奥数计数排列组合试题及答案剖析

| 收藏本文 下载本文 作者:荏苒

下面是小编整理的奥数计数排列组合试题及答案剖析(共含8篇),欢迎大家阅读分享借鉴,希望对大家有所帮助。同时,但愿您也能像本文投稿人“荏苒”一样,积极向本站投稿分享好文章。

奥数计数排列组合试题及答案剖析

篇1:奥数计数排列组合试题及答案剖析

奥数计数排列组合试题及答案剖析

1、老奶奶家有20个鸡蛋,还养了一天能下一个蛋的老母鸡,如果她家一天吃两个鸡蛋,老奶奶家的鸡蛋可以连续吃多少天?

2、某公园里有三棵树,他们的树龄分别由1、2、3、4、5、6这六个数字中的不同的两个数字组成,而且其中一棵树的`树龄正好是其他两棵树龄和的一半,你知道这三棵树各是多少岁数呢?

解析:

1、(1)20个鸡蛋,每天吃2个

20÷2=10天,在这10天里,母鸡又下了10个鸡蛋

(2)10个鸡蛋,每天吃2个

10÷2=5天,在这5天里,母鸡又下了5个鸡蛋

(3)5个鸡蛋,每天吃2个

5÷2=2天……1个,在这2天里,母鸡又下了2个鸡蛋

(4)2个鸡蛋+余下的1个鸡蛋,每天吃2个

3÷2=1天……1个,在这1天里,母鸡又下了1个鸡蛋

(5)1个鸡蛋+余下的1个鸡蛋,每天吃2个

2÷2=1天

(6)总天数

10+5+2+1+1=19天

2、纯凑数(12+56)÷2=34

篇2:奥数试题及答案

奥数试题及答案

一个等差数列的第2项是2.8,第三项是3.1,这个等差数列的第15项是。

考点:等差数列.

分析:这个等差数列的公差是:3.1-2.8=0.3,所以首项是2.8-0.3=2.5,然后根据“末项=首项+公差×(项数-1)”列式为:2.5+(15-1)×0.3,然后解答即可.

解答:解:公差是:3.1-2.8=0.3,

首项是2.8-0.3=2.5,

2.5+(15-1)×0.3,

=2.5+4.2,

=6.7;

故答案为:6.7.

点评:本题关键是求出公差,知识点:末项=首项+公差×(项数-1).

篇3:奥数经典试题及答案

奥数经典试题及答案

两个数的'和是,其中一个加数的个位是0,如果把这个0去掉,就正好等于另一个加数的两倍.这两个加数各是多少?

答案与解析:这两个加数分别是:96和1920。因为把第一个加数个位上的“0”去掉,得到了第二个加数的2倍,所以,第一个加数是第二个加数的20倍.把第二个加数看作“1倍数”,第二个加数就是“20倍数”,这两个数的和2016就是“1+20”倍的数。根据这个“量”与“倍”的对应关系,可先求出第二个加数.这两个加数分别是:/(1+20)=96,2016-96=1920

篇4:五年级奥数试题及答案

五年级奥数试题及答案

1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米 ?

解:AB距离=(4.5×5)/(5/11)=49.5千米

2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?

解:客车和货车的速度之比为5:4 那么相遇时的路程比=5:4 相遇时货车行全程的4/9 此时货车行了全程的1/4 距离相遇点还有4/9-1/4=7/36 那么全程=28/(7/36)=144千米

3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?

解:甲乙速度比=8:6=4:3 相遇时乙行了全程的3/7

那么4小时就是行全程的4/7

所以乙行一周用的时间=4/(4/7)=7小时

4、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?

解:甲走完1/4后余下1-1/4=3/4 那么余下的5/6是3/4×5/6=5/8 此时甲一共走了1/4+5/8=7/8

那么甲乙的路程比=7/8:7/10=5:4

所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1-1/5)=800米

5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米?

解:一种情况:此时甲乙还没有相遇 乙车3小时行全程的3/7 甲3小时行75×3=225千米

AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米 一种情况:甲乙已经相遇

(225-15)/(1-3/7)=210/(4/7)=367.5千米

6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?

解:甲相当于比乙晚出发3+3+3=9分钟 将全部路程看作单位1 那么甲的速度=1/30 乙的速度=1/20

甲拿完东西出发时,乙已经走了1/20×9=9/20 那么甲乙合走的距离1-9/20=11/20 甲乙的速度和=1/20+1/30=1/12

那么再有(11/20)/(1/12)=6.6分钟相遇

1

7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?

解:路程差=36×2=72千米 速度差=48-36=12千米/小时 乙车需要72/12=6小时追上甲

8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?

解:甲在相遇时实际走了36×1/2+1×2=20千米 乙走了36×1/2=18千米

那么甲比乙多走20-18=2千米

那么相遇时用的时间=2/0.5=4小时 所以甲的速度=20/4=5千米/小时 乙的速度=5-0.5=4.5千米/小时 9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?

解:速度和=60+40=100千米/小时 分两种情况, 没有相遇

那么需要时间=(400-100)/100=3小时 已经相遇

那么需要时间=(400+100)/100=5小时

10、甲每小时行驶9千米,乙每小时行驶7千米。两者在相距6千米的两地同时向背而行,几小时后相距150千米?

解:速度和=9+7=16千米/小时

那么经过(150-6)/16=144/16=9小时相距150千米

11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?

解:

速度和=42+58=100千米/小时 相遇时间=600/100=6小时 相遇时乙车行了58×6=148千米或者 甲乙两车的速度比=42:58=21:29 所以相遇时乙车行了600×29/(21+29)=348千米

12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?

解:将两车看作一个整体 两车每小时行全程的1/6 4小时行1/6×4=2/3

那么全程=188/(1-2/3)=188×3=564千米

13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?

解:二车的速度和=600/6=100千米/小时 客车的速度=100/(1+2/3)=100×3/5=60千米/小时

2

货车速度=100-60=40千米/小时

14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?

解:速度和=(40-4)/4=9千米/小时 那么还需要4/9小时相遇

15、甲、乙两车分别从a b两地开出 甲车每小时行50千米 乙车每小时行40千米 甲车比乙车早1小时到 两地相距多少?

解:甲车到达终点时,乙车距离终点40×1=40千米 甲车比乙车多行40千米

那么甲车到达终点用的时间=40/(50-40)=4小时 两地距离=40×5=200千米

16、两辆车从甲乙两地同时相对开出,4时相遇。慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?

解:快车和慢车的速度比=1:3/5=5:3 相遇时快车行了全程的5/8 慢车行了全程的3/8

那么全程=80/(5/8-3/8)=320千米

17、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米。A、B两地的最短距离多少米?最长距离多少米?

解:最短距离是已经相遇,最长距离是还未相遇 速度和=100+120=220米/分 2小时=120分 最短距离=220×120-150=26400-150=26250米 最长距离=220×120+150=26400+150=26550米

18、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?

解:原来速度=180/4=45千米/小时 实际速度=45+5=50千米/小时 实际用的时间=180/50=3.6小时 提前4-3.6=0.4小时

19、甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行了12小时,AB两地相距多少千米?

解:设甲乙的速度分别为4a千米/小时,3a千米/小时 那么 4a×12×(3/7)/(3a)+4a×12×(4/7)/(4a+12)=12 4/7+16a/7(4a+12)=1 16a+48+16a=28a+84 4a=36 a=9

甲的速度=4×9=36千米/小时 AB距离=36×12=432千米算术法: 相遇后的时间=12×3/7=36/7小时 每小时快12千米,乙多行12×36/7=432/7千米

相遇时甲比乙多行1/7

那么全程=(432/7)/(1/7)=432千米

20、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的`1.5倍,车开出几时相遇?

解:乙的速度=52×1.5=78千米/小时 开出325/(52+78)=325/130=2.5相遇

21、甲乙两车分别从A,B两地同时出发相向而行,甲每小时行80千米,乙每小时行全程的百分之十,当乙行到全程的5/8时,甲再行全程的1/6可到达B地。求A,B两地相距多少千米?

解:乙行全程5/8用的时间=(5/8)/(1/10)=25/4小时 AB距离=(80×25/4)/(1-1/6)=500×6/5=600千米

22、甲乙两辆汽车同时从两地相对开出,甲车每小时行驶40千米,乙车每小时行驶45千米。两车相遇时,乙车离中点20千米。两地相距多少千米?

解:甲乙速度比=40:45=8:9 甲乙路程比=8:9

相遇时乙行了全程的9/17

那么两地距离=20/(9/17-1/2)=20/(1/34)=680千米

23、甲乙两人分别在A、B两地同时相向而行,与E处相遇,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走,甲和乙分别到达B和A后立即折返,仍在E处相遇。已知甲每分钟走60米,乙每分钟走80米,则A和B两地相距多少米?

解:把全程看作单位1

甲乙的速度比=60:80=3:4 E点的位置距离A是全程的3/7 二次相遇一共是3个全程

乙休息的14分钟,甲走了60×14=840米 乙在第一次相遇之后,走的路程是3/7×2=6/7 那么甲走的路程是6/7×3/4=9/14 实际甲走了4/7×2=8/7

那么乙休息的时候甲走了8/7-9/14=1/2 那么全程=840/(1/2)=1680米

24、甲乙两列火车同时从AB两地相对开出,相遇时,甲.乙两车未行的路程比为4:5,已知乙车每小时行72千米,甲车行完全程要10小时,问AB两地相距多少千米?

解:相遇时未行的路程比为4:5 那么已行的路程比为5:4 时间比等于路程比的反比 甲乙路程比=5:4 时间比为4:5

那么乙行完全程需要10×5/4=12.5小时 那么AB距离=72×12.5=900千米

25、甲乙两人分别以每小时4千米和每小时5千米的速度从A、B两地相向而行,相遇后二人继续往前走,如果甲从相遇点到达B地又行2小时,A、B两地相距多少千米?

解:甲乙的相遇时的路程比=速度比=4:5 那么相遇时,甲距离目的地还有全程的5/9 所以AB距离=4×2/(5/9)=72/5=14.4千米

篇5:等差数列奥数试题及答案

等差数列奥数试题及答案

一个等差数列的.第2项是2.8,第三项是3.1,这个等差数列的第15项是。

考点:等差数列.

分析:人教版四年级等差数列奥数试题及答案这个等差数列的公差是:3.1-2.8=0.3,所以首项是2.8-0.3=2.5,然后根据“末项=首项+公差×(项数-1)”列式为:2.5+(15-1)×0.3,然后解答即可.

解答:解:公差是:3.1-2.8=0.3,

首项是2.8-0.3=2.5,

2.5+(15-1)×0.3,

=2.5+4.2,

=6.7;

故答案为:6.7.

点评:本题关键是求出公差,知识点:末项=首项+公差×(项数-1).

篇6:小升初奥数试题和答案

关于小升初奥数试题和答案

二年级

1.一辆公交车到A站下车5人,上车7人,到B站下车6人,上车10人,现在车上有40人,车上原来有乘客多少人?

2.13+14+15+16+17+25

三年级

1.十位数字与个位数字之差(大数减小数)等于1的两位数有多少个?

2.A、B、C、D、E五个人一起回答一道题,五个人中只有两个人答对了,所有答对的可能情况有多少种?

四年级

1.有一串数共11个,中间数最大。从中间往前数,一个比一个小2;从中间往后数,一个比一个小3。已知这些数的总和是200,那么中间数是多少?

2.在下面的算式中合适的地方填入“+”、“-”,使等式成立。

0808=1000

五年级

1.有若干名同学需要住宿,如果每间住4人,那么有10人没地方住;如果每间住6人,那么最后一间住不满。这些同学最多有多少名?

2.如图,∠1等于100度,∠2等于60度,∠3等于90度,∠4等于多少度?

六年级

1.78名同学围成一圈,从某个同学开始进行1—18报数,一圈一圈循环下去,那么有没有人同时报过5和10?为什么?

2.有20个队进行比赛,每两个队之间最多赛一场。现在已经共进行了21场比赛,那么是不是一定有一个队至少赛了3场?

答案:

二年级

1.一辆公交车到A站下车5人,上车7人,到B站下车6人,上车10人,现在车上有40人,车上原来有乘客多少人?

解答:40-10+6-7+5=34(人)

2.13+14+15+16+17+25

解答:原式=(13+17)+(14+16)+(15+25)=30+30+40=100

三年级

1.十位数字与个位数字之差(大数减小数)等于1的两位数有多少个?

解答:10、12、21、23、32、……、89、98,共17种。

2.A、B、C、D、E五个人一起回答一道题,五个人中只有两个人答对了,所有答对的可能情况有多少种?

解答:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10种。

四年级

1.有一串数共11个,中间数最大。从中间往前数,一个比一个小2;从中间往后数,一个比一个小3。已知这些数的总和是200,那么中间数是多少?

解答:(200+2+2×2+2×3+2×4+2×5+3+3×2+3×3+3×4+3×5)÷11=25

2.在下面的算式中合适的`地方填入“+”、“-”,使等式成立。

20080808=1000

解答:200+808-0-8=1000

五年级

1.有若干名同学需要住宿,如果每间住4人,那么有10人没地方住;如果每间住6人,那么最后一间住不满。这些同学最多有多少名?

解答:要想让人数最多,那么第二种情况下,最后一间住的人越少越好,即空位越多越好。最后一间至少住2人,最多空4个位置,所以房间最多是(10+4)÷(6-4)=7个,人数最多为4×7+10=38人。

2.如图,∠1等于100度,∠2等于60度,∠3等于90度,∠4等于多少度?

解答:四边形内角和是360度。∠1+∠2+∠3+∠4=180×4-360=360度,∠4=360-100-60-90=110度。

六年级

1.78名同学围成一圈,从某个同学开始进行1—18报数,一圈一圈循环下去,那么有没有人同时报过5和10?为什么?

解答:78÷18余6,且78与18的最大公约数就是6,所以每个人报的数之间的差只能是6,报5的只能报11或17,不可能报10。

2.有20个队进行比赛,每两个队之间最多赛一场。现在已经共进行了21场比赛,那么是不是一定有一个队至少赛了3场?

解答:假设每个队比赛的场数都不到3场,那么每个队最多赛2场,最多共进行2×20÷2=20场比赛,矛盾,所以一定有一个队至少赛了3场。

篇7:小升初奥数试题及答案

小升初奥数试题及答案

一年级

1.计算:211×555+445×789+555×789+211×445=______.

2.纽约时间是香港时间减13小时,你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通话,那么在香港你应____月____日____时给他打电话

三年级

1.一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种多少棵树?

2.移动一根火柴棍,使得算式成立。

四年级

1.王刚、李强和小莉、小芳是两对夫妻,四人的年龄和是132岁。丈夫都比自己的妻子大5岁,李强比小芳大6岁。小莉多少岁?

2.第一个图形由4根火柴棍组成,第二个图形由12根火柴棍组成,第三个图形由24根火柴棍组成,依此类推,第100个图形由多少根火柴棍组成?

五年级

1.将15拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,那么积是多少?

2.将各位数字都不大于5的非0自然数,从小到大排列,第个数是多少?

六年级

1.中午12时,校准A、B、C三钟。当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分。那么当晚C钟11点时,A钟是几点几分?

2.在16点16分0秒时,钟表盘上时针和分针的夹角是多少度?

二年级

1.找出图形变化的规律,并画出第四幅图。

解答:

分别按照顺时针方向移动,因此第四幅图是

解答:

2.计算:28+208+2008+8

解答:原式=(20+8)+(200+8)+(2000+8)+(20000+8)

=20+200+2000+20000+8+8+8+8

=22220+32=22252

三年级

1.一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种多少棵树?

解答:200÷4+1=51(棵)51×2=102(棵)

2.移动一根火柴棍,使得算式成立。

解答:11+3=7+7

四年级

1.王刚、李强和小莉、小芳是两对夫妻,四人的年龄和是132岁。丈夫都比自己的妻子大5岁,李强比小芳大6岁。小莉多少岁?

解答:若妻子都增加5岁,那么四人的年龄和为132+5×2=142岁,因此两个丈夫的年龄和是142÷2=71岁。由条件可以知道,李强的妻子是小莉,王刚的`妻子是小芳。李强比小芳大6岁,王刚比小芳大5岁,所以李强比王刚大1岁,因此李强的年龄为(71+1)÷2=36岁,小莉是36-5=31岁。

2.第一个图形由4根火柴棍组成,第二个图形由12根火柴棍组成,第三个图形由24根火柴棍组成,依此类推,第100个图形由多少根火柴棍组成?

解答:横向与纵向的火柴棍根数一样。4=2×1×2,12=2×2×3,24=2×3×4,依此类推,第100个图形共有2×100×101=0根。

五年级

1.将15拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,那么积是多少?

解答:15=2+3+4+6,2×3×4×6=144

2.将各位数字都不大于5的非0自然数,从小到大排列,第2010个数是多少?

解答:实际就是将六进制的数从小到大排列。

将2010转化为六进制。(2010)10=(13150)6

第2010个数就是13150。

六年级

1.中午12时,校准A、B、C三钟。当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分。那么当晚C钟11点时,A钟是几点几分?

解答:A钟走6个小时(即360分钟)的同时,B钟走了5小时50分钟=350分钟,可知A与B的速度比为36:35。B钟走了7个小时(即420分钟)的同时,C钟走了7小时20分钟=440分钟,可知B与C的速度比为42:44=21:22。

现在C钟共走了11个小时(即660分钟),B钟应该走660÷22×21=630分钟,A钟应该走630÷35×36=648分钟=10小时48分钟,所以A钟应该是10点48分。

2.在16点16分0秒时,钟表盘上时针和分针的夹角是多少度?

解答:分针走一圈是60分钟,共走了360度,因此分针一分钟走360÷60=6度。时针60分钟只走一个刻度(即30度),一分钟走30÷60=0.5度。

16点整的时候,时针指向“4”的位置,分针指向“12”的位置,相差120度。16分钟里,分针追上时针16×(6-0.5)=88度,夹角还差120-88=32度。

篇8:小学奥数试题及答案参考

小学奥数试题及答案参考

在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.

(1)请写出只有3种这样的表示方法的最小自然数.

(2)请写出只有6种这样的表示方法的最小自然数.

分析:(1)关于某整数,它的“奇数的约数的个数减1“,就是用连续的.整数的和的形式来表达种数;根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;

(2)有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),有连续的2,3、6、9、10、27个数相加:

364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40.

解答:解:根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);

有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;

根据(2)知道,有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),

有连续的2,3、6、9、10、27个数相加:

364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40

奥数试题

成数问题的奥数试题及答案

小升初奥数试题附答案

六年级奥数试题及解析

小学奥数试题

四年级奥数题及答案

分数奥数应用题及答案

五年级奥数题及答案

三年级奥数题及答案

小学奥数题及答案

奥数计数排列组合试题及答案剖析(共8篇)

欢迎下载DOC格式的奥数计数排列组合试题及答案剖析,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档