圆环面积公式

| 收藏本文 下载本文 作者:后退我又没经验

下面就是小编整理的圆环面积公式(共含4篇),希望大家喜欢。同时,但愿您也能像本文投稿人“后退我又没经验”一样,积极向本站投稿分享好文章。

圆环面积公式

篇1:圆环的面积

-------------陈林

《圆环面积》是人教版义务教育课程标准实验教科书数学六年级上册第69 页例2 的教学内容。环形面积是在圆的面

第一文库网

积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成环形的本质问题。圆环的面积教学,是通过一个例题来完成的,教材借助插图中的光盘帮助学生直观地认识圆环,为学生学习圆环的面积作了感性铺垫。

教学中我是这样设计的:首先安排了两道相关圆面积的计算题,让学生回顾圆的面积计算过程,为学习新知奠定基础。接着安排了认识生活中的圆环内容,让学生更多感受生活中的圆环,产生学习圆环的必要性。让学生通过画一画、剪一剪,建立环形的表象,体会环形的特点。然后设计提问:求圆面积必须知道什么?你能找到内圆和外圆的半径吗?

充分让学生的思维活跃,把环形真实地显露在学生眼前,再通过小组合作的讨论,得出环形的面积计算公式。再接着让学生自学例2 的问题,引导学生对圆环面积计算方法进行比较、优化。最后在练习环节设计中,结合直观图像来引导学生理解和掌握圆环的面积计算方法。

《圆环的面积》教学时,我非常关注学生的生活经验和已有的知识体验。由于学生已经掌握了圆的面积的计算方法,所以本节课的重点是如何激发学生兴趣,引导学生通过操作、交流、讨论、合作学习等方式,自主参与环形面积的计算这一知识的获取过程。在本节课中,我注重引导学生自主学习,从学生的实际水平出发,重视培养学生观察能力和发现问题的能力。

一、在直观演示中,培养学生的思维能力

1.深入了解学生,找准教学的起点

这节课是在学生掌握了求圆的面积基础上进行教学的。而且我事先让学生认识生活中的圆环,并用硬纸板做了环形进行演示,让学生获得直接的经验。大部分同学都能求环形的面积,但同学们对环形特征的认识还不够深刻。因此,我从认识环形的特征入手来完成本节课的教学重点,让学生把做环形的过程说出来,在表述的过程中,自然而然地说出了圆环的特征。这样,学生就学得积极主动,学习效果好。

2.深入钻研教材,促进学生思维的发展

在教学中,我深入钻研教材,充分挖掘教材中蕴含的数学思想与方法,提高学生学习效果。在学生认识环形之后,我有意让学生通过尝试自己练习求圆环面积,总结圆环面积的字母公式,认识到环形面积大小的最根本因素是大、小圆的半径。这样的教学,较好地促进了学生思维的发展,使学生在解决实际问题时,能抓住问题的本质。

二、在动手操作中,培养学生的观察能力

师:请同学们拿出做好的环形,说说你是怎样去做的?

生1:在硬纸板上,我先用圆规画了一个大圆,然后缩短圆规两脚间的'距离,圆心不变,再画一个小圆,最后把小圆剪掉就得到了环形。

生2:在硬纸板上,我先用圆规画了一个圆,然后圆心不变,再画一个更大的圆,最后把小圆剪掉也得到了环形。

师:前两位同学都说到了哪几点?

生:都说到了要画两个圆,而且圆心不变,半径大小不同,然后从大圆里剪去小圆,就得到环形。

师:说说日常生活中有哪些物体的表面是环形的?

生:光盘、环形垫片等。

在数学教学中,应坚持以学生为主,把学习的主动权还给学生,让学生自主地进行尝试、操作、观察、想象、讨论、质疑等探究活动,从而亲自发现数学问题潜在的神奇奥秘,领略数学美的真谛。让每一位学生动手进行操作――剪圆环,让学生在动手操作中观察、讨论、归纳、总结,学生在亲身经历的活动中轻而易举就明白了“从大圆里剪去小圆,就得到环形”的道道,从而更容易了解环形的本质特征。这样的教学,不但看到了知识的“静态”存在,更用“动态”的观点引导学生考察了知识,即知识不但是认识的“结果”,更包括认识的“过程”。学生不仅“知其然”,还能“知其所以然”。这样,学生不仅掌握了新知识,也掌握了探索研究问题的方法,同时也培养了探索和创新的精神。

三、在探究发现中,碰撞学生的智慧的火花

师:判别下列图形中,哪些是环形?

师:观察得真仔细!环形的宽度相等。

师:环形中的阴影部分的大小就是环形的面积。你能比较出这几个环形面积的大小吗?

(生纷纷作答)

师:环形的面积与什么有关?

生1:环形的面积与环形的宽度有关。

生2:环形的面积与外圆、内圆的面积有关。

生3:因为圆的面积和半径有关,所以环形的面积与外圆、内圆的半径有关。

(这位学生博得了全班学生热烈的掌声)

师:判断题中其余三个组合图形不是环形,你能求出它们的面积吗?

生1:这些阴影部分的面积都是用大圆面积剪去小圆面积。

生2:不管是不是环形,只要是从大圆里剪去小圆,要求剩下部分的面积,都是用大圆 面积剪去小圆面积。

上面的教学中,探求新知,其实就是在圆的面积基础上求圆环的面积。对一些学生来讲,

解决它不成问题,所以我采用让学生尝试计算、分析校对、归纳公式的方法,让学生学得积

极主动,不断闪出智慧的火花。数学教学,如果找准了起点,注重了学生的发展,就能在整

个教学过程中,使学生产生“一波未平,一波又起”之感,让学生始终主动地参与学习活动。

这样既能培养学生的学习信心,激发学生学习的主动性,又能切实提高课堂教学的有效性.

篇2:圆环面积教学设计

教学内容:

圆环的面积计算,简单组合图形面积的计算。

教学目标:

1、使学生认识以圆环,掌握圆环的特征,掌握计算圆环面积的方法。

2、培养学生的动手操作能力,观察能力和想象能力,建立初步的空间观念。

3、会计算组合图形的面积,能根据各种图形的特征和条件,有效地选择计算方法。

教学重、难点:

1、掌握计算圆环面积的方法。

2、掌握求简单组合图形面积的方法。

教学方法:

例证法、类比法、迁移法。

教学过程:

一、复习引入

1、圆面积的计算公式

2、计算圆的面积

r=5厘米d=6米C=15.7分米

二、探索新知

1、出示实物,认识圆环

出示光盘。提问:谁能用语言描述这个光盘?

2、实践操作,感知圆环

(1)刚才我们简单认识了圆环,现在你们能用手上的工具剪出一个圆环吗?

学生用一张白纸剪一个圆环。

(2)学生操作,动手剪环形。(教师巡视指导,帮助学有困难的学生)

(3)说出剪圆环的过程。

让学生介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减去小圆的面积。

3、探究环形面积的计算方法。

(1)小组讨论:如何计算圆环的面积?

(2)反馈讨论结果。

学生汇报时,边说边演示从一个大圆里去掉一个同心小圆变成环形的动态过程:先求出外圆和内圆的面积,再求出环形的面积。

思考:要计算环形的面积需要什么条件?

通过师生交流后,明确要计算环形的面积需要知道外圆(大圆)的半径或直径和内圆(小圆)的半径或直径。

4、应用新知,解决问题。

(1)出示例2:光盘的银色部分是个圆环,内圆半径是2厘米,外圆半径是6厘米。它的面积是多少?

(2)读题,理解题意。

(3)分析数量关系。

(4)尝试解答。

(5)反馈解答情况。

方法1:大圆的面积―小圆的面积。

方法2:大圆半径的平方与小圆半径的平方差乘以3.14。

观察比较这两种解法,有什么不同?

师生交流,引导学生发现:通过乘法分配律,这两种方法可以相互转化,其实它们是一致的。

小结:圆环面积的计算方法,大圆的面积―小圆的面积=圆环的面积。

学生尝试用字母表示求圆环面积的计算公式。

篇3:圆环面积教学设计

教学目标:

1、认识圆环的特征,掌握圆环面积的'计算方法,合理地进行计算。

2、培养和发展学生的逻辑推理和概括的能力,运用所学的知识解决简单的实际问题。

教学重点:圆环面积公式的推导。

教学难点:圆环面积公式的应用。

教具准备:光盘。

教学过程:

一、复习。

1、口算:

32 42 52 82 92 202

2π 3π6π 10π 7π 5π

2、思考:

(1)圆的周长和面积分别怎样计算?二者有何区别?

(2)求圆的面积需要知道什么条件?

三、新课。

1、教学环形面积。

(1)例2 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

已知:R=6厘米 r=2厘米 求: s=?

3.14×62 3.14×22

=3.14×36 =3.14×4

=113.04(平方厘米) =12.56(平方厘米)

113.04-12.56=100.48 (平方厘米)

第二种解法:3.14×(62-22)=100.48(平方厘米)

(2)小结:环形的面积计算公式:

S=πR2-πr2 或 S=π×(R2-r2)

2、完成做一做: 一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

三、巩固练习。

1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?

选择正确算式

A、(18.84÷3.14÷2)2×3.14

B、(18.84÷3.14)2×3.14

C、18.842×3.14

2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

3、课堂小结。

(1)这节课的学习内容是什么?

(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

已知半径求面积 S=πr2

已知直径求面积 S=π2

已知周长求面积 S=π()2

(3)环形面积: S=π(R2-r2)

四、总结

这节课我们学习了什么内容?谈谈你有什么收获?

五、作业

课本P70第4、6、7题。

篇4:圆环面积教学反思

圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。 弗赖登塔尔强调,学生在知识的学习过程中,应有亲身体验,获得 “ 做出来 ” 的数学,而不是给以 “ 现成的 ” 数学。因此,我在认识圆环的`设计中安排了经历剪圆环的动手操作过程。

剪切的设计目的是使学生通过剪环形的过程知道环形是怎样得到的,从而为下面求环形的面积作铺垫。在这个过程中学生们能自主合作,探究新知,培养了动手操作能力及合作意识。由于学生体验了剪环形的整个过程,所以在我提出怎样求环形的面积时,学生能很快说出 “ 大圆的面积 ― 小圆的面积 = 环形的面积 ” 。这个过程使我感到在学习关于几何图形的知识,要让学生看一看,摸一摸,做一做。在实际操作中学到的知识比我们直接传授给他们记得要更清楚、牢固。 环形的特征:必须是同心圆,其次,两个圆之间的距离处处相等。在此提出了一个概念 “ 环宽 ” ,让学生在环形图中认识了 “ 环宽 ” 。

在此我有效的利用课件进行对比演示加深学生对环形特征的理解。非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。 虽然,在这个环节耗费了比以往更多的教学时间,但作业反馈很好。没有特别的错误问题出现。看来 “ 做数学 ” 确实能够增进学生对知识的理解和掌握。 例题的处理由于学生有了前面的操作感知,所以例题我采用自学的形式进行,让学生尝试计算,分析验证,比较计算方法,归纳并优化计算公式。 练习环节,是应用公式解决问题的环节。为了让学生正确应用大半径、小半径、“ 环宽 ” ,练习时除了设计基础的练习与判断题还设计了 4 道对比练习题,使学生在练习中学会处理大半径、小半径、“ 环宽 ” 的关系。 不足之处: 1 、练习题没能全部完成,()导致没有实现练习的层次性。 其实,我准备了不同的有关环形的练习题,由于在刚开始时为了照顾到大多数学生的学习程度,动手操作的时间给的充足,所以到练习题时时间不充分。设计的一道求半环形面积和一道拓展题没完成。 2 、知识点拓展的深度不够。 在认识圆环特征的时候提出了一个概念: “ 环宽 ” ,只是让学生在圆环上指出了 “ 环宽 ‘‘ 但没有让学生将环宽与大半径、小半径进行对比,从而得出了它们之间的联系与区别,(大半径与小半径都是从圆心到圆上的线段;而环宽是小圆上到大圆上的距离,表示环形的宽度。 R- 环宽 =r r+ 环宽 =R )为今后做题提供很好的保障 这节课有许多欣喜的地方,也有令我遗憾的地方。但不遗憾的是我从中发现了自身的缺点,使自己在今后的教学中能逐步改进,日趋完善,使自己不断走向 成熟。

四边形面积公式

平行四边形面积公式

等边三角形面积公式

新人教版圆环面积教学设计

扇形面积公式3个

长方形面积公式计算公式

梯形面积公式是什么

弧长面积公式

3角形面积公式

四边形面积通用公式

圆环面积公式(共4篇)

欢迎下载DOC格式的圆环面积公式,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档