六年级数学解决问题的策略专项练习一

| 收藏本文 下载本文 作者:柠檬汽水不加糖

下面是小编帮大家整理的六年级数学解决问题的策略专项练习一(共含7篇),希望对大家有所帮助。同时,但愿您也能像本文投稿人“柠檬汽水不加糖”一样,积极向本站投稿分享好文章。

六年级数学解决问题的策略专项练习一

篇1:六年级数学解决问题的策略专项练习一

1、填空

(1)一头猪能换三只羊,一头牛能换六头猪,一头牛可以换( )只羊。

(2)张大爷家养了3头牛和20头猪,如果1头牛的质量相当于5头猪的质量,那么牛和猪的总质量相当于( )头牛的质量,或者相当于( )猪的质量。

2、学校买来5个足球和10个篮球,共计700元。每只足球比每只篮球便宜10元。足球和篮球的单价各是多少元?

3、3个乒乓球重量等于1个乒乓球重量和5克砝码,两个羽毛球的重量等于4个乒乓球的重量。问一个羽毛球重多少克?

4、有360毫升牛奶,装入3个小杯,1个大杯,正好倒满。小杯容量是大杯的一半。小杯和大杯的容量各是多少毫升?

5、张老师买了2个篮球和8副乒乓球拍,一共花了360元钱,1个篮球的价钱是一副乒乓球拍价钱的4倍,篮球和乒乓球拍的单价各是多少元?

6、学校买4张办公桌和9张椅子一共用去252元。已知一把椅子的价钱正好是一张办公桌的1/3(三分之一).求一把椅子和一张办公桌分别是多少元?

7、5千克苹果和4千克梨共46元,1千克苹果的价格是1千克梨的2分之3.每千克苹果和每千克梨各多少元?

8、三支毛笔和1支钢笔共9.6元。钢笔的单价是毛笔的5倍。求钢笔和毛笔的单价。

9、5千克苹果和4千克梨共46元,1千克苹果比1千克梨贵2元。每千克苹果和每千克梨各多少元?

10、买10千克苹果与20千克梨共用去70元,1千克苹果的价钱与1.5千克梨的价钱相等,1千克苹果多少元?1千克梨多少元?

11、王老师买了同样的6本笔记本和4枝钢笔,共付出57.6元。已知3本笔记本的价钱可以买2枝钢笔。每枝钢笔和每本笔记本各多少元?

12、妈妈买了3千克水果糖和4千克奶糖一共用去44元,已知1千克奶糖的价钱与2千克水果糖的价钱一样多,每千克水果糖和奶糖各多少元?

13、王老师买了5支钢笔和15支圆珠笔,共付90元,已知1支钢笔的价钱和3支圆珠笔的价钱一样多,每支钢笔和每支圆珠笔各多少元?

14、张老师买了2千克芒果和2千克香蕉用去了14元。每千克芒果比每千克香蕉贵3元,每千克芒果和每千克香蕉多少元?

15、2头小猪与14只鹅一共重264千克,已知1头小猪与4只鹅一样重,1头小猪与1只鹅各重多少千克?

16、粮店有大米20袋,面粉50袋,共重2250千克,已知1袋大米的重量和2袋面粉的`重量相等,那么一袋大米和一袋面粉各重多少千克?

17、1袋薯片比1盒巧克力便宜5元,妈妈买了6袋薯片和10盒巧克力,一共花了210元,薯片和巧克力的单价各是多少元?

18、某餐桌加工厂有44名工人,每名工人一天能加工6张餐桌或8把椅,子。一张餐桌赔6把椅子为一套。怎样安排这些工人才能使每天加工的桌椅都配成套?

附加题:甲、乙两人共同生产一种零件,甲生产8小时,乙生产6小时,一共生产312个零件。已知乙5小时的工作量等于甲2小时的工作量,甲、乙各生产多少个零件?

篇2:六年级数学解决问题的策略专项练习一

1..鸡、兔共有80条腿,鸡比兔多4只,鸡和兔各有多少只?

2.操场上12张乒乓球台上共有34人在打乒乓球,进行单打的有多少人?双打的有多少人?

3.100个和尚吃100个馒头。大和尚每人吃4个,小和尚每4人吃1个。大和尚与小和尚各多少人?

4.小陈从 地翻过山顶到 地,共行了30.5千米,用了7小时。他上山速度为每小时4千米,下山速度为每小时5千米。如果上山、下山速度不变,由 地返回 地要多少时间?

5.小军买了一支钢笔和一支圆珠笔共用去8.4元,小华买了6支钢笔和5支圆珠笔共用去48元。求钢笔和圆珠笔的单价。

6. 某运输队为某商店运水瓶500箱,每箱6个水瓶同。已知每10个水瓶的运输费为5.5元,如果损坏一个水瓶,要赔偿成本11.5元(这个水瓶的运输费得不到)。结果运输队共得到1553.6元。共损坏了多少个水瓶?

7.一只小松鼠采松子。晴天每天可采20个,雨天每天可采12个。如果一连几天共采了112个,平均每天采14个。这几天中有几天是晴天?有几天是雨天?

8. 鸡和兔共有40只,兔比鸡多10条腿,鸡和兔各有多少只?

9、小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?

10、解放军进行野营拉练。晴天每天走 35千米,雨天每天走 28千米,11天一共走了 350千米。求这期间晴天和雨天各有多少天?

11、某剧院前排票价比后排票价要贵15元,张叔叔买了8张前排票和12张后排票,一共花了1320元,前排票价和后排票价各是多少元?

12、一个大人一餐吃2个面包,两个孩子一餐吃1个面包,现在有大人和孩子共99人,一餐刚好吃了99个面包。问:大人和孩子各几人?

13、松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。它一连8天共采了112个松籽,这八天有几天晴天几天雨天?

14、某旅游团一共64个人,有一次买门票共花了520元。成人票每张10元,儿童票每张5元,这个旅游团中成人和儿童各有多少人?

15、在一个停车场上,停了小轿车和摩托车一共32辆,这些车一共108个轮子。求小轿车和摩托车各有多少辆?

16、100名师生共栽100棵树,老师每人栽3棵,学生每2人栽1棵,求老师 和学生各有多少人?

17、8、6个小箱和2个大箱。新运进300双运动鞋. 2个小纸箱个1个大纸箱装的运动鞋一样多.每个大纸箱装多少双运动鞋?每个小纸箱呢?

18、体育馆的12张乒乓球台上共有34人在打球,其中正在进行单打的乒乓球台有几张?双打的乒乓球台有几张?

19、10元钱买4分一张和8分一张的邮票共200张,应买4分和8分邮票各多少张?

20、一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?

21、三年一班30人共向北京奥运会捐款205元,同学每人了捐了5元或10元,你知道捐5元和10元的同学各有多少人吗?

22、六(1)班同学的绿化小队有15名同学,一共植树102棵,男同学平均每人植树8棵,女同学平均每人植树5棵,绿化小队的男、女同学各有多少人?

23、盒子里有大小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。问:盒中大、小钢珠各多少个?

24、一队强盗一队狗,二队拼作一队走,数头一共三百六,数腿一共八百九,问有多少强盗多少狗?

25、一次数学竞赛共有20道题。做对一道题得8分,做错一题倒扣4分,小民考了112分,你知道刘冬做对了几道题?

26、某运输队为商店运输暖瓶500箱,每箱6个暖瓶。已知每10个暖瓶的运费为5.5元,如果损坏一个暖瓶,要赔偿成本11.5元(这只暖瓶的运费当然得不到),结果运输队共得到1553.6元。问:共损坏了多少个暖瓶? 奶奶买水瓶和茶杯共花了160元,每只水瓶25元,每只茶杯6元,买的茶杯比水瓶多6只,买水瓶和茶杯各多少只?(8分)

27、六年级同学制作的同样大小的数学小报共165张,正好贴满了15块展板,每块小展板贴5张,每块大展板贴20张。大、小展板各有多少块?(8分)

28、南京红山动物园里有一群鸵鸟和长颈鹿,它们共有30只眼睛和44条腿问鸵鸟和长颈鹿各有多少只?(7分)

29、小轿车和三轮摩托车共24辆,这些车共有86个轮子。三轮摩托车比小轿车多多少辆?(8分)

30.(1)五(1)班48人去公园划船,一共租了11只船,每只大船可乘6人,每只小船可乘3人。一共租的大船和小船各多少只?

(2)五(1)班48人去公园划船,一共租了5只大船,6只小船。2只小船乘的人数和1只大船乘的人数相等。每只大船和每只小船各能坐几人?

(3)五(1)班48人去公园划船,一共租了5只大船,6只小船。每只大船比每只小船多乘3人。每只大船和每只小船各能坐几人?

31.蜘蛛有8条腿,蜻蜓有6条腿。现在蜘蛛和蜻蜓一共有12只,一共能数出80条腿。蜘蛛和蜻蜓各有多少只?

32、六年级参加植树活动,42个同学植树104棵。男生平均每人植3棵,女生平均每人植2棵。男生和女生各有多少人?

33、李叔叔买了12张邮票,一共用了128元,成人每张12远儿童每张8元.李叔叔买了大人小孩多少票?

34、王老师买奶糖和奶酪一共10千克,用去118元。如果奶糖每千克9.8元,奶酪每千克14.8元,王老师买奶糖和奶酪各多少千克?

35、一个比赛用的足球价格比一个训练用的足球价格贵76元,并且比赛用的足球的价格是训练用的足球的3倍。训练用的足球的价格是多少元?

36.健康知识竞赛有25题,答对1题得4分,答错或不答倒扣1分。丁丁得了60分,他答对了多少题?

篇3:小学六年级数学解决问题的策略教案

小学六年级数学解决问题的策略教案

《数学课程标准》在解决问题的课程目标中对解决问题的策略教学提出了明确要求:形成解决问题的一些基本策略,体验解决问题策略的多样性。为了将解决问题的策略教学目标落到实处,必须先解决两个问题:其一,如何清晰地界定解决问题的策略,明确义务教育阶段小学生应该形成哪些解决问题的策略?其二,如何帮助学生形成解决问题的一些基本策略,并体验解决问题策略的多样性?

一、关于解决问题的策略

对解决问题的策略,人们已经有很多研究。波利亚在《怎样解题》一书中谈及的解决问题的策略有普遍化、特殊化、类比、猜想和检验、画一张图、建立方程、倒着干等。浙江省特级教师朱德江认为解决问题的策略有尝试和检验、画图、操作、找规律、制表、从简单的情况人手、整理数据、从相反的方向思考、列方程、逻辑推理、改变观点等11种。加拿大的某套数学教材中将解决问题的策略分为10种,并采用图文结合的方式形象地呈现如下:

我国课程改革下的实验教材,不再以传统的算术应用题内容为线索,而是以学生的生活经验为线索,以所学运算体现的数量关系为线索,以体现解决问题的策略为线索。人教版教材编排了图示、列举、列表、找规律、从简单情况入手等解决问题的策略。北师大版教材编排的解决问题的策略有画图、列表、猜想与尝试、从特例开始寻找规律等。苏教版教材采用分散与集中相结合的原则,从四年级起集中编有解决问题的策略单元,安排学生学习摘录与列表、画图、一一列举、倒推;替换、假设、转化等策略。

从以上的分析,我们可以大致明晰教材中解决问题的策略的内容。

二、学习解决问题策略的三个阶段

教师不但要思考解决问题的策略有哪些,还要思考怎样帮助学生形成这些策略。

解决问题策略的学习,不可能脱离解决问题的过程,必须和解决问题紧密结合在一起。也就是说,解决问题策略的学习是基于解决问题、为了解决问题的。解决问题,首先是作为学生感受、体会、反思解决问题策略的手段,其次是让学生运用所学策略解决新的问题。对学生来说,解决问题的活动价值,不仅仅是解决某一类问题,获得某一类 问题的结论,更重要的是在解决问题的过程中获得发展,即基于解题的经历,形成相应的经验、技巧、方法,进而通过反思和提炼,形成一定的解决问题的策略。学生认识、理解、掌握解决问题的策略一般要经历潜意识阶段、明朗化阶段、深刻化阶段。教师要顺应学生的学习心理,展开解决问题策略的教学。

1.走出潜意识阶段

对学生来说,学习解决问题的策略,并不是建空中楼阁。他们在日常生活中已经积累了一些关于策略的认识,在以往解决问题的过程中也已经初步积累了解决问题的经验,但并不一定关注到了解决问题时隐藏在背后支撑解决问题的策略,即学生对策略的认识处于潜意识阶段。在这个阶段,学生往往关注具体的问题是否得以解决,对解决问题的策略处于朦朦胧胧、似有所悟的状况,缺乏应有的思考。学生对解决问题的策略的认识要经历一个从模糊到清晰的过程。教学时,教师可先呈现问题,让学生根据他们已有的知识经验尝试解决问题,获得一定的经验;再引导学生回顾解决问题的过程,

思考解决问题的策略,并通过回顾性陈述交流,将解决问题的策略化隐为显。在回顾性陈述时,学生可能会基于自己的经验和理解,提出不同的策略,教师应引导学生联系解决问题的过程提炼。

2.步入明朗化阶段

学生对某一种解决问题的策略有了初步的感受后,教师应引导学生将策略明朗化。如:呈现新问题后,组织学生思考可以用什么策略解决问题,使学生具有明确的.应用策略的意识;解决问题后,再组织学生交流解决问题的过程。这样,随着解决问题策略的初步应用以及对解决问题过程的回顾与反思,解决问题的策略就逐步浮出水面并凸现出来。这里要指出的是,在教学新的解决问题策略时,不能排斥学生应用以往学习的解决问题策略。学生学习解决问题策略的过程,不是小猴子掰玉米,喜新弃旧,而是在不断整合、应用不同策略的过程中,丰富自己解决问题的经验,并在新的问题中主

动、综合、灵活应用各种策略解决问题。

3.走向深刻化阶段

在学生比较充分地感知了解决问题的策略、明确了解决问题的策略后,教师要安排一定的练习,对相关策略进行集中强化,以加深学生对策略的理解与掌握,使学生对策略的认识更深刻,逐步达到运用自如的境界。在这一过程中,教师要引导学生继续反思自己所使用的策略,促进学生形成稳定的解决问题的策略。在教师的眼中,学生采用的策略可能有优劣之分,但学生的思考过程并没有好坏之别,都能反映学生对问题的理解和所作的努力。因此,即使到了巩固、深化策略的阶段,教师仍不应急于对学生的策略作出评价,而应给学生阐明和讨论策略的机会,让学生在交流、倾听中比较不同的策略,优化自我的策略。为了深化学生对策略的认识,教师可在学生采用一定的策略解决问题后引导学生进一步思考:自己所采用的解决问题的策略有什么特点,适用哪些情况?还可采用什么策略解决问题?不同策略之间有无一定的本质联系?学生不断地经历这样的思考,就能对策略的本质有更深入的认识,就能得心应手地应用策略解决问题。

策略,有助子在解决问题时走出无从下手的沼泽地;解决问题,有助于加深对策略的认识、理解与掌握。教师要充分认识策略的意义,进一步在实践中探索学生形成策略的规律,将解决问题策略的教学目标落到实处。

篇4:六年级数学教学设计解决问题的策略

六年级数学苏教版教学设计解决问题的策略

教学目标:

1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。教学重点:使学生理解并运用假设的策略解决问题。教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。

教学过程:

一、直接导入:

1.直接出示你知道吗?鸡兔同笼问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:你能理解这句话的含义吗?学生回答。

2.师说明:解答鸡兔同笼问题时,我们会用到一个新的解决问题的策略假设,同时要用到以前的策略画图或列表。教师板书:解决问题的策略假设。

二、以鸡兔同笼为例

探究假设

1.教师出示题目:鸡和兔一共有8只,数一数腿有22条。你知道鸡和兔各有多少只?教师边出示边说明:为了解答方便,老师适当的改了几个数据。师:看到这个题目,是否觉得比较难?师:这样吧,我们用以前的一种策略画图来解决。师让学生上台画鸡或兔,当学生有疑问时,问:这样画鸡或兔是否很麻烦,能否用其他方法来代替?师应引导学生用圈来表示鸡或兔,用2脚与4脚区分鸡与兔。问:能不能马上确定鸡兔各有几只?因此,我们画图时不能马上画出几只兔几只鸡。师:这时我们可以假设全部是鸡或兔了。分别板书:假设都是鸡 假设都是兔。师:我们先来假设都是兔,兔有几条腿?我们就用短线段表示脚,请同学们把所有的脚都画上。数一数,一共有几条腿?为什么会多腿?(要求学生一定说出因为把鸡当成是兔)了多几只腿?一只兔比一只鸡多几条腿?师:因为每只鸡比每只兔少2条腿,所以我们每次拿走2条腿。要拿走几次,你是怎样算的?师:现在你能发现什么吗? 现在兔有几只?鸡有几只了?你能否把刚才的过程表述出来?请同桌互说把刚才的过程表述出来。师:刚才的过程我们还可以用式子表示,谁来说明?教师根据学生回答分别板书。84=32(条) 表示假设全部是兔总共有32条腿。32-22=10(条) 表示实际多画了10条腿。4-2=2(条) 表示一只兔比一只鸡多2条腿。102=5(只) 表示鸡有5只。8-5=3(只) 表示兔有3只。教师重点多次提问要求学生回答出每句话的含义。

教师小结:我们可以首先假设全部是兔,然后数出兔的.腿与实际的腿的差距,因为一只兔比一只鸡多2条腿,所以看这个差距里有几个2,所求出的与假设相反的鸡,最后求兔。

2、刚才我们假设了全部是兔,如果假设全部是鸡,应该怎样想?先让学生小组内交流,然后有能力的学生独立完成,其他学生画图完成或看提示完成。在交流时分别对每步提问。问:82=16表示什么?(假设全部是鸡总共有16条腿)22-16=6表示什么?(实际少画了6条腿)4-2=2表示什么?(一只兔比一只鸡多2条腿)。102=5表示什么?(鸡有5只)8-5=3表示什么?(兔有3只)师:上面的方法有什么共同的特点?3、师:除了全部假设为鸡或兔,我们还可以假设每种各有一半,可以怎样假设?师:如果是总过8只可以假设鸡有4只,兔有4只。如果是11只呢,我们可以怎样假设?师:如果是偶数,我们可以假设每种各有一半;如果是奇数,我们可以假设一种为一半多一点,另一种为一半少一点。而且,此类假设我们用表格来解决。师出示表格 鸡的只数 兔的只数 腿的条数 和22条腿比较师根据学生的回答分别板书。4 4 42+44=24 多了2条在这里多了2条,表明什么?按照刚才的假设兔4只太多了还是太少了?如何调整?如果在这里少了4条,表明什么?该如何调整?师小结:此种方法我们首先假设各有一半,然后按照这种假设算出腿的总数,根据与题意差距,合理地调整。

4、师:要知道我们所求的答案是否正确,我们还应检验,如何检验?教师根据学生的回答板书检验。

5、小结:刚才我们用了三种方法解答了鸡兔同笼问题,都是采用的假设法,可以假设一种全是,也可以假设另一种全是,还可以假设各有一半,在解答时,可以选择你比较喜欢的一种来解答。

三、以引入题为辅,再次巩固假设法。

1、师:刚才我们采用假设法解决鸡兔同笼,我们回到刚才的你知道吗。老师把题目转化了。出示题目。现在你会解决了吗?这样吧,行的话你们可以直接完成,不行的话半分钟后会出现提示,还是不行的话一分钟后可以两人或四人商量商量。学生独立解决,完成后要求学生检验。

2、交流时在实物转换仪展示学生作业,师提问学生每步的意义。方法一:354=140(条) 方法二:352=70(条) 140-94=46(条) 94-70=24(条) 4-2=2(条) 4-2=2(条) 鸡 462=23(只) 兔 242=12(只) 兔 242=12(只) 鸡 462=23(只)方法三: 鸡的只数 兔的只数 腿的条数 和94条腿比较

18 17 182+174=104 多10条

20 15 202+154=100 多6条

23 12 232+124=94 正好

小结:对于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。

四、以例题为练,提炼假设方法。

1、师:刚才我们解答了两道鸡兔同笼问题,知道了此类题目的方法,接下去老师来考考你。(出示例题)全班51人去公园划船,一共租了11条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?学生独立完成,教师帮助有困难的学生。交流时要求学生说明理由。2、师:现在你能归纳这种方法的解答过程吗?小结:于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。

五、总结。

师:你什么收获?

篇5:数学专项练习试题

数学专项练习试题大全

一、填空我能行,全部填对才真行。

1. 60606000是一个(???? )位数,这个数读作(??????????????????? );从左往右数第二个6在(???? )位上,第三个6表示6个(???? )。

2. 38 :16 可化简为(???? ),比值是(??? )。

3. 一个两位数既是5的倍数,也是3的倍数,而且是偶数,这个数最小是(?? ),最大是(?? )。

4. 0.25=( )÷( )=2∶( )=6( ) =( )%

5.我国香港特别行政区的总面积是十一亿零四百万平方米,写作(??????????? )平方米,改写成用“万平方米”作单位(????????? )。

6.三个连续偶数的和是36,这三个偶数是(??? )、(??? )和(??? )。

7.观察并完成序列:0、1、3、6、10、( )、21、( )。

8.20以内不是偶数的合数是(?????? ),不是奇数的质数是(???? )。

9. 在一条长50米的大路两旁,每隔5米栽一棵树(两端都要栽),一共可栽( )棵树。

10.如果a和b是不为0的两个连续自然数,那么a、b的最小公倍数是(??? ),最大公因数是(??? )。

11.将一条57 米长的绳子平均截成5段,每段占这条绳子的( )( ) ,每段长(? )米。

12.一个比例的两个内项互为倒数,一个外项是 ,另一个外项是( )。

13.把0.4(?)5(?)、46%、0.45(?)、920 按从大到小的顺序排列为( ??? )。

14.被减数减去减数,差是0.4,被减数、减数与差的和是2,减数是( )。

二、判断我也行,包公断案最分明。

1.分母是8的最简真分数有4个。???????????????????????? (?? )

2.一个自然数不是质数,就是合数。?????????????????????? (?? )

3. 4100÷800=41÷8=5……1。????????????????????????? ( )

4.比例尺是1:500,表示图上1厘米代表实际距离的500米。 (?? )

5.310 里面有3个0.1。?????????????????????????????????? (?? )

6.含有未知数的式子就是方程。?????????????????????????? (?? )

7. 915 不能化成有限小数。?????????????????????????????? (?? )

8. 12÷3=4,所以12是倍数,3是因数。????????????????? (?? )

三、选择我更行,去伪存真心里明。

1.下列说法正确的是(??? )。

A.0是最小的数?????????? B.0既是正数又是负数

C.负数比正数小?????????? D.数轴上-4在-7的左边

2.出油率一定,香油的质量和芝麻的质量(???? )。

A.成正比例?? B.成反比例?? C.不成比例?? D.无法确定

3.商店里九五折出售的.商品,比原价(???? )。

A.提高5%??? B.降低5%???? C.提高95%????? D.降低95%

4.一个两位数,个位上的数字是5,十位上的数字是a,表示这个两位数的式子是(??? )。

A.50+a??????? B.5+a??????? C.5+10a?????? D.15a

5.一项工程,甲队单独做要8天完成,乙队单独做要6天完成。甲队和乙队的工作效率比是( )。

A.8:6 ???? B.4:3 ???? C. : ?? D. :

6. 一个小数,小数点向左移动一位后,再向右移动三位后是274,这个小数原来是(? )。

A.0.274 ??? B.27.4????????? C.2.74 ???? D.0.0274

7. 在比例尺是1:1000000的地图上,图上距离为10厘米的两地,实际距离是( )千米。

A.100000 B.100 ????? C.1000 ???? D.10000

8.甲数(甲数不为0)的58 等于乙数的67 ,则甲数( )乙数。

A.大于???? B.等于??????? C.小于????????? D.无法比较

9.两根同样长的绳子,甲绳用去14 ,乙绳用去14 米,则两根绳子( )。

A.甲剩下的长一些 ??????? B. 乙剩下的长一些

C. 甲、乙剩下的一样长 ????? D. 无法判断谁剩下的长

四、计算题要仔细。

1.直接写得数。

3.6+5.4=????? 650-100=???? 0.008×1000=????? 70÷0.01=

2.8×0.5=?????? 25÷14 =?????? 1÷35 =??????????? 712 ×914 =

13 +56 +23 =????????? 45 ×0.25+3=

2.怎样简便怎样算。

2.87+5.6-0.87+4.4???????? (115 +317 )×15×17

1.7×102?????????????????????? 1.25×0.32×250

3.5×45 +5.5×80%+0.8 ? 3.68―0.82―0.18

3.求未知数x。

7.2x-5.4x=25.2??????? 13x+17=108 ? 2.4x =22.5

五、解决问题。

1.新华书店去年全年接待读者120万人。上半年接待读者的人数是全年的 ,第四季度接待读者的人数是上半年的 ,第四季度接待读者多少人?

2.一个晒盐场用100克的海水,可以晒出3克盐。如果一块盐田一次放入5000吨的海水,可以晒出多少吨盐?

3.有红、黄两种颜色的花147朵。如果两种花的数量比是3∶4,那种颜色的花多?多多少朵?

4.小明看一本书,已经看的页数与总页数的比是1:3,再看15页,则正好看完全书的50%。这本书共有多少页?

5.一份稿件,甲单独录入需5小时完成,乙单独录入需4小时完成。这份稿件先由甲录入2小时后,剩下的两人合录,还需多长时间才能录完?

数学网小学频道为大家提供了数学专项练习试题,希望大家抓紧时间复习,在考试中取得好的成绩。

篇6:解决问题专项练习题

解决问题专项练习题

1.某个体户,去年12月份营业收入5000元,按规定要缴纳3%的营业税。纳税后还剩多少钱?

2.一块合金内,铜和锌的比是2:3,现在再加入6克锌,共得新合金36克。求新合金中锌的重量。

3.如图,在一只圆形钟面上,时针长3厘米,分针长5厘米。经过12小时,时针扫过的面积是多少平方厘米?分针走了多少厘米?

4、从甲地到乙地,甲船要8天,乙船要12天,两船同时从甲地开出,多少天后两船之间的距离是全程的 ?

5.小明要买不同档次的文具盒。高档的5个,中档的占总数的75%,低档的占总数的 。你知道小明一共要买多少个文具盒吗?

6.为了学生的卫生安全,学校给每个住宿生配一个水杯,每只水杯3元,大洋商城打九折,百汇商厦“买八送一”。学校想买180只水杯,请你当“参谋”,算一算:到哪家购买较合算?请写出你的理由。

7.某村去年产粮食40吨,今年比去年增产二成五,今年计产粮食多少吨?

8.果园里有果树1200棵,其中梨树占40%,桃树占20%,两种果树共有多少棵?

9.修路队修一条路,已经修了4.5千米,还剩下55%没有修,这条路长多少千米?

10.李大伯饲养鸡的只数的60%与鹅的只数的45 相等。已知李大伯饲养了120只鸡,那么李大伯饲养了多少只鹅?

11.一批树苗540棵,分给五、六年级同学去种,五年级有120人,六年级有150人,如果按照人数进行分配,每个年级各应分得多少棵树苗?

12.李师傅加工一批零件,第一天完成的个数与零件总数的比是1:3。如果再加工15个,就可以完成这批零件的一半。这批零件共有多少个?

13.一项工程,甲队独做要10天完成,乙队独做要15天完成,甲队先做2天后,剩下的再由两队合做,还要多少天可以完成任务?

14.甲仓库存粮食100吨,乙仓库存粮食80吨,甲仓库运了一批粮食到乙仓库,这时乙仓库的粮食正好是甲仓库的45 。甲仓库运了多少吨粮食到乙仓库

15.五年级体育“达标”人数比四年级多 ,实际多12人。四年级体育“达标”的有多少人?

16.小明把他的压岁钱1300元买了三年期国库券,年利率为5.85%,三年后他可得本金和利息共多少元。

17.工程队做一条公路,第一周做了全长的20%,第二周做了全长的 ,两周共做了180米。这条公路全长多少米?

18.车站有90吨货物,两辆汽车合运12次可以运完。由甲车单独运要20次可以运完,由乙车单独运几次可以运完?

21.一项工程,甲队独修15天完成,乙队独修20天完成。两队合修5天后,甲队调走,剩下的由乙队继续修完。乙队还要几天修完?

22.一套课桌椅的价格是60元,其中椅子的价格是课桌的 。椅子的价格是多少元?

19.求图中阴影部分的面积和周长(单位:分米)。

求面积:

21.一项工程,甲队独修15天完成,乙队独修20天完成。两队合修5天后,甲队调走,剩下的由乙队继续修完。乙队还要几天修完?

22.一套课桌椅的价格是60元,其中椅子的价格是课桌的 。椅子的价格是多少元?

23.有一批书,小亮9天可装订 ,小冬20天可装订 ,小亮和小冬合作,几天能完成这批书的. ?

24.一个打字员打一篇稿件。第一天打了30页,第二天比第一天多打20页,两天共打了这篇稿件的 。这篇稿件有多少页?

25.、有一批货物,第一天运走总数的 ,第二天比第一天多运14吨,第三天把剩下的28吨全部运完。这批货物共有多少吨?

26.一项工程,甲单独做20天完成,乙单独做30天完成。甲乙合做了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。乙请假多少天

27、李冬看一本故事书,第一天看了全书的 还少5页,第二天看了全书的 还多3页,还剩206页。这本故事书有多少页?

28.一批零件,甲单独做6天完成,乙单独做9天完成,两人合做4天后,还剩下260个零件。这批零件有多少个?

31、水池中有两水管,单开甲水管10小时可将空池放满水,单开乙水管15小时可将满池水放完,现两管齐开,几小时可将空池放满?

33、一段铁路,已修的长度是未修的长度的比是4:5,如果再修50千米,已修的长度就占全长的 。这段铁路全长多少千米?

34、工程队修一段公路,当修完全长的 ,已经超过中点320千米。这段公路全长多少千米

35、甲乙两船同时从两港相对开出,甲船行完全程要10小时,乙船行完全程要15小时,两船开出5小时后还相距75千米。两港相距多少千米?

36、学校数学兴趣小组原来男生人数占 ,后来又有6名男生参加进来,这样男生就占数学兴趣小组的 。现在数学兴趣小组有男生多少人?

37、某水池装有甲乙两个进水管和丙一个出水管。单开甲管6分钟可以注满水池,单开乙管8分钟可以注满,单开丙管4分钟可以把满池水排完。三管齐开,几分钟能使水池注满?

38、甲乙两个小组合做一批航模,8天可完成。如果甲组单独做20天完成,乙组单独做几天完成?

39、被减数是40,减数与差的比是5:3,减数是多少?差是多少?

40、水结冰后体积比原来增加 ,冰化成水后体积减少几分之几?

41、一辆汽车以每小时45千米的速度行了全程的 后,离中点还有90千米,照这样的速度,行完全程要多少小时?

本文推荐的是专项练习题,希望大家抓紧时间复习,在考试中取得好的成绩。

篇7:数学六年级上册教案 解决问题的策略替换

苏教版数学六年级上册教案 解决问题的策略(替换)

苏教版数学六年级上册教案 解决问题的策略(替换) 时间: 2009年08月12日 作者:佚名  来源:网络    [教材分析]: 本单元主要教学用替换和假设的策略解决实际问题。本单元共安排了2个例题,分3课时进行教学,本节课是其中的第1课时。“替”即替代,“换”则更换,替换能使复杂的问题变得简单。教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材安排的例题就是利用“小杯的容量是大杯的 ”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生“说说为什么这样替换”,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。 [教学意图]: 这节课的教学设计,力求体现新课程的理念,给学生自主探索的空间,为学生营造宽松和谐的氛围,让他们学得更主动、更轻松,凸现了内容的情趣化和生活化;在探索的过程中,培养学生的实践能力、创造能力、合作精神,鼓励学生大胆发表自己的意见,最大限度地调动学生学习数学的积极性、主动性和创造性,体现了过程的活动化,达成了预定的教学目的。 [教学目标]: 1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。 2、使学学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。 3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。 [教学过程]: 课前欣赏:播放《曹冲称象》录像,感受策略。 创设情境,感受用策略解决问题的魅力 1.承接故事情境,感受策略的作用。 (1)故事中曹操提出了什么要求? (2)众大臣有没有解决这个难题吗? (3)曹冲用了什么办法解决了这个难题? (4)过渡语:要称出那头大象的重量,大人们都束手无策,七岁的曹冲却想出了那么妙的解决办法,用称出与大象相同重量的一船石头的重量来求出大象的重量,真了不起!今天我们就一起来学习用这种办法解决一些实际问题。 板书:解决问题的策略探究新知,初步理解替换的策略 (一)解决生活中的难题 1、[电脑出示]例1小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的 。小杯和大杯的容量各是多少毫升? 2、引导交流:从题目中获得哪些信息? 随机贴出杯子图 3、你是怎样理解“小杯的容量是大杯的1/3”这句话? 4、问:你可以提出哪些数学问题呢?(课前估计学生可能出现的问题,做好充分的准备,结合学生的回答灵活的提炼到今天要解决的问题上来) 5、问:这些问题现在都能解决吗? 6、(生广泛发言,教师及时肯定和评价) 7、针对学生提出的问题,提炼到今天所要解决的问题上来。问题:同学们,你们看每个大杯和小杯的容器不一样。杯子的数量也不一样,只告诉我们这些杯子里果汁的总量720毫升,那怎样来求小杯和大杯的容量呢?我们该怎么办呢?你们能不能想一个比较好的方法呢? 8、讨论讨论,想想曹冲称象的故事给我们解决这一个问题有什么启示呢? 9、结合学生提出的已有经验,学生可能出现的情况是: A把大杯换成小杯 B把小杯换成大杯 10、小结学生的方法:不管是大杯换小杯,还是把小杯换成大杯,同学们有没有发现,他们的共同点都是把两个较复杂的量转化成比较简单的同一种量来考虑。 这就是我们今天要学习的内容:替换策略来解决问题  板书:替换 11、过渡:在刚才的探究中,我们知道了可以把小杯替换成大杯,也可以把大杯替换成小杯,在这个过程中怎样来替换,又如何来解决这个问题呢?在每个同学的桌上有这样的一张作业纸,拿出来四人小组合作。 要求1、画一画,选一种替换方法画出替换过程。 2、说一说,应该怎样替换,并且如何计算。 小组展示汇报。 12、分析数量关系及解答。黑板上 (1)学生根据投影出来的方法说一说解答思路。 问:要解决这个问题,根据我们画的图可以怎么想? (2)哪些同学是和他一样的做法,还有不同的方法吗?交流第二种方法。 13、怎样检验结果是否正确?学生口头检验。 你觉得小杯的容量加上大杯的容量满足720毫升以后,还需要满足什么条件吗? 14、回顾反思 (1)在解决这一问题的过程中用到了什么策略?为什么要替换? (2)我们又是怎样来替换的? 15、小结:在解决这一过程中,原来是有大杯和小杯两种不同的`量,用替换的策略简化成了都是小杯这同一种量,而且总量也告诉我们,这样要求小杯的容量就方便了;同样用替换的方法把小杯替换成大杯,使题目中只出现了大杯这同一种量,要求大杯的容量也方便了。在整个过程中我们还借助了画图的方法,帮助我们解决问题。 三、拓展应用,巩固策略 过渡:同学们在日常生活中用替换的策略可以帮助我们解决很多实际问题。来我们一起来看一段小广告 1、播放达能广告 同学们,从刚才的广告中你又发现了哪些数学知识呢? 2、让学生说说自己的发现 3、是啊!在我们每天的生活中蕴涵着丰富的数学知识,只要你做个有心人,你会有更多的收获。课前老师也做了一些调查: [电脑出示]8块达能饼干的钙含量相当于1杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1 杯牛奶呢? (1)要解决这个问题你准备用什么策略?在替换的过程中还需要用到画图,老师给你们准备了一张图在练习纸二上,画一画来尝试解决这个问题。 学生独立完成。并说出想的过程。 (2)除了把牛奶替换成饼干,还有没有别的不同的方法吗? (3)说一说这题该怎样检验? (4)提问:为什么你们都不把饼干替换成牛奶来考虑? 学生交流后小结:在解决实际问题的过程中,一般要选择简洁、容易的方法来解答。 2、[电脑出示]在2个同样的大盒和5个同样的小盒里装满网球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个? (1)读题,从题目中获得哪些信息? (2)与前面两题相比,有什么不同的地方? (3)你准备怎样替换?还有不同的替换吗?(学生说,教师演示部分课件) (4)“每个大盒比小盒多装8个”这句话你是怎么理解的? (5)选择一种喜欢的方法进行替换,请在练习纸上完成 (6)学生汇报,结合学生的汇报让学生说说总数有没有发生变化? (7)口头检验 3、学校买来5个足球和10个篮球,共计700元。每只足球比每只篮球便宜10元。足球和篮球的单价各是多少元? (1)画一画图来解决这个问题吗? (2)重点说说自己是怎样来解答的 四、小结全课,优化策略 通过今天的学习,你对用替换策略解决实际问题又有了哪些新的认识?  

解决问题专项练习题

句子仿写专项练习一

六年级数学促销解决问题教案

五年级数学解决问题的策略教学反思

小学四年级数学“解决问题的策略”教案设计

解决问题策略教学心得体会

五年级数学下《解决问题的策略》教学反思

四年级数学下册解决问题的策略综合练习题

《解决问题》数学说课稿

六年级数学《列方程解决问题》的教学反思

六年级数学解决问题的策略专项练习一(精选7篇)

欢迎下载DOC格式的六年级数学解决问题的策略专项练习一,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档