分数奥数应用题及答案

| 收藏本文 下载本文 作者:rona19ken

下面是小编帮大家整理的分数奥数应用题及答案(共含8篇),希望对大家有所帮助。同时,但愿您也能像本文投稿人“rona19ken”一样,积极向本站投稿分享好文章。

分数奥数应用题及答案

篇1:分数奥数应用题及答案

分数奥数应用题及答案

学好数学,挑战奥数,我们要各个击破,下面是分数奥数应用题及答案,欢迎练习。

例一:王叔叔买了一辆价值16000元的摩托车。按规定,买摩托车要缴纳10%的车辆购置税。王叔叔买这辆摩托车一共要花多少钱?

分析与解答:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。

方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元)

方法2:16000 ×(1 + 10%) = 16000 ×1.1 = 17600(元)

答:王叔叔买这辆摩托车一共要花17600元钱。

例二:益民五金公司去年的营业总额为400万元。如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?

分析与解:如果按营业额的3%缴纳营业税,是把营业额看作单位“1”。 缴纳营业税占营业额的

3%,即400万元的3%。求一个数的百分之几是多少,也用乘法计算。计算时可将百分数化成分数或小数来计算。

400×3%  = 12(万元)

或400×3% = 400×0.03 = 12(万元)

答:去年应缴纳营业税12万元。

点评:在现实社会中,各种税率是不一样的。应纳税额的计算从根本上讲是求一个数的百分之几是多少。

例三:扬州某风景区“十一”黄金周接待游客9万人次,门票收入达270万元。按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。

分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%

答:“十一”黄金周期间应缴纳营业税13.5万元。

分数与百分数的应用

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的.一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

篇2:五年级奥数的应用题及答案

五年级奥数的应用题及答案

五年级奥数应用题及答案

1. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?

解:快速行走的'路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

2. 轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?

解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。

3. 小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由

(70×4)÷(90-70)=14(分)

可知,小强第二次走了14分,推知第一次走了18分,两人的家相距

(52+70)×18=2196(米)。

4. 小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?

解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)

5. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。

解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。

设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。

6. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?

解:9∶24。解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。

7. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?

解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11

8.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?

解:甲乙速度差为10/5=2

速度比为(4+2):4=6:4

所以甲每秒跑6米,乙每秒跑4米。

9.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。问:

(1) A, B相距多少米?

(2)如果丙从A跑到B用24秒,那么甲的速度是多少?

解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度

10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?

解:设车速为a,小光的速度为b,则小明骑车的速度为3b。根据追及问题“追及时间×速度差=追及距离”,可列方程

10(a-b)=20(a-3b),

解得a=5b,即车速是小光速度的5倍。小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。

篇3:分数应用题及答案

分数应用题大全及答案

1.光明畜牧场养了900头肉牛.奶牛比肉牛多25%,奶牛有多少头?

900×(1+25%)

=900×125%

=900×125/100

=1125(头)

2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?

8除4/5=10(km/)

4/5除8=0.1(kg)

3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?

30÷1/2=60千米

1÷60=1/60小时

4.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?

原价是

200÷2/11=2200元

现价是

2200-200=元

5.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?

4/5*5/8=(4*5)/(5*8)=1/2(米)

4/5-1/2=8/10-5/10=3/10(米)

6.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?

第一天卖出水果总重量的3/5,则,第二天卖了2/5,

3/5-2/5=1/5,第一天比第二天多的,

30÷1/5=150千克,

算式是,

1-3/5=2/5

3/5-2/5=1/5

30÷1/5=150千克

7.甲、乙两厂去年分别完成计划任务的112%和110%,共生产食品4000吨,比原来两厂计划之和超产400吨,甲厂原来的生产任务是多少吨?

设甲厂原来的生产任务是x

112%x+110%(3600-x)=4000

1.12x+3960-1.1x=4000

0.02x=40x=2000

答:甲厂原来的生产任务是2000吨.

8.植树节,初三年级170名学生去参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女各有多少人?

解:设男生X人,女生(170-X)人

3X=7(170-X)

X=119

170-X=51

答:男生是119人,女生是51人.

9.工程队修一条路,已修好的长度与剩下的比是4:5,若再修25米就恰好修到了这条路的中点,这条路全长多少米?

4+5=9

设这条路全长x米:

(5/9-4/9)x=25

1/9x=25

x=225

这条路全长225米

10.一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?

9除以(5分之2-7分之1)

=9除以35分之9

=35(页)

答:这见稿件有35页.

11.某校有学生465人,其中女生的2/3比男生的4/5少20人.男·女各个多少?

女生的3分之2比男生的5分之4少20人

女生比男生的(4/5)/(2/3)=6/5少20/(2/3)=30人

男生有

(465+30)/(1+6/5)=225(人)

女生有

465-225=240(人)

12.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.

甲:乙=2:3=8:12

乙:丙=4:5=12:15

甲:乙:丙=8:12:15

甲:丙=8:15

13.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?

62-24=38(只)

3/5红=2/3黄

9红=10黄

红:黄=10:9

38/(10+9)=2

红:2*10=20

黄:20*9=18

14.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块.两人原来各有多少钱?书多少钱?

设丽丽有x元钱 家家有y元钱 得出:

3/5x=2/3y

2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)

解2元一次方程得x=50 y=45 即丽丽50元 家家45元 书30元一本

15.饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?

去年养猪:(1987+245)/3=744

今年比去年多养猪:1987-744=1243

16.伟今年16岁,爷爷今年61岁.几年前爷爷的年龄正好是小伟年龄的6倍?

今年 爷爷和孙子差45岁 几年前也差45岁 几年前爷爷是孙子岁数的六倍 那么爷爷岁数就比孙子大5倍

45/5=9 所以那一年孙子九岁 爷爷54岁 减一下 就是7年前了.

17.寒假期间,李芳和3位好朋友去逛书店,她们4人来到书店的文具书柜,看到一种笔记本原价2.80元,假期八折优惠,同时还有“买三送一”的活动.她们每人购买了一本,怎样购买更合算?

买3本送1本

花2.8*3/4=2.1

一人一本每个人花2.1元.

18.甲有存款520元,乙有存款240元,两人取出同样多的钱后,甲余下的是乙余下的5倍.两人共取出多少元?

两人差520-240=280元

取出钱后,乙应该是280÷(5-1)=70元

所以,乙取出240-70=170元

总共就取出170+170=340元.

19.王老汉为了与签定购销合同,需要对自己鱼塘中的'鱼的总重量进行估计,他第一次老出100条,重量为184千克,并将每条鱼作上记号,放入水中,当它们完全混合于鱼群之后,又捞出200条,重量为416千克.且带有记号的鱼有20条,问他的鱼塘中估计有鱼多少条?共重多少千克?

200/20*100=1000条

184/100=1.84千克

416-1.84*20=379.2千克

(379.2+184)/(100+200-20)≈2.0114千克

1000*2.0114=.4千克

答:鱼塘里估计有1000条鱼,共2011.4千克.

20.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.

这个班的男生和女生各有多少人..

因为人数为整数,

所以班级人数能被5+6=11整除

所以班级人数为44人

男生有

44÷(5+6)×5=20人

女生有

44-20=24人

21.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少?

原来里面水是90,糖是10

倒出10克,那里面还剩90,其中水81,糖9

再加满水又水为91,糖还是9

那就是9/91

22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?

9÷3×7=21条

23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?

132÷(6+5)=12人

男同学有

12×6=72人

女同学有

12×5=60人

24.图书馆科技书与文艺书的比是4 :5,又购进300本文艺术后,科技书与文艺书的比是5 :7,文艺书比原来增加了百分之几?

文艺书原有:300÷(7/12-5/9)=10800(本)

文艺书比原来增加了:300÷10800≈2.8%

25.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.化简.

1.2:1=6:5

26.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?

250000×20分之9=112500台

27.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.

干部占全厂职工总数的

1-3分之2-9分之2=9分之1

这个厂的工人,技术人员和干部人数的比是

3分之2:9分之2:9分之1=6:2:1

篇4:分数应用题及答案

1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?

3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?

4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?

7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?

8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?

9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?

参考答案

1、这缸水有25桶

2、这根钢管还剩2米

3、这条公路全长99千米

4、这批零件有49个

5、两次共取出21袋

6、两车经过9小时相遇

7、一条裤子240元

8、白兔有72只

9、两天共挖了60米,还剩下20米

【分析】

一、解题步骤:

一找二看三定四列式

1、找出分数句,找准单位“1”。

2、看单位“1”已知还是未知。

3、确定乘除法。单位“1”已知用乘法,单位“1”未知用除法。

4、列式计算。

公式:

1、单位“1”的量×对应的分率=对应的量

2、对应的量÷对应的分率= 单位“1”的量

3、以上两个公式也可以像下面这样表述:

4、单位“1”的量×所求的量对应的分率=所求的`量

5、已知的量÷已知的量对应的分率=单位“1”的量

二、题型:

1、按比例分配的应用题

小书灯给六年级买来45本儿童读物,按4:5分别借给三班和四班。这两个班各借得多少本?

2、和倍和差倍应用题

(1)一个建筑工地九月份上半月用水泥18吨,下半月用的水泥是上半月的9(8)。九月份一共用水泥多少吨?

(2)一个建筑工地九月份用水泥34吨,其中下半月用的水泥是上半月的9(8)。上半月和下半月各用水泥多少吨?

3、工程应用题

一件工作,两人合作10天可以完成,甲单独做14天可以完成。两人合作4天,余下的有乙单独做,还需要几天完成?

4、稍复杂的应用题

张师傅加工一批零件,第一天完成的个数与零件总个数的比是1∶3。如果再加工15个,就可以完成这批零件的一半。这批零件共有多少个?

篇5:奥数应用题试题及答案:工程问题

奥数应用题试题及答案:工程问题

在一条路上,每隔50千米就有一个货栈,每个货栈存放货物的重量如图所示,现在要将这些货物存入同一个货栈里,已知每吨货物运输1千米需要2元.那么,至少需要多少元运费?

分析:根据常识可知,将货物往两端运总运输成本一般比往中间运高,可先将两端的两个仓库排排除,又②仓库中的.货物最多,所以从两端向②运比较节省运费.

解答:解:将货物往两端运总运输成本一般比往中间运高,而②仓库中的货物最多,

所以从两端向②运比较节省运费.

20×50×2×2+20×50×2+20×50×2

=4000+4000

=8000(元)

答:至少需要8000元运费.

点评:先根据距离及每个仓库中货物的吨数排除三个仓库后,根据条件中所给的数据进行分析比较是完成本题的关键.

篇6:列方程解应用题奥数试题及答案

列方程解应用题奥数试题及答案

甲的存款是乙的5倍,如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍.甲、乙原有存款各有多少元?

考点:列方程解含有两个未知数的应用题.

分析:根据“如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍”,可找出数量之间的相等关系式为:(甲原来的存款-60)×2=乙原来的存款+60,再根据“原来甲的存款是乙的5倍”,设原来乙的'存款为x元,那么甲的存款就是5x元,据此列出方程并解方程即可.

解答:解:原来乙的存款为x元,那么甲的存款就是5x元,由题意得:

(5x-60)×2=x+60,

10x-120=x+60,

10x-x=120+60,

9x=180,

x=20,

甲的存款:5×20=100(元);

答:甲原有存款100元,乙原有存款20元.

点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.

篇7:走独木桥的奥数应用题及答案

关于走独木桥的奥数应用题及答案

有一家五口人要在夜晚过一座独木桥.他们家里的老爷爷行动非常不便,过桥需要12分钟;孩子们的父亲贪吃且不爱运动,体重严重超标,过河需要时间也较 长,8分钟;母亲则一直坚持劳作,动作还算敏捷,过桥要6分钟;两个孩子中姐姐需要3分钟,弟弟只要1分钟.当时正是初一夜晚又是阴天,不要说月亮,连一 点星光都没有,真所谓伸手不见五指.所幸的是他们有一盏油灯,同时可以有两个人借助灯光过桥.但要命的灯油将尽,这盏灯只能再维持30分钟了!他们焦急万 分,该怎样过桥呢?

【解答】首先姐姐跟弟弟一起过,用时3分钟,姐姐再回去送油灯,用时3分钟,老爷爷跟爸爸一起过河,用时 12分钟,弟弟将灯送回去,用时1分钟,弟弟和母亲一起过,用时6分钟,弟弟送灯过河,用时1分钟,最后与姐姐一起过河,用时3分钟.一共用 时:3+3+12+1+6+1+3=29分钟.最后能够安全全部过河。

篇8:六年级奥数应用题及参考答案

六年级奥数应用题及参考答案

1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.

解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,

通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,

所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?

解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差,

所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?

解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的.路程。所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到B地,又返回走了1份。这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?

解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。总路程就是=100×30=3000米。

五年级奥数的应用题及答案

七年级奥数应用题

分数运算应用题及答案

三年级奥数典型应用题

四年级奥数题及答案

五年级奥数题及答案

三年级奥数题及答案

小学奥数题及答案

应用题及答案

小学四年级奥数题及答案

分数奥数应用题及答案(共8篇)

欢迎下载DOC格式的分数奥数应用题及答案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档