信息与信息处理

| 收藏本文 下载本文 作者:西山飘大雨

下面是小编收集整理的信息与信息处理(共含6篇),供大家参考借鉴,希望可以帮助到有需要的朋友。同时,但愿您也能像本文投稿人“西山飘大雨”一样,积极向本站投稿分享好文章。

信息与信息处理

篇1:信息与信息处理

信息与信息处理

课题信息与信息处理课型新授课班  级高一级1234班授课时间 教学目的掌握信息、信息技术教学重点信息、信息技术教学难点信息的概念教    具无教学方法讲解法、提问法、综合归纳法、启发式课    时1课时教师活动教        学        内        容学生活动引入新课前沿科学的发展及应用 正    课    讲    授讲    解    提    问    出示课件一、信息信息:通过语言、文字、声音、图形、图像等信号表示、传送的实际内容(消息)。特点:1、是客观世界各种事物变化和特征的反映2、是可通讯的3、是知识。数据:是记录下来的可鉴别的符号,它本身并没有意义,信息是对数据的解释。信息革命:人类社会的形成和发展过程中,经过了语言的形成、文字的产生与应用、造纸与印刷术的发明与应用、电报电话的发明与应用、计算机与现代通信技术的应用与发展为标志的五次信息革命。信息革命推动了人类文明发展过程。二、信息处理主要包括信息的`收集、整理、加工、传递等过程。三、信息技术是信息处理的扩展技术,是包括传感技术、通信技术和计算机技术等在内的综合性技术。实现了信息的获取、传递和存储、加工、处理,其中计算机技术是现代信息技术的核心和支柱。 阅读总结    观    察    举手回答小  结回顾本节主要内容。练 习见课本作  业1、信息是指________________其具有__________特点。  信息与数据的区别在于___________。2、信息处理主要指_______________________________。3、人类经历了_________________________________五次信息革命。课后记 

篇2:信息与信息处理

课题课型新授课
班  级高一级1234班授课时间 
教学目的掌握信息、信息技术
教学重点信息、信息技术
教学难点 信息的概念
教    具
教学方法讲解法、提问法、综合归纳法、启发式
课    时1课时
教师活动教        学        内        容学生活动
引入新课前沿科学的发展及应用 
正    课    讲    授讲    解    提    问    出示课件一、信息信息:通过语言、文字、声音、图形、图像等信号表示、传送的实际内容(消息)。特点:1、是客观世界各种事物变化和特征的反映2、是可通讯的3、是知识。数据:是记录下来的可鉴别的符号,它本身并没有意义,信息是对数据的解释。信息革命:人类社会的形成和发展过程中,经过了语言的形成、文字的产生与应用、造纸与印刷术的发明与应用、电报电话的发明与应用、计算机与现代通信技术的应用与发展为标志的五次信息革命。信息革命推动了人类文明发展过程。二、信息处理主要包括信息的收集、整理、加工、传递等过程。三、信息技术是信息处理的扩展技术,是包括传感技术、通信技术和计算机技术等在内的综合性技术。实现了信息的获取、传递和存储、加工、处理,其中计算机技术是现代信息技术的核心和支柱。 阅读总结    观    察    举手回答
小  结回顾本节主要内容。
练 习见课本
作  业1、信息是指________________其具有__________特点。  信息与数据的区别在于___________。2、信息处理主要指_______________________________。3、人类经历了_________________________________五次信息革命。
课后记 

篇3:《信息与信息处理》说课教案

《信息与信息处理》说课教案

一、说教材:

1、教学内容:《信息技术》初中一册。

2、教材简析:《信息技术基础》本节教学以感性认识为主,增强学生对信息的认识,通过用观察、模仿、感受及大量的举例,让同学生认识到21世纪是知识经济的时代,也是信息高速发展的时代。计算机做为信息处理的主要工具之一,已越来越多地深入到我们的社会,深入到我们的生活。

3、教学目标:

知识目标:

(1)    了解信息的含义

(2)    了解人与计算机处理信息的区别。

(3)    计算机作为一种信息处理的重要工具,已被广泛的使用,并将改变人类的生产方式、生活方式、工作方法和思想方式。

能力目标:培养学生探索、探究学习能力。

关于本课重点,我认为十分明显,那就是让学生认识到,计算机作为处理信息的重要工具,在今后的人类社会发展中,将会越来越多的深入到我们的社会和生活之中。

二、说教法、学法

我主要采用启发式教学法,为了充分调动学生学习的积极性,使学生变被动学习为主动学习、愉快的学习,提高上课效率。教学从日常生活为例,例举出信息在日常生活中的重要性,更好的.让学生了解“信息”这一抽象的概念。

在教学中采用启发、诱导贯穿于始终。采用表演、图画、图像等手段提高教学质量和教学效率。

为培养学生的自学能力、探究学习能力,这节课主要采用教师适当引导,学生主动探究,来完成教学任务。

三、说教学过程

1、什么是信息

首先运用“幸运52”里的游戏,“你来比划,我来猜的”这一方法,让一位学生上台,通过声音、动作、语言来向学生们传达一种信息,台下同学通过观察来猜出台上同学所表达出的意思。根据逐步诱导深入的原则,台上学生在表演的过程中请台下的同学注意他的动作,语言、声音,以帮助学生细心观察的探究学习的习惯,同时为下面的“人与计算处理信息的区别”做铺垫。学生通过观察所得出正确结果,这时导入人类在生产和生活中,时时刻刻都离不开信息。并举例,如,老师上课时向学生传授的知识是信息、每天电视台播出的节目是信息,学生的成绩是信息……信息无处不在。这时导入信息的定义。

2、信息与人类社会

经过前面的讲解学生对“信息”又有了新的认识,了解了信息的定义。明白了什么是信息,这时把信息与人类社会的关系再向同学们做一介绍;人类社会的生产发展经历了三个阶段:第一个阶段是农业革命阶段。第二个阶段是工业革命阶段。第三个阶段就是信息革命阶段。简单讲前二个阶段,最后着重讲信息革命阶段。信息资源成为全球经济

[1] [2]

篇4:网络技术与信息处理自我鉴定

个性随和容易与人相处,善于沟通,有良好的团队协作精神;乐观开朗适应能力强并且具有创新精神;为人诚实稳重办事谨慎,具有很强的组织能力。

为人活泼开朗,诚实守信,交际能力强,有较强的组织及策划能力;

工作认真,有强烈的进取心、社会责任感和良好的`团队合作意识;

有自主学习的能力,能主动了解新事物,接受新观念,适应新环境。

本人性格外向、稳重、有活力、待人热情、真诚。在校团结同学,尊敬师长,乐于助人,具有良好的人际沟通能力,工作上有较强的组织管理和动手能力,集体观念强,具有团队协作精神。工作认真负责,积极主动,能吃苦耐劳,能迅速的适应各种环境,并融合其中。

在此,我期望:有一个合适的平台,用我的所有热情和智慧全力去开拓、耕耘。

掌握软件技术专业的基本知识,了解软件项目的开发流,软件调试及技术服务与软件销售

单机的组装,维护,具有SQLSERVER数据库的开发能力,对JAVA面向对象程序设计有一定了解。对网络布线,网络调试、网络故障检测与排除有一定了解。

有较强的学习能力善于与同事相处。具有团结精神。认真踏实负责责任素质奉献。

以随和谦虚谨慎的生活态度面对社会。

善于交际,热爱管理类工作,有较强的沟通能力和写作能力。

坚信“吾非千里马,然有千行志”,我可以努力做得更好。

篇5:神经网络与智能信息处理

神经网络与智能信息处理

关键词:

80年代初,在美国、日本、接着在我国国内都掀起了一股研究神经网络理论和神经计算机的热潮,并将神经网络原理应用于图象处理、模式识别、语音综合及机器人控制等领域。近年来,美国等先进国家又相继投入巨额资金,制定出强化研究计划,开展对脑功能和新型智能计算机的研究。

人脑是自生命诞生以来,生物经过数十亿年漫长岁月进化的结果,是具有高度智能的复杂系统,它不必采用繁复的数字计算和逻辑运算,却能灵活处理各种复杂的,不精确的和模糊的信息,善于理解语言、图象并具有直觉感知等功能。

人脑的信息处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模网络。单个神经细胞的工作速度并不高(毫秒级),但它通过超并行处理使得整个系统实现处理的高速性和信息表现的多样性。

因此,从信息处理的角度对人脑进行研究,并由此研制出一种象人脑一样能够“思维”的智能计算机和智能信息处理方法,一直是人工智能追求的目标。

神经网络就是通过对人脑的基本单元---神经元的建模和联结,来探索模拟人脑神经系统功能的模型,并研制一种具有学习、联想、记忆和模式识别等智能信息处理功能的人工系统。本文介绍神经网络的特点以及近年来有关神经网络与混沌理论、模糊计算和遗传算法等相结合的混合神经网络研究的动态。

一.神经网络和联结主义

回顾认知科学的发展,有所谓符号主义和联结主义两大流派。符号主义从宏观层次上,撇开人脑的内部结构和机制,仅从人脑外在表现出来的智能现象出发进行研究。例如,将记忆、判断、推理、学习等心理活动总结成规律、甚至编制成规则,然后用计算机进行模拟,使计算机表现出各种智能。

符号主义认为,认识的基本元素是符号,认知过程是对符号表示的运算。人类的语言,文字的思维均可用符号来描述,而且思维过程只不过是这些符号的存储、变换和输入、输出而已。以这种方法实现的系统具有串行、线性、准确、简洁、易于表达的特点,体现了逻辑思维的基本特性。七十年代的专家系统和八十年代日本的第五代计算机研究计划就是其主要代表。

联接主义则与其不同,其特点是从微观出发。联接主义认为符号是不存在的,认知的基本元素就是神经细胞(神经元),认知过程是大量神经元的联接,以及这种联接所引起的神经元的不同兴奋状态和系统所表现出的总体行为。八十年代再度兴起的神经网络和神经计算机就是这种联接主义的代表。

神经网络的主要特征是:大规模的并行处理和分布式的信息存储,良好的自适应、自组织性,以及很强的学习功能、联想功能和容错功能。与当今的冯.诺依曼式计算机相比,更加接近人脑的信息处理模式。主要表现如下:

☆神经网络能够处理连续的模拟信号。例如连续灰度变化的图象信号。

☆能够处理混沌的、不完全的、模糊的信息。

☆传统的计算机能给出精确的解答,神经网络给出的是次最优的逼近解答。

☆神经网络并行分布工作,各组成部分同时参与运算,单个神经元的动作速度不高,但总体的处理速度极快。

☆神经网络信息存储分布于全网络各个权重变换之中,某些单元障碍并不影响信息的完整,具有鲁棒性。

☆传统计算机要求有准确的输入条件,才能给出精确解。神经网络只要求部分条件,甚至对于包含有部分错误的输入,也能得出较好的解答,具有容错性。

☆神经网络在处理自然语言理解、图象模式识别、景物理解、不完整信息的处理、智能机器人控制等方面有优势。

符号主义和联接主义两者各有特色,学术界目前有一种看法:认为基于符号主义得传统人工智能和基于联接主义得神经网络是分别描述人脑左、右半脑的功能,反映了人类智能的两重性:精确处理和非精确处理,分别面向认识的理性和感性两个方面,两者的关系应该是互补而非互相代替。理想的智能系统及其表现的智能行为应是两者相互结合的结果。

接下去的问题是,符号AI和联接AI具体如何结合,两者在智能系统中相互关系如何?分别扮演什么角色?目前这方面发表的文献很多,大致有如下几种类型:

1.松耦合模型:符号机制的专家系统与联接机制的神经网络通过一个中间媒介(例如数据文件)进行通讯。

2.紧耦合模型:与松耦合模型相比较,其通讯不是通过外部数据进行,而是直接通过内部数据完成,具有较高的效率。其主要类型有嵌入式系统和黑板结构等。

3.转换模型:将专家系统的知识转换成神经网络,或把神经网络转换成专家系统的知识,转换前的系统称为源系统,转换后的系统称为目标系统,由一种机制转成另一种机制。如果源系统是专家系统,目标系统是神经网络,则可获得学习能力及自适应性;反之,可获得单步推理能力、解释能力及知识的显式表示。当然,转换需要在两种的机制之间,确定结构上的一致性,目前主要问题是还没有一种完备而精确的转换方法实现两者的转换。有待进一步研究。

4.综合模型:综合模型共享数据结构和知识表示,这时联接机制和符号机制不再分开,两者相互结合成为一个整体,既具有符号机制的逻辑功能,又有联接机制的自适应和容错性的优点和特点。例如联接主义的专家系统等。

近年来神经网络研究的另一个趋势,是将它与模糊逻辑、混沌理论、遗传进化算法等相结合,即所谓“混合神经网络”方法。由于这些理论和算法都是属于仿效生物体信息处理的方法,人们希望通过她们之间的相互结合,能够获得具有有柔性信息处理功能的系统。下面分别介绍。

二.混沌理论与智能信息处理

混沌理论是对貌似无序而实际有序,表面上看来是杂乱无章的现象中,找出其规律,并予以处理的一门学科。早在七十年代,美国和欧洲的一些物理学家、生物学家、数学家就致力于寻求在许许多多不同种类的不规则性之间的联系。生物学家发现在人类的心脏中有混沌现象存在,血管在显微镜下交叉缠绕,其中也有惊人的有序性。在生物脑神经系统中从微观的神经膜电位到宏观的脑电波,都可以观察到混沌的性态,证明混沌也是神经系统的正常特性。

九十年代开始,则更进一步将混沌和神经网络结合起来,提出多种混沌神经网络模型,并探索应用混沌理论的各种信息处理方法。例如,在神经元模型中,引入神经膜的不应性,研究神经元模型的混沌响应,研究在神经网络的方程中,不应性项的定标参数,不定性时间衰减常数等参数的性质,以及这些参数于神经网络混沌响应的关系,并确定混沌---神经网络模型具有混沌解的参数空间。经过试验,由这种混沌神经网络模型所绘出的输出图形和脑电图极为相似。

现代脑科学把人脑的工作过程看成为复杂的多层次的混沌动力学系统。脑功能的物理基础是混沌性质的过程,脑的工作包含有混沌的性质。通过混沌动力学,研究、分析脑模型的信息处理能力,可进一步探索动态联想记忆、动态学习并应用到模式识别等工程领域。例如:

☆对混沌的随机不规则现象,可利用混沌理论进行非线性预测和决策。

☆对被噪声所掩盖的微弱信号,如果噪声是一种混沌现象,则可通过非线性辨识,有效进行滤波。

☆利用混沌现象对初始值的敏锐依赖性,构成模式识别系统。

☆研究基于混沌---神经网络自适应存储检索算法。该算法主要包括三个步骤,即:特征提取、自适应学习和检索。

模式特征提取采用从简单的吸引子到混沌的层次分支结构来描述,这种分支结构有可能通过少数几个系统参数的变化来加以控制,使复杂问题简单化。自适应学习采用神经网络的误差反传学习法。检索过程是通过一个具有稳定吸引子的动力学系统来完成,即利用输入的初始条件与某个吸引子(输出)之间的存在直接对应关系的方法进行检索。利用这种方法可应用于模式识别。例如黑白图象的人脸识别。

三.模糊集理论与模糊工程

八十年代以来在模糊集理论和应用方面,也有很大进展。1983年美国西海岸AI研究所发表了称为REVEAL的模糊辅助决策系统并投入市场,1986年美国将模糊逻辑导入OPS---5,并研究成功模糊专家系统外壳FLOPS,1987年英国发表采用模糊PROLOG的智能系统FRIL等。除此通用工具的研制以外,各国还开发一系列用于专用目的的智能信息处理系统并实际应用于智能控制、模式识别、医疗诊断、故障检测等方面。

模糊集理论和神经网络虽然都属于仿效生物体信息处理机制以获得柔性信息处理功能的理论,但两者所用的研究方法却大不相同,神经网络着眼于脑的微观网络结构,通过学习、自组织化和非线性动力学理论形成的并行分析方法,可处理无法语言化的模式信息。而模糊集理论则着眼于可用语言和概念作为代表的'脑的宏观功能,按照人为引入的隶属度函数,逻辑的处理包含有模糊性的语言信息。

神经网络和模糊集理论目标相近而方法各异。因此如果两者相互结合,必能达到取长补短的作用。将模糊和神经网络相结合的研究,约在前便已在神经网络领域开始,为了描述神经细胞模型,开始采用模糊语言,把模糊集合及其运算用于神经元模型和描述神经网络系统。目前,有关模糊---神经网络模型的研究大体上可分为两类:一类是以神经网络为主,结合模糊集理论。例如,将神经网络参数模糊化,采用模糊集合进行模糊运算。另一类以模糊集、模糊逻辑为主,结合神经网络方法,利用神经网络的自组织特性,达到柔性信息处理的目的。

与神经网络相比,模糊集理论和模糊计算是更接近实用化的理论,特别近年来美国和日本的各大公司都纷纷推出各种模糊芯片,研制了型号繁多的模糊推理板,并实际应用于智能控制等各个应用领域,建立“模糊工程”这样一个新领域。日本更首先在模糊家电方面打开市场,带有模糊控制,甚至标以神经---模糊智能控制的洗衣机、电冰箱、空调器、摄象机等已成为新一代家电的时髦产品。我国目前市场上也有许多洗衣机,例如荣事达洗衣机就是采用模糊神经网络智能控制方式的洗衣机。

四.遗传算法

遗传算法(Genetic Algorithm :GA)是模拟生物的进化现象(自然、淘汰、交叉、突然变异)的一种概率搜索和最优化方法。是模拟自然淘汰和遗传现象的工程模型。

GA的历史可追溯到1960年,明确提出遗传算法的是1975年美国Michigan大学的Holland博士,他根据生物进化过程的适应现象,提出如下的GA模型方案:

1.将多个生物的染色体(Chromosmoe)组成的符号集合,按文字进行编码,称为个体。

2.定义评价函数,表示个体对外部环境的适应性。其数值大的个体表示对外部环境的适应性高,它的生存(子孙的延续)的概率也高。

3.每个个体由多个“部分”组合而成,每个部分随机进行交叉及突然变异等变化,并由此产生子孙(遗传现象)。

4.个体的集合通过遗传,由选择淘汰产生下一代。

遗传算法提出之后,很快得到人工智能、计算机、生物学等领域科学家的高度重视,并在各方面广泛应用。1989年美国Goldberg博士发表一本专著:“Genetic Algorithms in Search,Optimization and Machine Learning”。出版后产生较大影响,该书对GA的数学基础理论,GA的基本定理、数理分析以及在搜索法、最优化、机器学习等GA应用方面进行了深入浅出的介绍,并附有Pascal模拟程序。

1985年7月在美国召开第一届“遗传算法国际会议”(ICGA)。以后每隔两年召开一次。近年来,遗传算法发展很快,并广泛应用于信息技术的各个领域,例如:

智能控制:机器人控制。机器人路径规划。

工程设计:微电子芯片的布局、布线;通信网络设计、滤波器设计、喷气发动机设计。

图象处理:图象恢复、图象识别、特征抽取。

调度规划:生产规划、调度问题、并行机任务分配。

优化理论:TSP问题、背包问题、图划分问题。

人工生命:生命的遗传进化以及自增殖、自适应;免疫系统、生态系统等方面的研究。

神经网络、模糊集理论和以遗传算法为代表的进化算法都是仿效生物信息处理模式以获得智能信息处理功能的理论。三者目标相近而方法各异;将它们相互结合,必能达到取长补短、各显优势的效果。例如,遗传算法与神经网络和模糊计算相结合方面就有:

☆神经网络连续权的进化。

传统神经网络如BP网络是通过学习,并按一定规则来改变数值分布。这种方法有训练时间过长和容易陷入局部优化的问题。采用遗传算法优化神经网络可以克服这个缺点。

☆神经网络结构的进化。

目前神经网络结构的设计全靠设计者的经验,由人事先确定,还没有一种系统的方法来确定网络结构,采用遗传算法可用来优化神经网络结构。

☆神经网络学习规则的进化。

采用遗传算法可使神经网络的学习过程能够适应不同问题和环境的要求。

☆基于遗传算法的模糊推理规则的优化,以及隶属度函数的自适应调整也都取得很好效果。

上述神经网络、模糊计算、遗传算法和混沌理论等都是智能信息处理的基本理论和方法。近年来学术界将它们统称为“计算智能”。有关这方面更详细的内容,可参阅我们编著的下列著作:

“神经网络与神经计算机”(1992年科学出版社出版)

“遗传算法及其应用” (邮电出版社出版)

“混沌、分形及其应用” (科大出版社出版)

篇6:网络技术与信息处理自我鉴定

个性随和容易与人相处,善于沟通,有良好的团队协作精神;乐观开朗适应能力强并且具有创新精神;为人诚实稳重办事谨慎,具有很强的组织能力。

更多自我鉴定范文,见大学生简历网

-----------------------------

为人活泼开朗,诚实守信,交际能力强,有较强的组织及策划能力;

工作认真,有强烈的进取心、社会责任感和良好的团队合作意识;

有自主学习的能力,能主动了解新事物,接受新观念,适应新环境

-----------------------------

本人性格外向、稳重、有活力、待人热情、真诚。在校团结同学,尊敬师长,乐于助人,具有良好的人际沟通能力,工作上有较强的组织管理和动手能力,集体观念强,具有团队协作精神。工作认真负责,积极主动,能吃苦耐劳,能迅速的适应各种环境,并融合其中。

在此,我期望:有一个合适的平台,用我的所有热情和智慧全力去开拓、耕耘。

-----------------------------

掌握软件技术专业的基本知识,了解软件项目的.开发流,软件调试及技术服务与软件销售

单机的组装,维护,具有SQLSERVER数据库的开发能力,对JAVA面向对象程序设计有一定了解。对网络布线,网络调试、网络故障检测与排除有一定了解

有较强的学习能力善于与同事相处。具有团结精神。认真踏实负责

-----------------------------

责任素质奉献

以随和谦虚谨慎的生活态度面对社会

善于交际,热爱管理类工作,有较强的沟通能力和写作能力

坚信“吾非千里马,然有千行志”,我可以努力做得更好

更多自我鉴定范文

信息和信息处理工具优秀教案

信息与信息技术

电子与信息求职信

信息与信息技术教案

信息与信息技术教学设计

信息不对称与市场解决之道

小学信息与技术教学计划

信息与计算科学简历

计算机信息安全与对策

信息与通信工程专业职业规划

信息与信息处理(精选6篇)

欢迎下载DOC格式的信息与信息处理,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式

猜你喜欢

NEW
点击下载本文文档