高等数学学习心得

| 收藏本文 下载本文 作者:两颗冥王星

以下是小编为大家准备的高等数学学习心得(共含7篇),仅供参考,大家一起来看看吧。同时,但愿您也能像本文投稿人“两颗冥王星”一样,积极向本站投稿分享好文章。

高等数学学习心得

篇1:高等数学怎么学

第一、学+思+习;是学习高等数学大的模式

学,包括学和问两方面,即向老师、向同学、向自己学和问。大部分学生不习惯问问题觉得有点丢面子,不会的就放弃了,有疑问的也搁置了,但是唯有在学中问和问中学,才能一步步消化数学的概念、理论。

思,就是自己多思考,多总结,然后举一反三。平时做题的过程中,哪种类型的题,用到的是哪类公式,都可以记录下来,久而久之,只要看到题目脑海就能想到这是哪一类题,考察的是哪方面内容。

习,就是做练习。这一点数学有自身的特点,练习一般分为两类,一是基础训练练习,经常附在每章每节之后。这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。知识面广些不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,非此达不到目的。

第二、狠抓基础,循序渐进

任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。高等数学本身就是数学和其他学科的基础,而高等数学又有一些重要的基础内容,它关系的全局。

以微积分部分为例,基本上绝大多数题目都离不开求导。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。对于文科生来说也不要慌,好好的落实求导的法则及其相关的应用条件,扎扎实实的学习数学。所以在学习高等数学时要一步一个脚印,扎扎实实地学和练,成功的大门一定会向你敞开。

第三、归类小结,从厚到薄

记忆,总的原则是抓纲,在用中记。归类小结是一个重要方法。

高等数学归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。

第四、注意学习效率

数学的方法和理论的掌握,不可能在课堂上就完全学会,所以需要有几个反复。

高等数学的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。在学习的道路上是没有平坦大道的,所以让我们重新树立起信心,打倒高数这拦路虎。

篇2:如何学好高等数学

学好高等数学方法

第一,要勤学、善思、多练。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在“学中问”和“问中学”,才能消化数学的概念、理论、方法;所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考、善于思考、从厚到薄的学习数学的方法,值得我们借鉴;所谓习,就《高等数学》而言,就是做练习,这是数学自身的特点。练习一般分为两类,一是基础训练练习,经常附在每章每节之后,这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。二是提高训练练习,知识面广些,不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。

第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习《高等数学》时要一步一个脚印,扎扎实实地学和练。

第三,归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。《高等数学》归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。

第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。

第五,注意学习效率。数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。《高等数学》的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。

第六,掌握学习规律

1.书:课本+习题集(必备),因为学好数学绝对离不开多做题,建议习题集最好有本跟专升本有关的,这样也有利于你做好将来的专升本准备。

2.笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。

3.上课:建议最好预习后听,听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但是记住:高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。

4.学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,你既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。基本网络就是上面说的笔记上的总结的知识提纲,也要重视。基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的,比如各种极限的求法。

大学生学习高等数学方法

⒈首先是在上课的时候一定要认真听讲,一般高等数学都是高中数学的一个延伸,并没有高中数学思维逻辑那么的强。

⒉做好数学定义的理解,高等数学的关键在于理解数学,并不只是仅仅要求你会做题,更要你会理解,定义必须得要求熟背在心。

⒊不明白的问题在课上一定要消化,这是学数学最重要的,模棱两可是学数学最忌讳的东西,切记不懂装懂。

⒋课后要针对性的多做练习题目,最好选择一些考研类的题目,更便于定义的理解。

⒌最后一点就是一定要重视数学的学习,如果你不去重视就会什么也学不好的。

学霸学习高等数学秘籍

1.先将我们的高数书仔细看一遍,每一章看完后,便做课后习题,此时肯定是有许多的题不会做,没关系,将不会做的用笔做个记号,接着做后面的题。

2.将不会的习题翻书找出它在哪节中出现过,仔细想想,如果实在想不出就看看例题什么的,总能找出相似的例题。

3.将整本书全部按上述方法做完后开始做模拟试卷,将不会的题对着课本目录寻找它跟哪章哪节有联系,然后将相关章节仔细看一遍,再回过头来做题.

4.公式要记熟,主要是几个,基本的函数公式,洛必达法则,中值定理,导数公式,积分公式,微分公式;

5.例题要做熟,其实例题都是按公式的套路来的,做熟就行了,考试中一定都是那几个公式都要考的;

6.老师布置的作业非常重要,一定要认真,保质保量地完成,可以与参考书对照,因为老师认为必须学会的作业题很有可能就是考试题。上高数课往往有这样的感觉,很容易忘记,上一次课的内容到下一次课也许就忘光了,所以复习是必须的.

7.学完一章后,最好把这一章没有做过作业的习题都做一遍,这样便于理清条理,也是对自己学习情况的检测。不然等到考试才发现自己还有很多问题不懂,那就麻烦了。考试形式和难度与课后习题相差无几,考试前做一下这些题是很有用的。

8.学习高数时要注重课堂的听讲,即使很困很累也要坚持,一旦落伍了在补就很难了,还要注重提前预习.老师上课之前一定要预习,变被动为主动,上课时自然就轻松的很多,高数不要去研究很深的题目,从最基础的开始,一定要立与课本,把书上的练习题弄透彻了考试也就没有问题了,然后就是独立完成作业,不懂的可以请教同学

篇3:高等数学课件

关于高等数学课件

学习目标:

1.理解和掌握比例的意义,了解比例和比的区别。

2.能根据比例的意义正确判断两个比能否组成比例。

3.探索国旗中的数学知识,渗透爱国主义教育。

教学重点:理解比例的意义。

教学难点:应用比例的意义判断两个比能否组成比例。

教学过程:

一、创设情境

1.请同学们回忆一下比的知识,你能说说什么叫做比?(举例说明)

教师板书学生举的例子并注明比的各部分的名称。

2.我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。

12:16

3/4: 1/8

4.5:2.7

10:6

学生求出各比的比值后,再提问:你有什么发现?

(4.5:2.7的比值和10:6的比值相等。)

教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)

[设计意图:在学习比例之前,就强调了两个比的比值相等,为学习新知识提供了“最佳关系”和知识的“固定点”。

二、自主探究,构建新知

1.学生观察课本情境图,激发爱国情操。

四幅情境图分别呈现的是什么情景?

天安门升国旗仪式,校园升旗仪式,教室场景,国家间的会议

师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?

2.板书国旗的长和宽,并提出问题。

天安门升国旗仪式:长5米,宽10/3米。

校园升旗仪式:长2.4米,宽1.6米。

教室场景:长60厘米,宽40厘米。

签约仪式:长15厘米,宽10厘米。

师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?

师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?

3.学生探索,发现问题。

师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?

学生自主观察、计算,发现国旗的长和宽的比值相等。

(1)比较学校操场上和教室里的国旗长与宽的比值。

2.4:1.6=3/260:40=3/2

2.4:1.6=60:40

(2)在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?学生回答,教师板书(说明:四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等的。)

像这样表示两个比相等的式子叫做比例。

[设计意图:为学生提供四个实际情境图,创设这个情境有五方面的考虑:一是使学生通过现实情境体会比例的应用;二是“四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等”,由此引入比例意义的教学;三是依据四面国旗长与宽可以组成多个比例式,为比例意义的教学提供较多的资源;四是为以后学习图形的放大与缩小做铺垫;五是有助于在教学中渗透爱国主义教育,注重了“数学化”和“生活化”的结合,使这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程,让学生自己观察比较,总结得出比例的意义。让学生通过自己的'分析、思考、概括出了较为简洁的数学概念,学生感受到成功的喜悦,参与课堂的主动性被充分调动。]

4.我们也学过不同的两个量也可以组成一个比,如:

一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(时)25

路程(千米)80200

指名学生读题。

教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。

这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)

“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:

第一次所行驶的路程和时间的比是80:2

第二次所行驶的路程和时间的比是200:5

让学生算出这两个比的比值。

指名学生回答,教师板书:80:2=40,200:5=40。

让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)

教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。

[设计意图:应用上面的方法,在学生原有知识的基础上提出新问题,使学生由感性认识过渡到理性认识。引导学生自己思考解决问题,用自己理解后的语言叙述比例意义,培养了学生的思维能力,使学生既长知识又长智慧。

指着比例式,引导学生观察得知,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?

5.比较“比”和“比例”两个概念。

教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

比一个式子两数相除有两项

比例一个等式两个比相等有四项

三、练习反馈,巩固新知

做P33“做一做”。

让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。

[设计意图:通过这一组题的练习,增强了新知识的清晰度与稳定性,有利于学生掌握比例的意义,层次清楚。

四、拓展迁移,升华新知

1、填空。

5:2=80:()

2:7=:5

1.2:2.5=:4

[设计意图:此题有了数的形式的变化,兼备有意设难、激发挑战、活跃气氛的功效。

2、下面每组中的四个数能组成比例吗,把组成的比例写出来。(能写几个就写几个)

(1)4,5,12和15

(2)2,3,4和6

[设计意图:边讲边练逐步延伸了知识。提出条件让学生自己组成比例,有利于激发学生学习兴趣和调动学生思考的积极性。同时培养了思维的深刻性和灵活性。

五、总结

这节课你有什么收获?

篇4:高等数学学习方法

目前,每当一年高考结束,数百万高中学生通过自己的奋力拼搏,在同龄人中脱颖而出,升入自己梦寐以求的各类高等院校开始在新的环境进行学习的时候,社会上各大媒体都会不断地重复一个话题:一个高中生怎样尽快地从心理上、生理上等方面溶入新的环境,成为一名合格的大一新生?而且不时的在电视新闻或报刊出现大一的学生在新的环境中沉眠于网络或电子游戏,而跟不上大学的学习进度而退学的例子。笔者认为:一个高中生升入大学学习后,不仅要从环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。我在高等工科院校从事高等数学的教学工作已有三十余年,高等数学在工科院校的教学计划中是一门基础理论课程,是大一新生必修的课程,它对于各专业后继课程的学习,以及大学毕业后这类工程技术人员的工作状况,高等数学课程都起着奠基的作用。如在校的继续学习中只有掌握高等数学的知识以后,才能比较顺利地学习其他专业基础课程,如物理、工程力学、电工电子学……等等,也才能学好自己的专业课程。又如当毕业走向工作岗位后,要很好地解决工程技术上的问题,势必要经常应用到数学知识。因为在科学技术不断发展的今天,数学方法已广泛渗透到科学技术的各个领域之中。因此,工科类的大一新生在学习上一个很明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。

那么,大一新生怎样才能学好高等数学呢?笔者想就自己多年从事本门课程教学的经验与体会,谈几点肤浅的看法,以供同学们参考。

一、摒弃中学的学习方法

从中学升入大学学习以后,在学习方法上将会遇到一个比较大的转折。他们首先是对大学的教学方式和方法感到很不适应,这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性比较强的基础理论课程,而学生正是习惯于模仿性和单一性的学习方法,这是在从小学到中学的教育中长期养成的,一时还难以改变。

中学的教学方式和方法与大学有质的差别。突出表现在:中学的学习,学生是在教师的直接指导下进行模仿和单一性的学习,大学则要求学生在教师的指导下进行创造性的学习。例如:中学的数学课的教学是完全按照教材进行的,在课堂上只要求教师讲、学生听,不要求作笔记,教师教授慢、讲得细、计算方法举例也多,课后只要求学生能模仿课堂上教师讲的内容作些习题就可以了,根本没有必要去钻研教材和其他参考书(为了高考增强考生的解题能力而选择一些其他参考书仅是训练解题能力的需要),而大学的高等数学课程则恰好不一样,教材仅是作为一种主要的参考书。要求学生以课堂上老师所讲的重点和难点为线索,通过大量地阅读教材和同类的参考书,以充分消化和掌握课堂上所讲授内容,然后做课后习题巩固所掌握知识,这就是进行反复地创造性的学习。这是一种艰苦的脑力劳动,它不仅要求学生主动地、自觉地进行学习,同时还要在松散地环境下能约束自己,并且要掌握较好的学习方法,才能把所要学习的知识学得扎实,为专业课程的学习打下良好基础。

二、抓好三个环节

什么是学习高等数学的最好方法呢?这根据每个人的学习时的习惯和理解问题的能力不同而异,但就一般说来,均应抓好以下三个环节。其一是课前预习。这一过程很重要,因为只有课前预习过,才会在听课时做到心中有数,即老师所讲的内容哪些是属于难以理解的,什么是重点等,这样带着一些问题去听老师讲课,效果就很明显了,同时预习的过程中也就培养了你的自学能力,这对自己来说将是终身受益的。预习的过程也不需要花太多时间,一般地一次课内容花三、四十分钟左右时间就可以了。在预习时不必要把所有问题弄懂,只要带着这些不懂的问题去听课就行。其二是上课用心听讲,并且要记好课堂笔记。

篇5:高等数学学习方法

高等数学是高等学校一门重要的基础课,学好它对每一个大学生都是极为重要的。

这里,就学好这门课的学习方法提一点建议供同学们参考:

一、把握三个环节,提高学习效率

㈠课前预习:了解老师即将讲什么内容,相应地复习与之相关内容。

㈡认真上课:注意老师的讲解方法和思路,其分析问题和解决问题的过程,

记好课堂笔记,听课是一个全身心投入----听、记、思相结合的过程。

㈢课后复习:当天必须回忆一下老师讲的内容,看看自己记得多少;

然后打开笔记、教材,完善笔记,沟通联系;最后完成作业。

二、在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架。

三、按“新=陈+差异”思路理解深化学习知识。

四、“三人行,则必有我师”,参加老师的辅导,向同学请教并相互讨论。

五、处理数学问题的基本方法:

㈠分割求和法;

㈡以直求曲法;

㈢恒等变形法:

①等量加减法;②乘除因子法; ③积分求导法;

④三角代换法; ⑤数形结合法;⑥关系迭代法;

⑦递推公式法;⑧相互沟通法; ⑨前后夹击法;

⑩反思求证法;⑾构造函数法;⑿逐步分解法。

六、阶段复习与全面巩固相结合。

高等数学是高等学校一门重要的基础课,学好它对每一个大学生都是极为重要的。

学习方法五原则

学习方法与学习的过程、阶段、心理条件等有着密切的联系,它不但蕴含着对学习规律的认识,而且也反映了对学习内容理解的程度。在一定意义上,它还是一种带有个性特征的学习风格。学习方法因人而异,但正确的学习方法应该遵循以下几个原则:循序渐进、熟读精思、自求自得、博约结合、知行统一。

1.“循序渐进”──就是人们按照学科的知识体系和自身的智能条件,系统而有步骤地进行学习。它要求人们应注重基础,切忌好高骛远,急于求成。循序渐进的原则体现为:一要打好基础。二要由易到难。三要量力而行。

2.“熟读精思”──就是要根据记忆和理解的辩证关系,把记忆与理解紧密结合起来,两者不可偏废。我们知道记忆与理解是密切联系、相辅相成的。一方面,只有在记忆的基础上进行理解,理解才能透彻;另一方面,只有在理解的参与下进行记忆,记忆才会牢固,“熟读”,要做到“三到”:心到、眼到、口到。“精思”,要善于提出问题和解决问题,用“自我诘难法”和“众说诘难法”去质疑问难。

3.“自求自得”──就是要充分发挥学习的主动性和积极性,尽可能挖掘自我内在的学习潜力,培养和提高自学能力。自求自得的原则要求不要为读书而读书,应当把所学的知识加以消化吸收,变成自己的东西。

4.“博约结合”──就是要根据广搏和精研的辩证关系,把广博和精研结合起来,众所周知,博与约的关系是在博的基础上去约,在约的指导下去博,博约结合,相互促进。坚持博约结合,一是要广泛阅读。二是精读。

5.“知行统一”──就是要根据认识与实践的辩证关系,把学习和实践结合起来,切忌学而不用。“知者行之始,行者知之成”,以知为指导的行才能行之有效,脱离知的行则是盲动。同样,以行验证的知才是真知灼见,脱离行的知则是空知。因此,知行统一要注重实践:一是要善于在实践中学习,边实践、边学习、边积累。二是躬行实践,即把学习得来的知识,用在实际工作中,解决实际问题。

篇6:高等数学学习方法

●全面复习,把书读薄

从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如数学一中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见,猜题的复习方法是靠不住的,而应当参照考试大纲,全面息,不留遗漏.

全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义.

●突出重点,精益求精

在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多.“猜题”的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,“猜题”便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带资,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式.由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广.比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,而在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精.

●基本训练 反复进行

学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张“题海”战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下“盲棋”一样,只需用脑子默想,即能得到下确答案.这就是我们在前言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,“熟能生巧”,基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会“粗心”地出错.

高等数学是高等工科院校的重要基础课程。但对于如何学好这门课程。有些同学却是百展莫愁,头痛不已。而高数的学习、掌握和运用是后序课程的基础和保障,学不好高数,对于三大力学,还有结构设计原理来说,是不可能学好的。

数学是一门深奥而又有兴趣的课程。如果增加对这门课程的自信心,不要畏惧它。你会很容易接受这门课,你也会发觉其实这门课程并不难,这对于学好数学是一个非常必要的条件。

多想多做是学好数学的关键。多想是根本,多做是基础,多做是为了熟能生巧,是为了真正应用,是学好数学的前提条件。而多想充分发挥联想是学好数学的根本条件。学数学要知道举一反三,当老师讲到某一点或某一类型的问题时,你的思路就应拓展开来,不应仅仅局限于这一点或这一类型的问题,而应该把前面所学的知识点结合起来,想想如果你碰到这种题目你会怎么办?假如以后碰到这种类型的题目你又会怎么样?其实数学是个活学问也是个死学问。正所谓万变不离其宗。所有的题目都是所学过的公式和方法稍微转变一下过来的。对于像我这样自学的人来说,更需要多做、多想。这样才能加深理解,运用自如。

现在懂了,以后又不会做了。数学必须要做题,对于数学的题目要学会分析,不要忽视每一个已知条件,发现一个已知条件要联想到相关的公式,而如何能充分的灵活的运用公式。这就是多做能产生的效果。

学好数学,学懂数学,主要的是“通”,而如何能“通”,这就是日积月累的多想多做,只要您通过勤学苦练,坚持不懈的努力,您一定会体会到高等数学没什么可怕的。

篇7:考研高等数学怎么学

以纲为纲,以本为本

全国硕士研究生入学考试的命题是以《考试大纲》为依据。《考试大纲》规定了考试内容和考试要求,考试的内容不会超过《考试大纲》的规定。《考试大纲》规定的考试内容和考试要求与教学基本要求不完全相同。对照考试大纲,将教材上不要求的内容去掉。

全面复习,抓住重点

基础阶段的复习一定是全面复习的基础上抓重点,因为考试中心要求一套试卷所覆盖的大纲规定知识点80%以上,另外考试题不回避重点,重要的知识点和重要的题型重复出现,题型的重复率甚至达到90%以上,所以一定要抓重要知识点和重要题型。

重点知识,深度挖掘

考研对基础知识的复习有以下四个层次的要求:

了解考研所需要掌握的基础知识是哪些;

对于一些证明过程较简单的公式,性质和定理,可以掌握其证明过程;

熟悉基础知识在考研中考查什么题型;

这些题型有什么解题方法和解题技巧。

高等数学知识点

高等数学课件

高等数学教学论文

大一高等数学学习方法

高等数学下册知识点

专科学校《高等数学》教学工作总结

如何才能学好高等数学

高等数学教学浅谈论文

大学高等数学学习方法与技巧

高等数学教学的体会论文

高等数学学习心得(共7篇)

欢迎下载DOC格式的高等数学学习心得,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档