小学四年级数学求小数的近似数说课稿

| 收藏本文 下载本文 作者:Xxxxxzzz

下面是小编给大家整理的小学四年级数学求小数的近似数说课稿(共含13篇),欢迎大家借鉴与参考,希望对大家有所帮助。同时,但愿您也能像本文投稿人“Xxxxxzzz”一样,积极向本站投稿分享好文章。

小学四年级数学求小数的近似数说课稿

篇1:小学四年级数学《求一个小数的近似数》说课稿

一、说教材

1、教学内容

《求一个小数的近似数》是人教版数学第八册的内容。求一个小数的近似数在生产和日常生活有广泛的应用。这部分知识是在学习了小数的意义和小数的基本性质得基础上教学的,是本套教材内容的第四单元。而本节课内容是这个单元的最后一节课,主要属于掌握知识教学。学生学好这部分知识,可以用来解决日常生活中一些具体的问题。

2、教学目标

根据新课标要求和教材的特点,结合四年级学生的实际水平,可以确定以下教学目标:

(1)、使学生掌握求一个小数的近似数的方法。

(2)、能正确地按需要用“四舍五入法”保留一定的小数位数。

(3)、使学生理解保留小数位数越多,精确程度越高。

3、教学重、难点

通过旧知迁移新知的方法,让学生掌握、理解用“四舍五入法”求一个小数的近似数的方法。

4、教法、学法

根据本教材内容和编排特点,为了更好地突出,突破重、难点,按学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“动手操作――观察、比较――概括――应用”的学习过程中掌握知识。

二、说程序设计

课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于些我设计了以下的教学设计。

(一)、复习导入

(二)、新授课

1、导入新课

(1)、有时我们和爸爸妈妈一起到商店买菜,电子称上显示价钱是7.53元,可是商店阿姨只收我们7.5元,这是为什么呢?在实际生活中我们往往只需要一个小数的.近似数就可以了,那如何求一个小数的近似数呢?今天我们就一起来学习这一内容.(板书:求一个小数的近似数)

2、讲授新课

(1)、出示例题情境图。

师:同一个小数根据不同的需要它有不同的说法即小数的近似数,那我们该如何求小数的近似数呢?

生:思考。

师:求一个小数的近似数,同求一个整数的近似数相似,都可以根据“四舍五入法”保留一定的小数位数.

3、以该同学的身高为例进行讲解保留两位小数,保留一位小数,保留整数的方法。

4、把课本上的例题以练习的形式让学生做。

师:作必要的讲解和分析。

5、总结求一个小数的近似数的方法(生齐读)。

注意:保留两位小数,就要看第三位是舍还是入。保留一位小数,就要看第二位。保留整数,就要看小数部分的第一位即十分位的数。

问:1.0和1数值相等,它们表示的程度怎样?

a、让学生明确保留一位小数是1.0,原来的准确长度在0.95与1.04之间。

b、让学生明确保留整数1,原来准确长度在0.5与1.4之间。

即小数保留的位数越多,精确的程度越高。保留一位小数1.0,它是一个近似数,因此十分位上的0不能去掉。

6、求一个小数的近似数应该注意什么?

a、要根据题目的要求取近似数值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;......,然后按“四舍五入法”决定是舍还是入。

b、取近似值时,在保留的小数位置里,小数末一位或几位是0的。0应当保留,不能去掉。

(三)、完成课本74页的“做一做”。

独立完成,个别上讲台演做。提问其思考的过程。

(四)、巩固练习

1、完成课本75页练习十二的第1题。

2、完成课本75页练习十二的第2题。

3、把下面各小数四舍五入。

(1)、精确到十分位

3.470.2394.08

(2)精确到百分位

5.3346.2680.495

(五)、布置作业。

三、说教学反思。

这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我总觉得:学生掌握得不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。

我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。

篇2:小学四年级数学《求一个小数的近似数》说课稿

一、说教材

(一)教材分析和处理

《求一个小数的近似数》是人教版教材四年级下册第四单元的内容,本节课是学生在学习了小数的意义和求一个整数的近似数的基础上进行教学的。这部分内容既是前面知识的延伸,又是和学生生活密切联系的一个内容,是教学中的一个重点。之前学生只认识简单的小数,通过学习《求一个小数的近似数》以后,学生知道了有些小数是精确数有些小数是近似数,并能跟据具体情况求出一个小数的近似数。本节课教学的重点是理解并掌握求一个小数的近似数的方法,了解求近似数时,精确度的意义。

(二)学生分析:

本节课的授课对象是小学四年级学生,这个年龄段的学生具有强烈的好奇心,求知欲,又已经初步具备了一定的数学思想,掌握了一定的猜想、推理、自主探究的能力,能够利用知识的迁移解决新问题。在辩证的接受别人意见的基础上又能展现自己的独到见解。因此本节课主要发挥学生的主体作用,采用独立思考,再小组合作交流的方式进行学习。

(三)教学目标定位

新课程标准中要求,对这部分知识的教学,要紧密联系学生的生活实际,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情景。因此把学习目标确定如下:

知识与技能目标:

1.探究求一个小数的近似数的方法。

2.会根据要求正确求出小数的近似数。

方法与过程目标:经历求小数的近似数的过程,体验利用旧知识迁移学习的方法。

情感态度目标:感受数学知识与日常生活的密切联系,激发学生学习数学的兴趣,培养数感和数学意识。

在确定教学重点和教学难点时,考虑到学生以前学过,求整数的近似数的方法,即:“四舍五入”法。对于学生来说不是很难,但“四舍五入”法也是求小数近似数的方法,所以教学重点定为:掌握用“四舍五入”法求一个小数近似数的方法。把教学难点确定为:理解表示近似数时,小数末尾的0不能去掉。

二、说教法、学法

(一)说教法

本节课采用的最主要的教学方法是三步导学法。在民主导学环节,呈现任务后,让学生进行自主探究,然后小组内交流,最后全班展示,得出方法的教学模式。

在教学过程中我首先创设购物的情景,提供数学信息:菜场买菜情境,该怎样付钱?先让学生体验近似数在生活中的运用。紧接着出示课本豆豆身高情境,学生根据生活经验说一说通常会怎么表述,从而引出课题和学习目标。紧接着出示任务一:探究求小数近似数的方法。

(一)任务呈现:

1.自学课本52页内容,并在小组内交流:

(1)课本里是用什么方法求出0.984的三个近似数的。

(2)你还学懂了哪些知识?还有什么疑惑?

2.请你用学会的方法试着解决:

9.956 ≈( )(保留两位小数)

9.956 ≈( )(保留一位小数)

9.956 ≈( )(保留整数)

小组合作讨论求一个小数近似数的方法,结合每个具体的近似数,试着说说是怎样保留的,从而掌握求一个小数近似数的方法,当学生知道0.984保留两位小数是0.98米,1米是保留整数后,让学生试着解决保留一位小数应该怎样做呢?这里是本节课的难点,学生通过交流讨论、尝试、比较的方法突破难点。在总结求一个小数近似数的方法时,也是尝试让学生自己去总结。在整个过程中,体现以学生为主体,其次我采用的教学方法是讲授法,让学生理解“保留、精确、省略”的联系。如:保留一位小数就是精确到十分位,换种说法就是省略十分位后面的尾数。就是教师该出手的时候,一定要毫不犹豫的出手。

二、说学法

本节课主要采用的学习方法是旧知识迁移法,这种学习方法最大的特点是:能够体现学生的自主性,学生能够根据学过的知识,主动探索、学习新的知识,在这个学习过程中,我所做的学法指导是:通过复习求整数近似数的方法和练习题,为学习新知做好铺垫。

三、说教学流程

(一)、创设情境

兴趣是最好的老师,当学生对所学对象发生了兴趣,就有了行为内动力,学习便成为一种自觉的活动。我在课前创设了,菜场买菜的情境,和邻居家孩子小豆豆身高的情景,让学生感觉到数学就是为生活服务的,生活中需要用,所以我们才要学习,以此激发起学生探究的欲望,。

(二)、知识铺垫

“数学教学要从学生已有知识出发”,这是《新课程标准》对我们提出的明确要求,因而复习铺垫过程中我设计了两道用“四舍五入”法求整数近似数的练习题,目的是为下面学习求一个小数的近似数做好知识铺垫。

(三)、探究新知

新课程理念要求转变学生的学习方式,由被动接受式学习转变为主动的探究式学习,以课堂的讲授为主转变为学生自主探究、生生互动、小组合作学习为主。趁着学生强烈的好奇心、求知欲被调动起来之际,呈现学习任务,,进行自主探究和小组交流,最后全班展示交流,得出求近似数的方法。然后进行任务二的研究。这个任务是本节课的难点,我设置了较为开放的思考任务,来比较近似数1和1.0的区别,进而理解“求近似数时,小数末尾的0不能去掉。”

(四)目标检测

1.求下面各小数的近似数。

(1)3.47≈( ) (精确到十分位)

(2)0.402≈( ) (省略百分位后面的尾数)

(3)8.62≈( ) (保留整数)

2.星期天妈妈去超市买东西,结账时电脑显示金额为56.47元,收银员会收妈妈( )元。

(五)畅谈收获

通过这节课的'学习,你有什么收获?在与同伴的合作学习中你想说点什么?

(让学生在重温学习的过程中获得积极的情感体验,使知识的脉络更清晰,更有条理。)

篇3:小学四年级数学《求一个小数的近似数》说课稿

一、教材内容及编排意图:

《求小数的近似数》是义务教材人教版数学四年级下册第四单元第五节的内容。是学生已经掌握了用四舍五入法求整数近似数后的一次扩展,同时又为后面改写成以万和亿作单位的数做好知识铺垫。教材内容展示了豆豆测量身高这一现实情境,说明小数的近似数在实际测量当中有着广泛的应用,从而加深对小数的认识,进一步培养学生的数感。

二、教学目标的设定:

1.结合具体情境理解小数近似数的意义,掌握求小数近似数的方法,理解并应用“四舍五入”法求小数的近似数,知道精确度的含义。

2.经历类比迁移求小数近似数的过程,通过观察、发现、讨论交流等数学活动培养学生推理及概括能力,初步掌握“迁移”、“数形结合”等学习数学的方法。

3.感受近似数的实际意义,体会数学与生活的密切联系,激发学习兴趣,培养学生的数感。

三、教学重点:

1.理解并应用“四舍五入”法求小数的近似数。

2.理解求小数的近似数时,近似数末尾的0不能省略的道理。

四、教学难点:

理解求一个数的近似数时,近似数末尾的0不能省略的道理。

五、教学流程:

在这节课中,我采用五环节教学,即“创设情境,提出问题——小组合作,探究新知——回归情景,深化理解——反馈练习,拓展提升——课堂总结,回归生活”。具体设计是:

一、创设情境,提出问题:

通过观察主题图,学生明确了用0.984米、0.98米和1米三个数据都能表示豆豆身高后提出问题:他们是怎样得到豆豆身高的近似数的?引出课题,激发学生对求小数近似数的探究欲望。

二、小组合作,探究新知

1.由整数类比迁移到小数

在回顾了用四舍五入法求整数近似数的方法后,做出强调:求近似数一定要用约等号来连接。随机提出猜想:求小数的近似数是否也会用到四舍五入法呢?

2、自主探究,保留一位小数

接着让学生根据以往的知识经验进行自主探究:保留一位小数求近似数。在充分理解了保留一位小数就是精确到十分位的含义后放手让学生探究,相互交流,汇报时,重视引导学生进行有条理的完整的叙述。由于学生能够在求整数近似数的基础上进行类比迁移,这一环节表述的比较完整,能轻松的将内部思考过程外化为语言表达。

3、汇报交流,提炼方法

接着引导学生观察板书、回顾求1.93和16.195近似数的过程比较讨论得出共性,都是按要求保留一位小数,都要看到小数部分的百分位?不同点是:一个运用四舍法求到的近似数会小于原数,一个运用五入法求到的近似数会大于原数,在讨论交流中,学生明确了四舍五入法仍然是求小数近似数的方法。

4、借用数轴,直观理解

(1)直观发现1.93距1.9更近

但为什么求近似数省略部分的最高位小于5时要四舍,不小于5时要五入呢?在提出这一问题后,学生还是会从四舍五入的方法本身进行思考和解答?是知其然不知其所以然,这时,数轴便是一个很好的突破口,借用动态的课件设计,数形结合,让学生直观感受到因为1.93的位置更接近1.9,所以1.93保留一位小数后约是1.9。

(2)直观列举,体味“四舍五入”的道理

在学生能从“四舍”,和“五入”两个角度思考出近似数是1.9的两位小数后,也更容易思考出近似数是1.9的最大两位小数和最小两位小数是多少。

(3)理解保留一位小数为何只看百分位

从而得出:因为百分位的数决定了原数的位置,所以无论是几位小数在求近似数时,只要保留一位小数只需要看百分位的结论。进而小结出保留一位小数求近似数的方法后,又让学生再类比迁移,得出保留其他位数的方法。

5、类比迁移,尝试归纳

接下来,充分运用练习题的辐射作用引发学生的逆向思考:你能找到能保留三位或四位小数的数吗?为什么?明确原小数至少应该比保留后的近似数多一位。

三、回归情景,深化理解

在学生类推到保留整数的方法后,回归情景图中提出的问题,由0.984怎样想到0.98的,又怎样想到1的呢?这时,学生已能较熟练地解决这一问题。在找到0.984保留一位小数的近似数后,再一次引导观察、比较发现:同一个数因为要求不同,会有不同的近似数,但保留位数越多,就越接近准确数,开始的结论是根据小数的性质结果近似数末尾的0能够去掉:经过讨论后发现因为保留位数的需要(即占位的需要)不能去掉。在此,又借用数轴直观演示近似数为1.0和1的准确数范围,让学生感知到:保留的位数越多,准确数的范围就越小,相应的精确度也就越高。从而得出结论:在求近似数时小数末尾的0不能去掉。

最后提出问题:回想求小数近似数的过程,和求整数近似数的方法相同吗?从而建构起数学知识间的前后联系。

随后,学生自主看书学习,进行查漏补缺。

四、反馈练习,拓展提升

以闯关形式设计的反馈练习富有层次性,思考性,体现变化,能让学生在多种变式中体会用四舍五入法求近似数的实质。体会到运用所学知识胜利闯关带来的成就感,但因为时间的关系,没有给学生更充分的表述机会,不能不说是一种遗憾!

五、课堂总结,回归生活。

本课的最后一次讨论是在本课结束,寻找小数近似数在生活中的应用——购买商品时该付8.953元的究竟会付多少钱呢?由于实际生活的需要,学生会考虑付9.00元。虽然付8.95元相对来说更实惠一些,但实际上5分的钱数已很少见,所以会保留整数付钱更符合生活实际情况,这样,就让数学知识富于了鲜活的生活气息。

总之,求小数的近似数内容抽象,本课着重引导了学生在疑惑处、重点处、难点处进行讨论,重视对知识源点的梳理,力争让学生理解:求近似数要用“四舍五入法”,以及为什么用“四舍五入法”。我的说课结束,谢谢大家!

篇4:求小数的近似数说课稿

一、教学内容的说明:(教材分析)

本单元是在学生对小数和分数有了初步认识的基础上进行学习的。这部分内容是学生系统学习小数知识的开始,同时又是学习小数四则计算的基础。

信息窗呈现了三个同学用游标卡尺测量绿毛龟蛋长径和宽径的情境,通过学生质疑测量同一个蛋的长度,为什么两人读数不一样的问题,引入对小数的近似数知识的学习。

二、教学目标:

依据《数学课程标准》的要求,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求,根据本节课的具体内容,我制定了以下教学目标:

知识与能力目标:

掌握把一个较大的数改写成用万或亿作单位的数后再求它的近似值。能正确区分改写和保留的要求以及各自的方法。

掌握用四舍五入法求小数的近似值的方法。使学生理解保留的位数越多,精确度就越高。

过程与方法目标:

通过情境图引出怎样求小数的近似数,学生在教师 的指导下探索求小数近似数的方法,并在此基础上学习和区分改写和保留的不同要求和方法。

对所学知识进行拓展,迁移到新知,培养学生知识迁移能力,和利用已掌握知识探索新知识的能力。

情感态度与价值观目标:

让学生体会知识间的紧密联系,体验获取新知的乐趣。

基于以上的分析我确定本节课的教学重点是:

会利用四舍五入法求小数的近似值;理解保留位数越多,精确度就越高。

教学难点是:

理解保留和精确之间的区别与联系以及保留位数越多,精确度越高。

三、教学方法

为了突出重难点,使学生达到本节课设定的目标,我准备采用以下教学方法:

教法:教学充分以学生为主体,调动学生的学习积极性,通过学生发现问题、提出问题、小组合作讨论解决问题,挖掘学生的潜力,培养学生的能力,提高学生的素质。

学法:为了更好地突出、突破重难点,按学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在观察比较概括应用的学习过程中掌握知识。激发每一个学生的学习兴趣,同时让学生获得成功体验!

四、教学过程的设计:

为了全面、准确地引导学生探索发现求小数近似数的方法,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了复习旧知,探索新知,巩固练习,课堂小结,四个环节。

第一个环节:复习导入

这一环节我设置了两个习题:

1、把下面各数省略万后面的尾数,求出它们的近似数。

986534 58741 32100 398210

2、下面的里可以填上哪些数?

32( )64532万 47( )05047万

在此环节重点让学生说一说自己是怎么想的,四舍五入是什么意思,为后面的学习做好知识迁移的准备。

第二个环节:探索新知

这一环节有两个知识点:求小数的近似数;把一个数改写成用万或亿作单位的数。

求小数的近似数:我先出示课本的情境图,引导学生观察情境图,从图中能获得哪些信息?你能提出哪些有价值的数学问题?

根据学生的回答,引出问题,为什么小华、小明两个人说的不一样?教师可以说明由于两个学生对测量结果要求的精确程度不同,就会出现同一个小数的不同近似数,然后引导学生说一说小华说的是几位小数?小明说的是什么数?

通过学生的回答师作说明:近似数的结果是一位小数就是将原小数保留一位小数,结果是整数就是将原数保留整数

您现在正在阅读的小学数学《求小数的近似数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《求小数的近似数》说课稿从而引导学生仿照求整数近似数的.方法(四舍五入法)来求小数的近似数:

出示:3.94保留一位小数是多少?3.94保留整数是多少?

学生分组讨论,自主探索求小数近似数的方法,再通过学生的汇报,总结出:求小数的近似数和整数一样也可以用四舍五入法,进一步让学生明白:求近似数时,的数保留整数,表示精确到个位,保留一位小数,表示精确到十分位,保留两位小数,表示精确到百分位。

小组讨论:比较3.9和4与精确值3.94比较谁更接近3.94。总结出:保留的位数越多,精确度越高,保留的位数越少,精确度越低。

再出示:绿毛龟蛋(2.04厘米)的宽径是多少厘米?(保留一位小数)并让学生思考:末尾的0可不可以省略,进一步让学生体会求一个小数的近似数时保留位数不同,精确度也不同,而且0在这里也起到了占位的作用。为了巩固这一知识,我设计了一个动手测量课桌的活动,比一比谁的结果更精确,说明理由。

第二个知识点:把一个数改写成用万或亿作单位的数

出示课本71页材料,引导学生阅读材料,说一说能获得哪些信息,并提出相关问题。

(1)把1754000改写成用万作单位的数是什么?

先让学生尝试改写,根据学生的情况,如果有正确的改写可以先让学生讲解他的方法,如果没有,老师可作说明:改写时在万位后面点上小数点,写上万字,去掉小数末尾的0就可以了。

(2)全国禽蛋类产量约是多少亿千克呢?(保留整数)把28795000000改写成用亿

作单位的数,让同学们独自探索方法,同桌交流,在此基础上再引导学生用四舍五入法求出287.95亿的近似数。

第三个环节:巩固练习

在这一环节安排了自主练习的4个小题。

1-3题是用多种形式巩固求小数近似数的基本练习题,让学生独立完成,订正时关注有困难的学生,切实巩固求小数近似数的方法。

4题用把大数改写成用万或亿作单位的数。学生独立完成,交流时重点让学生说一说是如何改写的。

第四个环节:课堂小结

为了使学生对本节课所学的内容有一个整体的感知,我让学生共同回忆本节课研究了哪些问题?通过这些问题的解决你有哪些收获?自己在学习上有哪些提高?让学生在交流的过程中进一步深化求一个小数的近似数的方法,感受知识之间的内在联系,同时增强对迁移推理的数学思想的认识。

布置作业:

针对学生的差异布置适当的作业,既能使学生掌握知识,又能使有余力的学生得到提高。

板书设计:

板书作为课堂教学语言的另一种表现形式,它具有启发性、艺术性、实用性,所以本节课我注重发挥其引导功能,做了一下设计:

篇5:求小数的近似数说课稿

保留整数:3.944

保留一位小数:3.943.9

2.04厘米2.0厘米

1754000=175.4万

28795000000=287.95亿288亿

这样安排有利于学生观察、比较。全面系统了解本节课所学内容,提高学习效率!

篇6:《求小数的近似数》说课稿

《求小数的近似数》说课稿

《求小数的近似数》说课稿

一、教学内容的说明:(教材分析)

本单元是在学生对小数和分数有了初步认识的基础上进行学习的。这部分内容是学生系统学习小数知识的开始,同时又是学习小数四则计算的基础。

信息窗呈现了三个同学用游标卡尺测量绿毛龟蛋长径和宽径的情境,通过学生质疑测量同一个蛋的长度,为什么两人读数不一样的问题,引入对小数的近似数知识的学习。

二、教学目标:

依据《数学课程标准》的要求,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求,根据本节课的具体内容,我制定了以下教学目标:

知识与能力目标:

掌握把一个较大的数改写成用万或亿作单位的数后再求它的近似值。能正确区分改写和保留的要求以及各自的方法。掌握用四舍五入法求小数的近似值的方法。使学生理解保留的位数越多,精确度就越高。

过程与方法目标:

通过情境图引出怎样求小数的近似数,学生在教师 的指导下探索求小数近似数的方法,并在此基础上学习和区分改写和保留的不同要求和方法。

对所学知识进行拓展,迁移到新知,培养学生知识迁移能力,和利用已掌握知识探索新知识的能力。情感态度与价值观目标:

让学生体会知识间的紧密联系,体验获取新知的乐趣。基于以上的分析我确定本节课的教学重点是:会利用四舍五入法求小数的近似值;理解保留位数越多,精确度就越高。

教学难点是:

理解保留和精确之间的区别与联系以及保留位数越多,精确度越高。

三、教学方法

为了突出重难点,使学生达到本节课设定的目标,我准备采用以下教学方法:

教法:教学充分以学生为主体,调动学生的学习积极性,通过学生发现问题、提出问题、小组合作讨论解决问题,挖掘学生的潜力,培养学生的能力,提高学生的素质。

学法:为了更好地突出、突破重难点,按学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在观察比较概括应用的学习过程中掌握知识。激发每一个学生的学习兴趣,同时让学生获得成功体验!

四、教学过程的设计:

为了全面、准确地引导学生探索发现求小数近似数的方法,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了复习旧知,探索新知,巩固练习,课堂小结,四个环节。

第一个环节:复习导入

这一环节我设置了两个习题:

1、把下面各数省略万后面的尾数,求出它们的近似数。986534 58741 32100 398210

2、下面的里可以填上哪些数?32( )64532万 47( )05047万

在此环节重点让学生说一说自己是怎么想的,四舍五入是什么意思,为后面的学习做好知识迁移的准备 第二个环节:探索新知这一环节有两个知识点:求小数的近似数;把一个数改写成用万或亿作单位的数。求小数的近似数:我先出示课本的情境图,引导学生观察情境图,从图中能获得哪些信息?你能提出哪些有价值的数学问题?

根据学生的回答,引出问题,为什么小华、小明两个人说的不一样?教师可以说明由于两个学生对测量结果要求的精确程度不同,就会出现同一个小数的不同近似数,然后引导学生说一说小华说的'是几位小数?小明说的是什么数?通过学生的回答师作说明:近似数的结果是一位小数就是将原小数保留一位小数,结果是整数就是将原数保留整数

您现在正在阅读的小学数学《求小数的近似数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《求小数的近似数》说课稿从而引导学生仿照求整数近似数的方法(四舍五入法)来求小数的近似数:

出示:3。94保留一位小数是多少?3。94保留整数是多少?

学生分组讨论,自主探索求小数近似数的方法,再通过学生的汇报,总结出:求小数的近似数和整数一样也可以用四舍五入法,进一步让学生明白:求近似数时,的数保留整数,表示精确到个位,保留一位小数,表示精确到十分位,保留两位小数,表示精确到百分位。

小组讨论:比较3。9和4与精确值3。94比较谁更接近3。94。总结出:保留的位数越多,精确度越高,保留的位数越少,精确度越低。

再出示:绿毛龟蛋(2。04厘米)的宽径是多少厘米?(保留一位小数)并让学生思考:末尾的0可不可以省略,进一步让学生体会求一个小数的近似数时保留位数不同,精确度也不同,而且0在这里也起到了占位的作用。为了巩固这一知识,我设计了一个动手测量课桌的活动,比一比谁的结果更精确,说明理由。

第二个知识点:把一个数改写成用万或亿作单位的数

出示课本71页材料,引导学生阅读材料,说一说能获得哪些信息,并提出相关问题。

(1)把1754000改写成用万作单位的数是什么?

先让学生尝试改写,根据学生的情况,如果有正确的改写可以先让学生讲解他的方法,如果没有,老师可作说明:改写时在万位后面点上小数点,写上万字,去掉小数末尾的0就可以了。

(2)全国禽蛋类产量约是多少亿千克呢?(保留整数)把28795000000改写成用亿

作单位的数,让同学们独自探索方法,同桌交流,在此基础上再引导学生用四舍五入法求出287。95亿的近似数。

第三个环节:巩固练习

在这一环节安排了自主练习的4个小题。

1—3题是用多种形式巩固求小数近似数的基本练习题,让学生独立完成,订正时关注有困难的学生,切实巩固求小数近似数的方法。

4题用把大数改写成用万或亿作单位的数。学生独立完成,交流时重点让学生说一说是如何改写的。

五、课堂小结

为了使学生对本节课所学的内容有一个整体的感知,我让学生共同回忆本节课研究了哪些问题?通过这些问题的解决你有哪些收获?自己在学习上有哪些提高?让学生在交流的过程中进一步深化求一个小数的近似数的方法,感受知识之间的内在联系,同时增强对迁移推理的数学思想的认识。

六、。布置作业:

针对学生的差异布置适当的作业,既能使学生掌握知识,又能使有余力的学生得到提高。

篇7:小学数学说课稿《求一个小数的近似数》

小学数学说课稿《求一个小数的近似数》

一、说教材

1、教学内容

<<求一个小数的近似数>>是人教版数学第八册的内容,求一个小数的近似数在生产和日常生活有广泛的应用。这部分知识是在学习了小数的意义和小数的基本性质得基础上教学的,是本套教材内容的第四单元。而本节课内容是这个单元的最后一节课,主要属于掌握知识教学。学生学好这部分知识,可以用来解决日常生活中一些具体的问题。

2、教学目标

根据新课标要求和教材的特点,结合四年级学生的实际水平,可以确定以下教学目标:

(1)、使学生掌握求一个小数的近似数的方法。

(2)、能正确地按需要用“四舍五入法”保留一定的小数位数。

(3)、使学生理解保留小数位数越多,精确程度越高。

3、教学重、难点

通过旧知迁移新知的.方法,让学生掌握、理解用“四舍五入法”求一个小数的近似数的方法。

4、教法、学法

根据本教材内容和编排特点,为了更好地突出,突破重、难点,按学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“动手操作——观察、比较——概括——应用”的学习过程中掌握知识。

二、说程序设计

课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于些我设计了以下的教学设计。

(一)、复习导入

1、把下面各数省略万后面的尾数,求出它们的近似数。

986534587413198210

2、下面的里可以填上哪些数。

32()645≈32万47()050≈47万

问:(1)你是怎么想的?(2)四舍是什么意思?五入呢?

(二)、新授课

1、导入新课

(1)、有时我们和爸爸妈妈一起到商店买菜,电子称上显示价钱是7.53元,可是商店阿姨只收我们7.5元,这是为什么呢?在实际生活中我们往往只需要一个小数的近似数就可以了,那如何求一个小数的近似数呢?今天我们就一起来学习这一内容.(板书:求一个小数的近似数)

2、讲授新课

(1)、出示例题情境图。

师:同一个小数根据不同的需要它有不同的说法即小数的近似数,那我们该如何求小数的近似数呢?

生:思考。

师:求一个小数的近似数,同求一个整数的近似数相似,都可以根据“四舍五入法”保留一定的小数位数.

3、以该同学的身高为例进行讲解保留两位小数,保留一位小数,保留整数的方法。

4、把课本上的例题以练习的形式让学生做。

师:作必要的讲解和分析。

5、总结求一个小数的近似数的方法(生齐读),

注意:保留两位小数,就要看第三位是舍还是入。保留一位小数,就要看第二位。保留整数,就要看小数部分的第一位即十分位的数。

问:1.0和1数值相等,它们表示的程度怎样?

a、让学生明确保留一位小数是1.0,原来的准确长度在0.95与1.04之间。

b、让学生明确保留整数1,原来准确长度在0.5与1.4之间。

即小数保留的位数越多,精确的程度越高。保留一位小数1.0,它是一个近似数,因此十分位上的0不能去掉。

6、求一个小数的近似数应该注意什么?

a、要根据题目的要求取近似数值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;......,然后按“四舍五入法”决定是舍还是入。

b、取近似值时,在保留的小数位置里,小数末一位或几位是0的。0应当保留,不能去掉。

(三)、完成课本74页的“做一做”。

独立完成,个别上讲台演做。提问其思考的过程。

(四)、巩固练习

1、完成课本75页练习十二的第1题。

2、完成课本75页练习十二的第2题。

3、把下面各小数四舍五入。

(1)、精确到十分位

3.470.2394.08

(2)精确到百分位

5.3346.2680.495

4.思考

9.996保留两位小数是()。

(五)、布置作业。

三、说教学反思。

这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我总觉得:学生掌握得不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。

我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。

四、说板书设计。

更多相关的小学数学说课稿推荐:

小学数学说课稿《秒的认识》

小学数学说课稿《角的度量》

小学数学说课稿《分数的初步认识》

小学数学说课稿 《求比一个数多几的应用题》

小学数学面试说课稿《长方体和立方体的认识》

篇8:《求一个小数的近似数》说课稿

a、要根据题目的要求取近似数值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;......,然后按"四舍五入法"决定是舍还是入。

b、取近似值时,在保留的小数位置里,小数末一位或几位是0的。0应当保留,不能去掉。

(三)、完成课本74页的“做一做”。

独立完成,个别上讲台演做。提问其思考的过程。

(四)、巩固练习

1、完成课本75页练习十二的第1题。

2、完成课本75页练习十二的第2题。

3、把下面各小数四舍五入。

(1)、精确到十分位

3.470.2394.08

(2)精确到百分位

5.3346.2680.495

4.思考

9.996保留两位小数是。

(五)、布置作业。

三、说教学反思。

这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我总觉得:学生掌握得不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。

我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。

四、说板书设计。

篇9:《求一个小数的近似数》说课稿

2、讲授新课

(1)、出示例题情境图。

师:同一个小数根据不同的需要它有不同的说法即小数的近似数,那我们该如何求小数的近似数呢?

生:思考。

师:求一个小数的近似数,同求一个整数的近似数相似,都可以根据“四舍五入法”保留一定的小数位数.

3、以该同学的身高为例进行讲解保留两位小数,保留一位小数,保留整数的方法。

4、把课本上的例题以练习的形式让学生做。

师:作必要的讲解和分析。

5、总结求一个小数的近似数的'方法(生齐读)。

注意:保留两位小数,就要看第三位是舍还是入。保留一位小数,就要看第二位。保留整数,就要看小数部分的第一位即十分位的数。

问:1.0和1数值相等,它们表示的程度怎样?

a、让学生明确保留一位小数是1.0,原来的准确长度在0.95与1.04之间。

b、让学生明确保留整数1,原来准确长度在0.5与1.4之间。

即小数保留的位数越多,精确的程度越高。保留一位小数1.0,它是一个近似数,因此十分位上的0不能去掉。

篇10:四年级下册《求一个小数的近似数》的说课稿

人教版四年级下册《求一个小数的近似数》的说课稿

一、说教材

1、教学内容

《求一个小数的近似数》是人教版数学第八册的内容。求一个小数的近似数在生产和日常生活有广泛的应用。这部分知识是在学习了小数的意义和小数的基本性质得基础上教学的,是本套教材内容的第四单元。而本节课内容是这个单元的最后一节课,主要属于掌握知识教学。学生学好这部分知识,可以用来解决日常生活中一些具体的问题。

2、教学目标

根据新课标要求和教材的特点,结合四年级学生的实际水平,可以确定以下教学目标:

(1)、使学生掌握求一个小数的近似数的方法。

(2)、能正确地按需要用"四舍五入法"保留一定的小数位数。

(3)、使学生理解保留小数位数越多,精确程度越高。

3、教学重、难点

通过旧知迁移新知的方法,让学生掌握、理解用四舍五入法求一个小数的近似数的'方法。

4、教法、学法

根据本教材内容和编排特点,为了更好地突出,突破重、难点,按学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在动手操作观察、比较概括应用的学习过程中掌握知识。

二、说程序设计

课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于些我设计了以下的教学设计。

(一)、复习导入

1、把下面各数省略万后面的尾数,求出它们的近似数。

986534 58741 31200 398210

2、下面的( )里可以填上哪些数。

32( )64532万4705047万

问:(1)你是怎么想的? (2)四舍是什么意思?五入呢?

(二)、新授课

1、导入新课

(1)、有时我们和爸爸妈妈一起到商店买菜,电子称上显示价钱是7.53元,可是商店阿姨只收我们7.5元,这是为什么呢?在实际生活中我们往往只需要一个小数的近似数就可以了,那如何求一个小数的近似数呢?今天我们就一起来学习这一内容.(板书:求一个小数的近似数)

2、讲授新课

(1)、出示例题情境图 。

师:同一个小数根据不同的需要它有不同的说法即小数的近似数,那我们该如何求小数的近似数呢?

生:思考。

师:求一个小数的近似数,同求一个整数的近似数相似,都可以根据四舍五入法保留一定的小数位数.

3、以该同学的身高为例进行讲解保留两位小数,保留一位小数,保留整数的方法。

4、把课本上的例题以练习的形式让学生做。

师:作必要的讲解和分析。

5、总结求一个小数的近似数的方法(生齐读)。

您现在正在阅读的人教版四年级下册《求一个小数的近似数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!人教版四年级下册《求一个小数的近似数》说课稿注意:保留两位小数,就要看第三位是舍还是入。保留一位小数,就要看第二位。保留整数,就要看小数部分的第一位即十分位的数。

问:1.0和1数值相等,它们表示的程度怎样?

a、让学生明确保留一位小数是1.0,原来的准确长度在0.95与1.04之间。

b、让学生明确保留整数1,原来准确长度在0.5与1.4之间。

即小数保留的位数越多,精确的程度越高。保留一位小数1.0,它是一个近似数,因此十分位上的0不能去掉。

6、求一个小数的近似数应该注意什么?

a、要根据题目的要求取近似数值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;......,然后按"四舍五入法"决定是舍还是入。

b、取近似值时,在保留的小数位置里,小数末一位或几位是0的。0应当保留,不能去掉。

(三)、完成课本74页的做一做。

独立完成,个别上讲台演做。提问其思考的过程。

(四)、巩固练习

1、完成课本75页练习十二的第1题。

2、完成课本75页练习十二的第2题。

3、把下面各小数四舍五入。

(1)、精确到十分位

3.47 0.2394.08

(2)精确到百分位

5.3346.2680.495

4.思考

9.996保留两位小数是( )。

(五)、布置作业。

三、说教学反思 。

这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我总觉得:学生掌握得不好,尤其是根据四舍五入法求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。

我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。

篇11:四年级数学求一个小数的近似数教案

四年级数学求一个小数的近似数教案

教学内容:求一个小数的近似数--教材第105-106页例1,做一做题目及练习二十四1-3题。

教学目的:使学生初步学会根据要求用四舍五入法保留一定的小数位数,求出小数的近似数。培养学生综合运用知识的能力。

教学重、难点:求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。

教学过程:

一、复习

先省略万后面的尾数,求出近似数,再省略千后面的尾数,求出近似数。

129535608904536697010

二、新课

教师:我们已经学过求一个整数的近似数(或近似值)。在实际使用小数的时候,有时也没有必要说出它的准确数,只要说出它的近似数就够了,例如,量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米。

我们已经会求一个整数的近似数,求一个小数的近似数的方法,同求整数的近似数的方法相似,是根据需要用四舍五入法保留一定的小数位数。

教师用投影片(或小黑板)出示例1的第1小题:2.953保留两位小数,它的近似数是多少?

教师:2.953保留两位小数,就是要省略哪一位后面的尾数?(省略百分位后面的尾数。)

省略百分位后面的尾数,要看哪一位上的数?(要看千分位上的数。)

接下来用四舍五入法怎样做?(因为千分位上的数3不满5,把它舍去。)

教师板书:2.9532.95

教师:谁能连贯地把做这题的过程说一说。

指名让学生说一说,然后教师总结:

做这题时要想:要保留两位小数,就要省略百分位后面的尾数。千分位上不满5,直接舍去。

教师用投影片(或小黑板)出示例1的第2小题:2.953保留一位小数,它的近似数是多少?

教师:2.953保留一位小数,就是要省略哪一位后面的尾数?(省略十分位后面的尾数。)

省略十分位后面的尾数,要看哪一位上的数?(要看百分位上的数。)

用四舍五入法怎样做呢?(因为百分位上的数满5,省略百分位和千分位上的数后,要向十分位进1。)

2.9加上进上来的1就是3.0。所以2.9533.0。

教师板书:2.9533.0

教师强调:这题的要求是保留一位小数,所以小数末尾的0不能去掉。

教师:谁能连贯地把做这题的过程说一说。

指名让学生说一说,然后教师总结:

做这题时要想:要保留一位小数,就是省略十分位后面的尾数。百分位上满5,省略尾数后,向十分位进1,末尾的0不能去掉。

教师用投影片出示例1的第3小题:2.953保留整数,它的近似数是多少?

教师板书:2.953

教师:谁能做出这题并且说一说应该怎样做?

指名让学生做这题,并且说一说是怎样做的`。

根据学生的发言,教师板书:2.9533,并且总结:做这题时要想;要保留整数,就要省略整数后面的尾数。十分位上满5,省略尾数后向个位进1,所以2.9533。

教师:观察上面三道题,是同一个小数保留两位小数,保留一位小数和保留整数。每一次求出的近似数的精确度是不同的。保留整数,表示精确到个位;那么保留一位小数,表示精确到什么位?(十分位。)保留两位小数呢?(表示精确到百分位。)

指名学生回答上述问题。条件较好的班,教师可以接着讲一讲关于精确度的问题。讲法可以如下:

教师:那么,上面的三个近似数哪一个更精确一些呢?我们现在证明一下。如果2.953表示的是测量一段绳子的长度得到的结果:2.953米。

教师用投影片(或小黑板)出示图如下:

教师:2.953保留两位小数时,是2.95米,表示精确到百分位。保留一位小数是3.0米,表示精确到十分位,也就是说绳子的准确长度不小于2.95米,也不能等于或大于3.05米。因为如果是2.94米,保留一位小数就是2.9米了;如果是3.05米或3.06米,保留一位小数就是3.1米了。再看当保留整数位3时,表示精确到整数个位,也就是说准确长度不能小于2.5米,不能等于或大于3.5米。所以前一个近似数都比后一个近似数精确程度要高一些,即2.95米的精确度高于3.0米的精确度,3.0米的精确度又高于3米的精确度。

教师用投影片或小黑板出示第106页上半页做一做中的第1题,并且加一题:4.795(保留两位小数)。指名让学生做,集体订正。

教师:我们学会了怎样求一个小数的近似数。想一想,求一个小数的近似数应该注意什么?同桌讨论一下。

指名让学生发言,在学生发言的基础上教师总结:

1.要根据题目的要求取近似值,即:保留整数,就看十分位是几,要保留一位小数,就看百分位是几,......然后按四舍五入法决定是舍还是入。

2.取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉。

三、课堂练习

1.做第106页上半页做一做的第1、2题,学生独立做,做完以后,集体订正。

2.做练习二十四的第3题。

教师先提问:精确到十分位是什么意思?(保留一位小数。)

精确到百分位是什么意思?(保留二位小数。)

然后,让学生独立做,教师巡视,个别辅导,强调要注意的两点。做完后,集体订正。

四、课堂作业

练习二十四的第1-2题。

篇12:四舍五入求近似数说课稿

四舍五入求近似数说课稿

一、问题的提出

《四舍五入求近似数》这节课的知识目标是“结合具体情境理解近似数的意义,理解和掌握用‘四舍五入’法求近似数的方法”。在达成知识目标的过程中,渗透数形结合思想和模型化思想,培养学生推理能力。本课的教学难点主要集中在两个方面:

一是由于数目较大,离学生的现实生活较远,学生对“四舍五入法”的学习往往感到比较抽象。

二是如果仅仅把“四舍五入法”局限在对整万数、整亿数的估计,学生容易形成点状的知识,很难从整体上把握四舍五入的方法,也就不能把握“四舍五入法”的本质和规律,即“四舍五入法”求近似数时要看哪个数位,为什么四及四以下要舍、五及五以上要入?

二、解决问题的思考

针对上述难点一的解决方法,我认为:从学生已有的经验出发去寻找教学的切入点。学生在万以内数的认识和数的运算学习时,就已经有“四舍五入法”的经验积累,只不过没有归根概括提炼出“四舍五入法”这个抽象名称而已。学生的这些个体经验不仅为抽象的“四舍五入法”的学习提供了理解概念内涵的感性支撑,而且还提供了丰富概念内涵的基础性资源。因此,可以从学生这些感性的个体经验出发去寻找教学的切入点,在学生的个体经验与抽象的“四舍五入法”之间搭建起沟通的桥梁。

针对上述难点二的解决思考:我认为一是可以引导学生从感性的知识出发,经历“四舍五入法”的归纳、概括、提炼和抽象命名的形成过程,从而了解和把握“四舍五入法”的来龙去脉,真正做到知其然而知其所以然。二是采用数形结合的方法,用数轴来辅助教学,化抽象为直观。

三、教学过程设计

(一)创设情境,理解近似数的意义及必要性。

1、出示教材中的情境图,学生阅读后,通过问题“观察上面的几组数,你有什么发现?”引导学生发现这些数的共同特点,引出近似数。

2、让学生找找日常生活中的近似数,联系学生已有经验,增进对近似数意义的理解,体验近似数产生的必要性。

最后小结:生活中一些事物的数量,有时不需要精确地表示出来,用近似数表示更方便。

(二)借助素材,探究“四舍五入法”求近似数的方法

引入环节:从学生的感性认识和经验出发,了解估“整十数”看个位。

教师提出问题:一棵大树高约30米。这棵大树实际高多少米可以估计成30米?你能有序地说出这些数吗?

学生有序说出后,再让学生观察并进行分类,根据学生的回答教师板书:25~2931~34并引导学生在数轴上表示如下:

30

20

40

25

35

师问:25、26、27、28、29这些数都是二十几,为什么约等于30?

生可能:因为它们离30比离20更近。

师问:31、32、33、34这些数都是三十几,为什么也约等于30?

生可能:因为它们离30比离40更近。

此时,学生在根据已有经验,再借助数轴的直观,可以初步感知以5为分界线来估数的特点。

师生把刚才的结论简单地整理如下:

估整十数

十位

个位

2

大于等于5

3

小于等于4

第一环节:发现估“整百数”看十位的规律,教给学生发现的方法结构。

紧接上个环节,教师提出问题:什么样的数可以估计成300?

能有序地分段写出这些数吗?可以像老师这样借助数轴来找一找!

教师提出大问题,充分放手让学生找数。此时学生的思维可能是凌乱的散点状态,无法有序地分段写出所有可以估成300的数;也可能有学生能有序地找,但出现遗漏或重复的现象,如只找到295~304;或260~270,270~280,280~290,……,320~330,330~340。教师及时捕捉学生的思维动向,选取有代表性的几种做法进行交流。

通过课前学情调查,由于学生在二年级学万以内数的近似数时都是找最接近的数,所以大多数学生仅仅找出295~299,301~304这些数,这是学生最原始的思维状态,所以我们的交流就从295-304开始。

出示数轴,引导学生从数轴上找出295-304这些数的位置。

300

200

400

为了更准确地找出295所在的位置,我们需要再分,标出数据,如

300

200

400

210

220

230

240

250

260

270

280

290

320

330

340

350

360

380

390

370

310

问:这些都可以估成300吗?

学生可能回答:可以,但还没找全。学生进一步补充。

教师引导学生再对这些想法进行辨析比较,在辨析中逐渐帮助学生明确思路,如学生找到25□~299,教师可以追问:25□~299的这些数都是200多,为什么也能估成300?

生可能发现,它们最接近的整百数是300,或者说这些数在数轴上比200~300的一半要多。

同样方法引导学生找出301~349这些数,逐渐帮助学生形成正确的认识:

251~299、301~349.

300

200

400

210

220

230

240

250

260

270

280

290

320

330

340

350

360

380

390

370

310

当百位上是2时,要想估成300,十位上的数字要大于或等于5;当百位上是3时,要想估成300,十位上的数字要小于或等于4。教师进一步引导思考:个位上的数字呢?如果学生一时难以概括,可举例子,如251可估成那个整百数?252呢?253?259?通过举例和借助数轴学生会发现:251~259,无论个位上的数字是几,这个数都可以估成300。同样,260~269,270~279,280~289,290~299,301~309,310~319,320~329,330~339,340~349.这些数也可估成300。学生发现:估成与个位上的数字无关。教师再把学生的思维过程进行简单的整理和记录如下:

估300

百位

十位

个位

2

大于等于5

任意数

3

小于等于4

任意数

师举例:476接近哪个整百数?生回答并阐明理由;再请学生举一个三位数,请同学们判断接近哪个整百数。

这样通过举例,学生发现:估整百数都合这一规律,即:

估整百数

百位

十位

个位

2

大于等于5

任意数

3

小于等于4

任意数

也就是,估整百数时,要看十位上的数字,与个位上的数字无关。

第二环节:发现估“整千数”看百位、估“整万数”看千位的规律,学生运用方法结构自主发现。

教师提出问题:什么样的数可以估计成3000、30000?你能有序地分段写出这些数吗?如果有困难,还可以借助数轴来找一找!

由于结构相同,可以采取同桌分工合作的方式,每人分别研究其中一种情况然后互相交流。

集体交流,课件出示数轴,让学生在数轴上找出这些数的范围,并借助数轴的直观来体验为什么这些数都接近3000.

3000

4000

2500

3500

2500~2999

3001~3499

同样方法可得到估成30000的数的范围。

30000

20000

40000

25000

35000

25000~29999

30001~34999

对以上规律进行比较和概括,学生在表格上自己整理:

估整千数

千位

百位

十位

个位

2

大于等于5

任意数

任意数

3

小于等于4

任意数

任意数

估整万数

万位

千位

百位

十位

个位

2

大于等于5

任意数

任意数

任意数

3

小于等于4

任意数

任意数

任意数

通过整理,学生进一步发现:估整千数时,只看百位;估整万数时,只看千位。

第三环节:发现估“整十万数”看万位、估“整百万数”看十万位……的规律,学生运用结构进行想象。

第四环节:对以上规律进行比较和概括,归纳提练和抽象出四舍五入的一般方法。

教师提出问题:通过举例探究的.方法,我们分别发现了估整十数、整百数、整千数……的方法,你能把这些规律简练地概括一下吗?

学生交流,教师小结:像这样求近似数的方法,叫作“四舍五入法”。

(三)巩固应用,内化提升。

出示信息:小明的妈妈一月份的工资收入是6492元。

提出问题:

问题一:估成整十数,大约是多少元?为什么?(交流后,课件出示数轴)

教师进一步明确要求:估成整十数,也就相当于省略十位后面的尾数求近似数。

问题二:省略百位后面的尾数,大约是多少元?说说你的想法!(交流后,课件出示数轴)

问题三:你还能提出其他关于近似数的问题吗?

生提问题并解决。(交流后,课件出示数轴)

问题四:仔细观察数轴,这三个近似数哪个更接近6492元?你有什么发现?

小结:省略的尾数越多,近似数离准确值就越大;反之就越接近准确值。所以我们在运用近似数时,要根据实际的需要来估计。

四、我们的思考与疑惑:

1、说明:《近似数》这节课在备课时,我们教研组出现了两种不同的声音:一种是遵循教材,通过研究将大数怎样估成整万数或整亿数,教学“四舍五入”取近似数的方法。

另一种就是刚才所呈现的,从估整十数、整百数、整千数、整万数、整十万数……这样依次探究,在估整百数时教结构,让学生在大量的数例中充分感悟:估整百数要看十位上的数字,与个位上的数字无关。接下来的估整千数、整万数是用结构,学生同桌分工合作,运用方法结构自主发现规律。估整十万数、整百万数、整千万数和整亿数的规律,则可让学生运用结构进行推理和想象。

通过两种思路的对比和研讨,我们统一了认识:如果仅仅把“四舍五入法”局限在对整万数、整亿数的估计,学生容易形成点状的知识,很难从整体上把握四舍五入的方法。另外从对整万数、整亿数的估计入手,由于数目较大,离学生的现实生活较远,学生对“四舍五入法”的学习往往感到比较抽象,也不容易把握“四舍五入法”的本质和规律。基于这些,我们提出了上述问题,并做了以上设计。

一开始我们对于这种整体架构、教结构——用结构的思想也是又爱又怕,甚至持怀疑的态度:学生能有序地分段找到这些数吗?能发现规律吗?基于不自信,我们在三年级上了半节课,结果虽然有点生涩,但学生所表现出来的比我们预期的要好得多。而且,从长远来看,学生经历了“四舍五入法”背后的过程形态的知识,比如借助知识结构的类比思考、归纳概括的思想和方法等等,都可以成为教学过程中促进学生成长的重要资源。

2、思考:数轴对于这节课的教学有很大的帮助,数形结合不仅能帮助学生直观地理解“四舍五入”的本质,并能有效地培养学生的数感。

3、疑惑:25估成整十数,与20、30一样接近,该估成30吗?再如25□,251~259估成整百数应该是300,250估成整百数呢?期待大家能帮我们答疑解惑。

以上是我们团队对《四舍五入求近似数》这节课内容的理解,如有不当之处,恳请领导和老师们多提宝贵意见。谢谢!

篇13:求一个小数的近似数

教学目标

(一)使学生能根据要求用四舍五入法求一个小数的近似数.

(二)使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.

教学重点和难点

求一个小数的近似数及把较大数改写成以“万”或“亿”作单位的小数是教学重点.

把较大数改写成以“万”或“亿’作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点.

学习新课

(一)复习准备

我们已经学过求一个整数的近似数,请大家回忆一下:23956省略万后面的尾数约是多少?省略千后面的尾数约是多少?

启发学生说出:省略万后面的尾数,看千位上的数是3,根据“四舍五入”法要舍去,得出23956≈2万;省略千位后面的尾数,要看百位上的数是9,应该入上去,23956≈24千.

师:求一个整数的近似数用的是“四舍五入”法.在实际应用小数的时候,往往没必要说出它的准确数,只要说出它的近似数就够了.例如,量得大新身高是1.625米,平常不需要说得那么准确,只说大约1.6米或1.63米.

求一个小数的近似数与求整数的近似数相似,我们今天来研究怎样求一个小数的近似数.

《求小数的近似数》教学反思

求一个小数的近似数(人教版四年级教案设计)

求近似数、四舍五入

求一个小数的近似数教学方案

人教版求小数的近似数教学设计

求一个小数的近似数教学设计

小数的近似数教案

《小数的近似数》的教学反思

小学四年级数学上册《近似数》的教学反思

小学四年级数学认数、近似数练模拟训练题

小学四年级数学求小数的近似数说课稿(共13篇)

欢迎下载DOC格式的小学四年级数学求小数的近似数说课稿,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档