册(张),改写成用“亿册(张)”作单位的数.

四、全课小结.

今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.

五、布置作业 .

1.把下面各小数四舍五入.

(1)精确到十分位:3.47 0.239 4.08

(2)精确到百分位:5.344 6.268 0.402

2.把下面各数改写成用“亿”作单位的数.

(1)保留一位小数:3672800000 648500000

(2)保留两位小数:4853900000 288160000

板书设计

篇15:数学教案-求一个小数的近似数

例1 2.95保留二位小数,一位小数和整数,它的近似数各是多少?

2.953≈2.95

2.953≈3.0

2.953≈3

求一个小数的近似数要注意:

①要根据题目的要求取近似值.

②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.

例 2 61581400台=6158.14万台

在万位右边点上小数点,在数的后面加写万字.

例3 573000000吨=5.73亿吨 .5.7亿吨

在亿位右边点上小数点,在数的后面加写亿字.

篇16:求一个小数的近似数教案

①要根据题目的要求取近似值.

②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.

例 2 61581400台=6158.14万台

在万位右边点上小数点,在数的后面加写万字.

例3 573000000吨=5.73亿吨 .5.7亿吨

在亿位右边点上小数点,在数的后面加写亿字.

篇17:求一个小数的近似数教案

例1 2.95保留二位小数,一位小数和整数,它的近似数各是多少?

2.953≈2.95

2.953≈3.0

2.953≈3

篇18:《求一个小数的近似数》说课稿

a、要根据题目的要求取近似数值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;......,然后按"四舍五入法"决定是舍还是入。

b、取近似值时,在保留的小数位置里,小数末一位或几位是0的。0应当保留,不能去掉。

(三)、完成课本74页的“做一做”。

独立完成,个别上讲台演做。提问其思考的过程。

(四)、巩固练习

1、完成课本75页练习十二的第1题。

2、完成课本75页练习十二的第2题。

3、把下面各小数四舍五入。

(1)、精确到十分位

3.470.2394.08

(2)精确到百分位

5.3346.2680.495

4.思考

9.996保留两位小数是。

(五)、布置作业。

三、说教学反思。

这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我总觉得:学生掌握得不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。

我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。

四、说板书设计。

篇19:《求一个小数的近似数》说课稿

2、讲授新课

(1)、出示例题情境图。

师:同一个小数根据不同的需要它有不同的说法即小数的近似数,那我们该如何求小数的近似数呢?

生:思考。

师:求一个小数的近似数,同求一个整数的近似数相似,都可以根据“四舍五入法”保留一定的小数位数.

3、以该同学的身高为例进行讲解保留两位小数,保留一位小数,保留整数的方法。

4、把课本上的例题以练习的形式让学生做。

师:作必要的讲解和分析。

5、总结求一个小数的近似数的'方法(生齐读)。

注意:保留两位小数,就要看第三位是舍还是入。保留一位小数,就要看第二位。保留整数,就要看小数部分的第一位即十分位的数。

问:1.0和1数值相等,它们表示的程度怎样?

a、让学生明确保留一位小数是1.0,原来的准确长度在0.95与1.04之间。

b、让学生明确保留整数1,原来准确长度在0.5与1.4之间。

即小数保留的位数越多,精确的程度越高。保留一位小数1.0,它是一个近似数,因此十分位上的0不能去掉。

求一个小数的近似数教学设计

《求小数的近似数》教学反思

人教版求小数的近似数教学设计

求一个小数的近似数(人教版四年级教案设计)

求近似数、四舍五入

《小数的近似数》的教学反思

小数的近似数教案

小学四年级数学求小数的近似数说课稿

近似数教学反思

近似数 教学反思

求一个小数的近似数教学方案(精选19篇)

欢迎下载DOC格式的求一个小数的近似数教学方案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档