行程问题应用题及答案

| 收藏本文 下载本文 作者:阿斯巴甜

下面就是小编给大家带来的行程问题应用题及答案(共含12篇),希望能帮助到大家!同时,但愿您也能像本文投稿人“阿斯巴甜”一样,积极向本站投稿分享好文章。

行程问题应用题及答案

篇1:行程问题应用题及答案

1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。问:羊再跑多远,马可以追上它?

2、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)

7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

8、AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?

9、甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?

10、一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?

11、快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。

12、小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?

1、解:

根据“马跑4步的距离羊跑7步”,可以设马每步长为7x米,则羊每步长为4x米。

根据“羊跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则羊跑5*4x=20米。

可以得出马与羊的速度比是21x:20x=21:20

根据“现在羊已跑出30米”,可以知道羊与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

2、答案720千米。

由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

3、答案为:两人跑一圈各要6分钟和12分钟。

解:

600÷12=50,表示哥哥、弟弟的速度差

600÷4=150,表示哥哥、弟弟的速度和

(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数

(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数

600÷100=6分钟,表示跑的快者用的时间

600/50=12分钟,表示跑得慢者用的时间

4、答案为:53秒

算式是(140+125)÷(22-17)=53秒

可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

5、答案为:100米

300÷(5-4.4)=500秒,表示追及时间

5×500=2500米,表示甲追到乙时所行的路程

2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

6、答案为:22米/秒

算式:1360÷(1360÷340+57)≈22米/秒

关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

7、正确的答案是猎犬至少跑60米才能追上。

解:

由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8、答案:18分钟

解:设全程为1,甲的速度为x乙的速度为y

列式40x+40y=1

x:y=5:4

得x=1/72 y=1/90

走完全程甲需72分钟,乙需90分钟

故得解

9、答案是300千米。

解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的`路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。

因此360÷(1+1/5)=300千米

从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有千米

10、解:(1/6-1/8)÷2=1/48表示水速的分率

2÷1/48=96千米表示总路程

11、解:

相遇是已行了全程的七分之四表示甲乙的速度比是4:3

时间比为3:4

所以快车行全程的时间为8/4*3=6小时

6*33=198千米

12、解:

把路程看成1,得到时间系数

去时时间系数:1/3÷12+2/3÷30

返回时间系数:3/5÷12+2/5÷30

两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时

去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75

路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)

篇2:行程问题应用题及答案

1、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

答案为:两人跑一圈各要6分钟和12分钟。600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间

2、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

答案为:53秒算式是(140+125)÷(22-17)=53秒可以这样理“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

3、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

答案为:100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

4、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?

根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

5、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

答案720千米。由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)

答案为:22米/秒算式:1360÷(1360÷340+57)≈22米/秒关键理人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

正确的答案是猎犬至少跑60米才能追上。由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8、AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?

答案:18分钟设全程为1,甲的速度为x乙的速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解

9、甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?

答案是300千米。通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米

10、一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?

(1/6-1/8)÷2=1/48表示水速的分率

2÷1/48=96千米表示总路程

篇3:的行程问题应用题及答案

最新的行程问题应用题及答案

例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?

[分析]出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇。

解:30÷(6+4)

=30÷10

=3(小时)

答:3小时后两人相遇。

例2、甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时。在出发4小时后,甲、乙二人相遇,又已知甲的`速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?

〔分析〕甲的速度为乙的2倍,因此,乙走了4小时的路,甲只要2小时就可以了,这样就可以求出甲的速度。

解:甲的速度为:100÷(4-1+4÷2)

=100÷5=20(千米/小时)

乙的速度为:20÷2=10(千米/小时)

答:甲的速度为20千米/小时,乙的速度为10千米/小时。

延伸阅读:

基本数量关系应用题:

【练习巩固】

1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?

2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。两地相距多少千米?

3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米?

4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?

5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?

6、甲、乙两地相距280千米,一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。已知汽车的速度是拖拉机速度的4倍,相遇时,汽车比拖拉机多行多少千米?

针对练习:

1. 甲、乙两车同时从相距960千米的A、B两地相向开出,8小时后相遇。已知甲车每小时比乙车快4千米,求甲车的速度是多少?相遇时乙车行驶了多少千米?

2. 某零件加工厂要加工零件1200个。第一车间每天能加工190个,比二车间每天少加工20个。现在两个车间共同加工这批零件,要加工多少天?完成时每个车间各加工了多少个?

3. 自行车商店要装配2380辆自行车,甲组每天装配120辆,乙组每天装配140辆。两个组共同装配7天后,由乙组单独装配。乙组还要多少天才能完成任务?

4. 甲乙两列火车同时从A、B两地相对开出,甲车每小时行90千米,乙车每小时行84千米,相遇时甲车比乙车多行了78千米,A、B两地相距多少千米?

5. 两个水管同时向游泳池中注水,大管3小时注水48吨,小管每小时注水12吨。放满224吨水要多少小时?

6. 车站上有120吨货物,用甲车10小时可以运完,用乙车15小时可以运完,如果两车同时运,几小时可以运完?

提高题:

1、一辆面包车和一辆小轿车同时从相距300千米的两地相向而行,面包车每小时行45千米,小轿车每小时行55千米,几小时后两车第一次相距100千米?再过多少时间两车再次相距100千米?

2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲车每小时行的路程是乙的2倍,经过3小时后两车还相距56千米,两人速度各是多少千米?

篇4:行程应用题及答案

行程应用题及答案

1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.

解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?

解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差

所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?

解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到B地,又返回走了1份。这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)

解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。总路程就是=100×30=3000米。

5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?

解:画示意图如下.

第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了

3.5×3=10.5(千米).

从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是

10.5-2=8.5(千米).

每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了

3.5×7=24.5(千米),

24.5=8.5+8.5+7.5(千米).

就知道第四次相遇处,离乙村

8.5-7.5=1(千米).

答:第四次相遇地点离乙村1千米.

6、小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?

解:画一张示意图:

图中A点是小张与小李相遇的.地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于

这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是

1.3÷(5.4-4.8)×60=130(分钟).

这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要

130÷2=65(分钟).

从乙地到甲地需要的时间是

130+65=195(分钟)=3小时15分.

答:小李从乙地到甲地需要3小时15分.

7、快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?

解:画一张示意图:

设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.

有了上面“取单位”准备后,下面很易计算了.

慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7 小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).

现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=2.8(小时).

慢车从C到A返回行驶至与快车相遇共用了7.5+0.5+2.8=10.8(小时).

答:从第一相遇到再相遇共需10小时48分.

篇5:行程问题应用题教案设计参考

行程问题应用题教案设计参考

教学目标:

1、让学生利用路程、时间、速度三者之间的关系,借助画示意图解以现实为背景的应用题。

2、让学生利用画图直观分析、探究发现、充分发挥学生的主体作用,学生在轻松愉快的气氛中掌握知识。

3、在教师引导下结合实际创造有趣的情景,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心。

4、在《小组竞赛学习法》督促下,逐步引导学生自学 , 使学生的被动学习变为主动学习。

教学重难点

重点:通过学案引导学生分析例题 , 寻找等量关系列方程。

难点:

1、通过学案引导学生从不同角度来寻找等量关系,列方程。

2、通过小组竞赛做题的竞争 , 慢慢地培养学生学习的积极性 , 逐步加强学生的自学能力。

教学方法:《小组竞赛学习法》

教学设计

课前准备

创设悬念 提出问题。

(上课的提前一天或周五下午,给学生每人一份学案,让学生充分讨论准备迎接小组比赛,后面备有学案内容)

课堂教学过程

一、老师出示学案的答案(选做题暂不给答案 , 下课后,学生可用 U 盘烤走当参考),宣布评卷规则。要求:学案每做一题(不包括选做题),不管对错得 1 分,能作对的加一分,并会讲的再加一分,选做题做了并对且会讲的应加倍给分。 ( 选做题让教师讲解后再让学生讲的不加倍给分。

小组组员之间先互帮互学对改答案,准备迎接其它组的检查。(大约用 20 分 -30 分钟,小组准备的越充分越好,若多数学生没准备好,可以再多给点时间让其准备,千万不能打无准备之仗,准备不好的话,先不小组比赛,下节课才小组比赛也行),此时老师巡回抽查每组中学生的自学情况,根据情况调整互帮互学时间,对于都不会的问题,教师可以演讲让优生先学会,再帮助差生学会。

二、小组推磨检查,一般每小组的前四名检查下组的后四名,( 8 人一个组)。

三、各组长统计分数并让被检组认可,教师统计各组分数, 对全班小组排列顺序,分数最低的小组起立向大家敬礼表示失败,(也可以对第一名小组奖励)教师把比赛结果记录在专用本子上,准备一周的`总分评比。一周的总分数少的小组要替第一名小组打扫卫生一次。每周比赛结果也记录在专用本子上,准备一学期的总分评比。

四、布置下节自学任务而结束本节上课。

以下是备用内容

学生自学内容 (就是学案)

先给大家讲一个当代数学家苏步青教授故事,苏步青教授在法国遇到一个很有名气的数学家,这位数学家在电车里给苏教授出了个题目:

问题 1“ 甲乙两人,同时出发,相对而行,距离是 50 千米,甲每小时走 3km, 乙每小时走 2km ,问他俩几小时可以碰面?

苏教授一下子便回答出来了,你能回答上述问题吗?你能把解决的方法步骤写出来并给大家讲一下吗? ”

请 同学们先画出示意图:

再由图填空:甲乙相遇时,他们共行的路程为( )

从路程的角度分析:甲走的路程 + 乙走的路程为( )

从时间角度分析:甲走的时间 = 乙走的时间。

如果 设甲、乙相遇时他们所用时间为 x 小时,此时相等关系:

甲走的路程 + 乙走的路程) = ( )

即甲行走的速度×甲行走的( ) + 乙行走的( )×乙行走的时间 = ( )

篇6:七年行程应用题及答案

七年行程应用题及答案

应用题是指将所学知识应用到实际生活实践的题目。在数学上,应用题分两大类:一个是数学应用。另一个是实际应用。下面是七年行程应用题及答案请参考!

七年行程应用题及答案

1.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离。

解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,

通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,

所以两次相遇点相距9-(3+4)=2千米。

2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的.路程有多少米?

解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差

所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3.A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?

解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到B地,又返回走了1份。这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)

解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。总路程就是=100×30=3000米。

5.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?

解:画示意图如下。

第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了

3.5×3=10.5(千米)。

从图上可看出,第二次相遇处离乙村2千米。因此,甲、乙两村距离是

10.5-2=8.5(千米)。

每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程。其中张走了

3.5×7=24.5(千米),

24.5=8.5+8.5+7.5(千米)。

就知道第四次相遇处,离乙村

8.5-7.5=1(千米)。

答:第四次相遇地点离乙村1千米。

篇7:行程问题复习的应用题

行程问题复习的应用题

准备题:

1、小明和小红家相距600米,两人同时从家出发,小明每分钟走60米,小红每分钟走40米,几分钟后两人相遇?

2、甲、乙两人从相距36千米的两地相向而行。甲速度为每小时3千米,乙速度为每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇?

3、两辆汽车同时从相距190千米的甲乙两地相对开出,甲车每小时行45千米,乙车每小时行50千米。两车开出几小时后,还相距95千米?

用4辆载重量相同的汽车,7次共运货物168吨,现有同样的汽车8辆,10次可以运货物多少吨?

【练习巩固】

1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?

2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。两地相距多少千米?

3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米?

4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?

5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?

6、甲、乙两地相距280千米,一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。已知汽车的速度是拖拉机速度的4倍,相遇时,汽车比拖拉机多行多少千米?

针对练习:

1. 甲、乙两车同时从相距960千米的A、B两地相向开出,8小时后相遇。已知甲车每小时比乙车快4千米,求甲车的`速度是多少?相遇时乙车行驶了多少千米?

2. 某零件加工厂要加工零件1200个。第一车间每天能加工190个,比二车间每天少加工20个。现在两个车间共同加工这批零件,要加工多少天?完成时每个车间各加工了多少个?

3. 自行车商店要装配2380辆自行车,甲组每天装配120辆,乙组每天装配140辆。两个组共同装配7天后,由乙组单独装配。乙组还要多少天才能完成任务?

4. 甲乙两列火车同时从A、B两地相对开出,甲车每小时行90千米,乙车每小时行84千米,相遇时甲车比乙车多行了78千米,A、B两地相距多少千米?

5. 两个水管同时向游泳池中注水,大管3小时注水48吨,小管每小时注水12吨。放满224吨水要多少小时?

6. 车站上有120吨货物,用甲车10小时可以运完,用乙车15小时可以运完,如果两车同时运,几小时可以运完?

提高题:

1、一辆面包车和一辆小轿车同时从相距300千米的两地相向而行,面包车每小时行45千米,小轿车每小时行55千米,几小时后两车第一次相距100千米?再过多少时间两车再次相距100千米?

2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲车每小时行的路程是乙的2倍,经过3小时后两车还相距56千米,两人速度各是多少千米?

篇8:行程问题练习题及答案

行程问题练习题及答案

行程问题练习题及答案

(一)超车问题(同向运动,追及问题)

1、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米。慢车在前面行驶,快车从后面追上到完全超过需要多少秒?

思路点拨:快车从追上到超过慢车时,快车比慢车多走两个车长的和,而每秒快车比慢车多走(22-17)千米,因此快车追上慢车并且超过慢车用的时间是可求的。

(125+140)÷(22-17)=53(秒)

答:快车从后面追上到完全超过需要53秒。

2、甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?

(20-18)×110-120=100(米)

3、甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?

25-(150+160)÷31=15(米)

小结:超车问题中,路程差=车身长的和

超车时间=车身长的和÷速度差

(二)过人(人看作是车身长度是0的火车)

1、小王以每秒3米的速度沿着铁路跑步,迎面开来一列长147米的火车,它的行使速度每秒18米。问:火车经过小王身旁的时间是多少?

147÷(3+18)=7(秒)

答: 火车经过小王身旁的.时间是7秒。

2、小王以每秒3米的速度沿着铁路跑步,后面开来一列长150米的火车,它的行使速度每秒18米。问:火车经过小王身旁的时间是多少?

150÷(18-3)=10(秒)

答: 火车经过小王身旁的时间是10秒。

(四)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)

3、长150米的火车,以每秒18米的速度穿越一条长300米的隧道。问火车穿越隧道(进入隧道直至完全离开)要多少时间?

(150+300)÷18=25(秒)

答: 火车穿越隧道要25秒。

4、一列火车,以每秒20米的速度通过一条长800米的大桥用了50秒,这列火车长多少米?

20×50-800=200(米)

篇9:“行程问题应用题”教学经验点滴

相遇求路程的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题。其中必须让学生明确“运动方向”、“出发时间”“运行结果”等运动要素。教学时,以一个物体运动的特点和数量关系为基础,让学生认识“相遇问题”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

教学中,通过多媒体的演示,让学生了解两个物体在同一段路上运动的方向、地点、时间和结果等方面可能出现的各种情况,这样学生观察起来直观、易懂,兴趣调动起来了。通过填写表格,让学生理解“张华走的路程+李诚走的路程=他们两家的距离”为例5的解法作了铺垫。

在例5的解题中,教师利用线段图帮助学生理解“小强走的路程+小丽走的路程=两家的距离”,同时,通过多媒体演示,让学生认识“速度和”,理解“4个每粉两人所走的路程的和与两家的距离是相等的”从而使学生进一步理解解题思路,掌握解答方法。

篇10:行程问题

《行程问题》说课设计

――现代教育信息技术与数学学科的整合

福建省闽侯县尚干中心小学   林惠贞   邮编:350112     邮箱:zhenzi2277@163.com

众所周知,未来的教育,倡导开放式学习,把学习的地点扩展到社会、网络;倡导探索式学习,积极引导学生探索未知领域;倡导合作式学习,通过共享达到共同提高的目的;倡导多学科之间的整合、相互应用。未来教育模式要求学生围绕一个问题,利用现代教育信息技术积极主动地投身于探究活动,去收集相关的资料,并解决实际问题。结合这两个方面,我依据维果茨基的支架理论,应用美国JAVA互动教学软件,让学生小组合作,自主探索,实践《行程问题》第一课时的学习。

《行程问题》是人教版小学数学第九册第54~59页的教学内容。学生在前几册教材中已经学习过了有关速度、时间、路程之间数量关系的应用题。但是以前学习的这种应用题,都是研究一个物体的运动情况,从这部分教材开始,将要研究两个物体的运动情况。这里以相遇问题为主,研究两个物体在运动中的速度、时间、路程之间的数量关系。两个物体运动的情况是多种多样的有方向问题,出发地点问题,还有时间问题。学生要全部掌握这些是比较困难的。本册教材的重点是教学两个物体相向运动的应用题。

因此,特制定如下教学目标 :

1、知识与技能目标:

理解“相遇问题”的意义,形成两个物体运动的空间观念。

2、解决问题目标:

引导学生探索发现“相遇问题”的数量关系,掌握解题思路和解答方法,正确解答求路程的应用题。

3、情感与态度目标:

创设师生互动情境,在民主、宽松、和谐的学习氛围中,培养学生严谨科学的学习态度、勇于探索创新的精神以及乐于合作的意识,发展学生的个性。

教学重点:相遇应用题的.数量关系。

教学难点 :理解“相遇”“相向而行”“速度和”的含义。

课前需掌握的知识和技能:

单个物体运动的数量关系:速度×时间=路程

路程÷速度=时间

路程÷时间=速度

课程资源:有足够多的计算机提供给每一个学生学习使用。

・  接入到网址

standards.nctm.org/document/eexamples/chap5/5.2/#APPLET

课的准备:在上课之前,必须仔细阅读并会使用standards.nctm.org/document/eexamples/chap5/5.2/#APPLET中登载的JAVA插件5.2 Understanding Distance, Speed, and Time  活动。检查教室里的所有学生电脑,保证课上学生能正常上网操作,把活动的网址书签和练习纸复制给学生。

教学过程 :

一、复旧引新,插件导入

1、出示复习题:

张华每分钟走60米,走了3分钟,一共走了多少米?

学生解答并复习速度、时间、路程三者间的数量关系。

2、利用JAVA插件,导入  新课:

在前面复习一个物体运动的数量关系的基础上,今天接着学习行程问题――“两个物体的运动”。

学好两物体相向运动的相遇问题,关键是弄清每经过一个单位时间,两物体之间的距离变化。由于学生在这方面的生活经验较少,往往不易理解相向运动的变化特点,为此特别采用JAVA插件进行教学。

导入  新课后,让学生借助插件自主研究: ①两个物体在两地同时出发,行驶的方向可能会出现哪几种情况?在学生操作的基础上,理解“相向、背向、同向”三种情况。②两个物体同时同地出发,行驶的方向可能会出现哪几种情况?在学生讨论、操作的基础上,理解“背向而行、同向而行”。

这样,一开始就让学生自己摆弄JAVA插件,让学生在玩中学、学中玩,极大地调动了学生的积极性。

二、主动探索,学习新知

1、利用插件,完成准备题

张华和李东同时从两地出发,相对跑来。张华每秒跑2米,李东每秒跑3米,经过6秒两人相遇。两地相距多远?

这部分,先进行插件应用的指导:将张华的起点定在“0米”处,将李东的起点定在“80米”处。将张华的速度定为每秒2米,将李东的速度定为每秒3米。要求学生利用插件自主探索,手动操作两人同时从两地出发1秒钟、2秒钟、3秒钟……所走的路程。理解什么是“相遇”。在这个过程中,渗透了“量变引起质变”的哲学思想。

在前面动手操作的基础上,让学生再次利用插件解决准备题,看每秒两人距离的变化,让学生在表中填写数目,引导学生观察并思考:随着两人跑的时间一秒一秒的地增加,两人所跑的路程的和怎么变化?两人之间的距离同时发生什么变化?并理解相遇时两人所走的路程和就是两地的距离,这一重要的数量关系,为例题学习打下基础。

2、应用插件,探究“速度和×时间=路程”

学生四人小组合作自主设制插件中的两人运动的方向、时间、速度,解答出例题:小强和小丽同时从自己家相向而行。小强每秒跑6米,小丽每秒跑4米,经过(   )秒两人在校门口相遇,他们两家相距多少米?

教师引导学生比较多种解法,根据乘法分配律得出“速度和×时间=路程”的公式,并比较一下哪种解法更简便。

至此,可抛弃暂时的支架,随着学生能力的提高,让学生抛弃插件完成基本练习、变式练习和拓展练习。

三、应用新知,拓展思维

1、基本练习

两列火车从两个车站同时相向开出,甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。两个车站之间的铁路长多少千米?

2、变式练习

两辆汽车同时从一个地方向相反的方向开出。甲车平均每小时行44千米,乙车平均每小时行38千米。经过3小时,两车相距多少千米?

3、拓展练习

小兔每分钟跑10米,乌龟每分钟跑2米,请同学们借助插件设计它们的运动情况,提出问题并解答。

教师提供范例:小兔和乌龟同时从两地出发,相向而行,小兔每分钟跑10米,乌龟每分钟跑2米,3分钟后它们相遇,两地相距多少米?

这三组练习,设计由浅入深,从基本模仿练习、到改变出发点和运动方向的变式练习、到提供基本条件,由学生自己设计运动情况编题,这些练习层次清楚、由易到难、螺旋上升、富有创造性。特别是拓展练习,更是展示了学生对固定思维模式的突破,引导学生高层次地思考。

四、整理归纳,完善认知:

今天我们研究了两个物体的运动,与前面学的一个物体的运动有什么联系和区别?

这样的小结既首尾照应又承前启后,力图从整体上提高学生的认识水平,完善学生的认知结构。

这一节课,在整个学习过程中,充分体现新课程标准所提倡的“以学生为本”的教学思想,培养学生动手操作、自主学习、团队合作的精神,利用现代教育信息技术与数学学科的整合,提高了学生从Internet网和其它媒体上获取资料的能力,提高学生的发散性思维和创新精神、创新意识。但利用插件教学也有其不足之处:比如说受插件的限制,某些数据有一定的局限性,在可操作性上有所欠缺。

篇11:和差问题应用题及答案

和差问题应用题及答案

例1 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克呢?

分析这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克)。

解法1:①第二筐重多少千克?

(150-8)÷2=71(千克)

②第一筐重多少千克?

71+8=79(千克)

或150-71=79(千克)

解法2:①第一筐重多少千克?

(150+8)÷2=79(千克)

②第二筐重多少千克?

79-8=71(千克)

或150-79=71(千克)

答:第一筐重79千克,第二筐重71千克。

练习:三年级图书比四年级图书多50本,并且三年级图书数是四年级的3倍,三年级和四年级各有图书多少本?

例2 今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?

分析题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁)。不论过多少年,两人的年龄差是保持不变的。所以,当两人年龄和为58岁时他们年龄差仍是28岁。根据和差问题的解题思路就能解此题。

解:①爸爸的年龄:

[58+(35-7)]÷2

=[58+28]÷2

=86÷2

=43(岁)

②小强的年龄:

58-43=15(岁)

答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。

练习:果园里栽的梨树比苹果树多240棵,梨树的棵数比苹果树的5倍多20棵。果园里有苹果树和梨树各多少棵?

例3 小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分?

分析解和差问题的关键就是求得和与差,这道题中数学与语文成绩之差是8分,但是数学和语文成绩之和没有直接告诉我们。可是,条件中给出了两科的平均成绩是94分,这就可以求得这两科的总成绩。

解:①语文和数学成绩之和是多少分?

94×2=188(分)

②数学得多少分?

(188+8)÷2=196÷2=98(分)

③语文得多少分?

(188-8)÷2=180÷2=90(分)

或98-8=90(分)

答:小明期末考试语文得90分,数学得98分。

练习:两堆石子相差16粒,如果混在一起,那么可以重新分成数量都是28粒的三堆。求原来两堆石子各有多少粒?

例4 甲乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各有学生多少人?

分析这样想:甲、乙两校学生人数的和是864人,根据由甲校调入乙校32人,这样甲校比乙校还多48人可以知道,甲校比乙校多32×2+48=112(人)。112是两校人数差。

解:①乙校原有的学生:

(864-32×2-48)÷2=376(人)

②甲校原有学生:

864-376=488(人)

答:甲校原有学生488人,乙校原有学生376人。

小结:从以上4个例题可以看出题目给的条件虽然不同,但是解题思路和解题方法是一致的。和差问题的一般解题规律是:

(和+差)÷2=较大数较大数-差=较小数

或(和-差)÷2=较小数较小数+差=较大数

也可以求出一个数后,用和减去这个数得到另一个数。

下面我们用和差问题的思路来解答一个数学问题。

练习:红红与兰兰共有61本书,红红给了兰兰5本书,兰兰自己又新买了3本书,红红现在比兰兰少2本书。问:两人原来各有几本书?

例5 在每两个数字之间填上适当的加或减符号使算式成立。

1 2 3 4 5 6 7 8 9=5

分析这样想:从1至9这几个数字相加是不会得到5的,只能从一部分数字相加再减去一部分字后差是5,也就是说1到9的`和是45,而两部分的差是5,先要求出这两部分数字,利用和差问题的方法便可以求出。

(45-5)÷2=20,20+5=25

可求出其中几个数的和是25,而另外几个数的和是20。在组成和是25的几个数前面添上“+”号,而在组成和是20的几个数前面添上“-”号,此题就算出来了。

例如:5+6+9=20可得到。

1+2+3+4-5-6+7+8-9=5

又如:5+7+8=20可得到。

1+2+3+4-5+6-7-8+9=5

又如:3+4+6+7=20可得到。

1+2-3-4+5-6-7+8+9=5

练习、小红在计算两个数的和时,把其中一个加数个位上的0漏掉了,结果算出的和是37。已知正确答案为91,求这两个数的差(大减小)是多少?

篇12:归总问题应用题及答案

关于归总问题应用题及答案

1.  要修一条公路,原计划每天修450米,80天完成。现在要求提前20天完成,平均每天应多修多少米?

分析:要求平均每天多修多少米,必须知道实际每天修多少米,要求实际每天修多少米,又要先求出这条公路的总长和实际修多少天。

解:450×80÷(80-20)-450

=450×80÷60-450

=36000÷60-450

=600-450

=150(米)

答:平均每天应多修150米.

2.  农具厂生产一批农具,原计划每天生产120件,28天可以完成任务,实际每天多生产了20件,这样可以提前几天完成任务?

分析:要求提前几天完成任务,先要求出实际生产了多少天,要求实际生产了多少天,又要求出这批农具一共有多少件。

解:28-120×28÷(120+20)

=28-120×28÷140

=28-3360÷140

=28-24

=4(天)

答:可以提前4天完成任务.

3.  面粉厂用汽车装运一批面粉,原计划用每辆装24袋的汽车9辆15次可以运完,现在改用每辆装30袋的汽车6辆来运,几次可以运完?

分析:要求几次可以运完,先要求出运的这批面粉共有多少袋。

解:24×9×15÷30÷6

=216×15÷30÷6

=3240÷30÷6

=18(次)

答:18次可以运完.

4.  修一条公路,原计划每天工作7.5小时,8个人6天可以修完,实际增加了2个工人,准备4天完成,这样每天要工作几小时?

分析:要求每天工作几小时,先要求出这条公路的总工作量,即由1个工人来做共需要多少小时,再求最后问题。

解:7.5×8×6÷4÷(8+2)

=7.5×8×6÷4÷10

=60×6÷4÷10

=360÷4÷10

=9(小时)

答:每天要工作9小时.

5.  一项工程,预计30人15天可以完成任务。工作4天后,又增加3人。如果每人工作效率相同,这样可以提前几天完成任务?

分析:要求提前几天完成任务,必须知道实际工作的天数。要求实际工作天数,又要先求工作4天后,余下的工作需要几天完成,求余下的工作量应用总工作量(15×30)减去4天的工作量(4×30).

解:15-〔(15×30-4×30)÷(30+3)+4〕

=15-〔(450-120)÷33+4〕

=15-〔330÷33+4〕

=15-〔10+4〕

=15-14

=1(天)

答:可以提前1天完成任务.

6.  一个工地上有120名工人,食堂为这些工人准备了30天的粮食。实际工作5天后,由于工期紧张,又调来30名工人,食堂原来准备的粮食只够吃几天?

分析:先要求出准备的'粮食共有多少,也就是1人能吃多少天,再求出5天后余下的粮食够用多少天。

解:(30×120-5×120)÷(120+30)+5

=(3600-600)÷150+5

=3000÷150+5

=20+5

=25(天)

答:食堂原来准备的粮食只够吃25天.

7.  一项工程原计划8个人每天工作6小时,10天可以完成。现在为了加快工作进度,增加2人,每天工作时间增加2小时,这样可以提前几天完成这项工程?

分析:要求可以提前几天完成,要先求现在这项工程需要多少天。要求现在完成这项工程需要多少天,又要先求这项工程的总工作量是多少。

解:10-6×10×8÷(8+2)÷(6+2)

=10-6×10×8÷10÷8

=10-60×8÷10÷8

=10-480÷10÷8

=10-48÷8

=10-6

=4(天)

答:可以提前4天完成这项工程.

钟表问题应用题及答案

烙饼问题应用题及答案

行程问题应用题教案设计参考

利润问题的应用题及答案

和差问题应用题及答案

应用题及答案

百分数应用题及答案

体积应用题及答案

六年级应用题及答案

行程问题练习题

行程问题应用题及答案(通用12篇)

欢迎下载DOC格式的行程问题应用题及答案,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档