初二数学复习方法的三大建议

| 收藏本文 下载本文 作者:cheng0000

下面是小编为大家整理的初二数学复习方法的三大建议(共含6篇),欢迎大家借鉴与参考,希望对大家有所帮助。同时,但愿您也能像本文投稿人“cheng0000”一样,积极向本站投稿分享好文章。

初二数学复习方法的三大建议

篇1:初二数学复习方法的三大建议

期末考试即将到来,那么多科目中,数学可能是大多数同学的科目弱项,那么在考试来临之际,应该怎么复习好初二数学呢?下面一起来看下关于数学复习方法的建议。

作者|十一

第一就是要克服心理疲劳。对于学习,要有浓厚的学习兴趣,在日复一日的复习中,人难免会精神疲劳、心理疲劳,所以得要培养自己的学习兴趣,这是克服心理疲劳的关键,这样学习才会有积极性,不会觉得单调枯燥。

第二战胜高原现象。复习中所说的高原现象就是指复习到了一定的时期就会停滞,这时候同学们千万不要急躁或者失去信心,应该调整复习方案,找出对的学习方法。

第三根据心理特点做考前复习。一个人的心理稳定的程度是会影响复习的,所以在考前,同学们可以根据自己的心理特点来制定复习计划,根据心态来调整进度,运用好复习的方式方法,才能在考场上发挥出最好的效果。

篇2:初二数学复习方法

初二数学复习方法

按部就班

数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

强调理解

概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

基本训练

学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的`题型,训练要做到有的放矢。

重视错误

订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。

数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。

平时的数学学习:

1、课前认真预习。预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高。具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15—20分钟。在时间允许的情况下,还可以将练习册做完。

2、让数学课学与练结合。在数学课上,光听是没用的。当老师让同学去黑板上演算时,自己也要在草稿纸上练。如果遇到不懂的难题,一定要提出来,不能不求甚解。否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。

3、课后及时复习。写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题。可以根据自己的需要选择适合自己的课外书。其课外题内容大概就是今天上的课。

4、单元测验是为了检测近期的学习情况。其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好。老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”。

篇3:初二数学寒假复习方法

初二数学所学的部分,占整个初中阶段知识点的一半。这是一个很惊人的力量。中考几何的重头戏:三角形全等和它的三大转换,都要在初二全部讲完。这一部分学习的难度,大家可以问问学校里的学哥学姐,即使是在初一学习不错的,对三角形全等这一块的中高等题还是感到很麻手。除此之外,还有平行四边形和梯形的加入。

初二这一年,之所以说对数学很关键,不单单因为数学任务变多变难,还有一个原因:一门新的理科类学科要和数学抢时间,那就是“物理”。

一轮复习:

数学的第一轮复习开始于寒假,复习主要内容为绝大部分中考大纲中要求的考点:三角形、四边形、圆、方程与不等式、一次函数、反比例函数、二次函数等。题目选在中考及模拟考试中出现过的经典题目,或予以改编加工,其目的为回顾初中三年的知识点,复习和巩固基础知识及解题方法。目标为基础、中档题目0失分,在开学测试中取得优异成绩!

二轮复习:

此轮复习以攻克各类常考专题为主,主要包括函数图象点的存在性专题、图形运动及变换专题、代数综合应用专题、几何变换专题及探究性题目专题、中考易错专题等(专题名称在春季课程上或有些许调整)。选题以能够凸显专题特点的题目为主、题目循序渐进,并附加高端模型的总结及解题思路的扩展,力争攻克第一次模拟考试。

三轮复习:

代数综合、几何综合以及代几综合将成为此轮复习的主要复习对象。以剖析题目、联系知识、寻找模型和方法为主线进行压轴题目的分析与解答。争取在二模考试中解决压轴题,获得高分或满分。

四轮复习:

历经了的一模和二模之后,第四轮复习便会悄然而至,通过对两轮复习多体现出来的中考趋势进行分析,并以此进行选题和预测中考。所选题目同中考考察可能性较大的题目相同,以便最大程度的使学子适应新的中考趋势、做好考前的最后冲刺!

基础巩固——专题攻克——压轴突破——趋势预测及查漏补缺,历经四轮复习稳扎稳打,步步为营,知识体系由点及面、重点突出。一轮复习对接开学测试,二轮复习对接一模考试,三轮复习对接二模考试,最后四轮冲刺复习目标中考!

初二数学的重要思想推荐:

1、“方程”的思想

数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。

所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。

2、“数形结合”的思想

大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支棗-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与 “形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。

3、“对应”的思想

“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数 “2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。这就是运用“对应”的思想和方法来解题。初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用。

篇4:初二数学的复习方法

一、主动预习

预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

二、主动思考

很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。

主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。

靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!

三、善于总结规律

解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题。

初二数学知识点全总结篇1

整式的除法

1.单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

2.多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

初二数学知识点全总结篇2

等腰梯形

定义

两腰相等的梯形叫做等腰梯形(isosceles trapezium )

性质

1.等腰梯形的两条腰相等。

2.等腰梯形在同一底上的两个底角相等。

3.等腰梯形的两条对角线相等。

4.等腰梯形是轴对称图形,对称轴是上下底中点的连线所在直线(过两底中点的直线)。

判定

①两腰相等的梯形是等腰梯形;

②同一底上的两个角相等的梯形是等腰梯形;

③对角线相等的梯形是等腰梯形;

初二数学知识点全总结篇3

分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为A/B=(A-C)/(B-C);A/B=(A-C)/(B-C)(C不等于0) ,其中A、B、C是整式

注意:

(1)“C是一个不等于0的整式”是分式基本性质的一个制约条件;

(2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;

(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;

(4)分式的基本性质是分式进行约分、通分和符号变化的依据。

初二数学知识点全总结篇4

定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

注意:

①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

通过上面对数学中分式的约分知识的讲解学习,希望同学们对上面的内容知识都能很好的掌握,相信同学们会学习的很好。

初二数学知识点全总结篇5

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的`积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)??(a+b).

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.

2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

一次项的系数.

2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

①列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数.

3.将原多项式分解成(x+q)(x+p)的形式.

篇5:中考数学复习方法,中考数学复习三大技巧

中考数学不难,“记”是关键

中考数学并不难,觉得难的原因是学生不愿意记。大脑一片空白,做过不同类型的题目,到最后并没有起到什么作用。

造成这种原因,就要求学生对自己不会的知识,或者是比较惧怕的题目,一定要花时间强记。等到记到10道左右,就会有这类型的题目也不过如此的感觉。当然,也要结合自身的情况,进行分析对比,找出自己不熟练的部分。再结合过去训练的专题,进行强化。

考试总是不对,经常“返回”

很多考生在考试的时候,经常会把自己会做的题目给做错了,而做错的类型有很多,例如算错、抄错、题读错、数看错、表述错等。

一定要让自己明白,只要做就会有犯错的可能。所以我们要需注意一下,每做完一道题,都要检查一下,也就是要经常“返回”,同时在大脑回忆确认一下。

几何函数题目,不断“重复”

中考数学难度高的知识一般集中在函数和几何。单单是函数题,我们就要面对函数图形中的几何信息,还有的学生不会把几何图形信息转换成代数信息最后的综合题更是一个•难啃的骨头。

对于中考数学想取得115以上分数的考生,必须要拿下填空题的最后一道,同时要保证做过的题不会出错。这样才有时间和精力去攻克困难的试题。

篇6:初二数学复习方法总结盘点

初二数学复习方法总结

数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”,勤能补拙是良训,一分辛劳一分才。

1.复习一定要做到勤

勤动手:做题不要看,一定要算,不会的知识点写下来,记在笔记本上。

勤动口:不会的有疑问的一定要问老师,时间不等人,在没有时间可以浪费。而且学会与同学讨论问题。

勤动耳:老师讲的复习课一定要听,不要认为这道题会,老师讲就可以溜号,须知温故可知新。

勤动脑:善于思考问题,积极思考问题——吸收、储存信息

勤动腿:不要参加过于激烈的运动,防止受伤影响学习,但要运动,每天慢跑30分钟即可,报至状态。

2.初中数学复习还要强调两个要点:

一要:动手,二要:动脑。

动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知之间的联系,多问几个为什么,多体会考的哪个知识点。

动手就是多实践,多做题,要拳不离手曲不离口。同学就是题不离手,这两个要点大家要记住并且要坚持住。动脑又动手,才能地发挥大脑的效率。这也是老师的经验。

3.用心做到三个一遍

上课要认真听一遍:听老师讲的方法知识等。

动手算一遍:按照老师的思路算一遍看看是否融会贯通。

认真想一遍:想想为什么这么做题,考的哪个知识。

4.重视简单的学习过程

读好一本教科书它是教学、中考的主要依据;

记好一本笔记方法知识是教师多年经验的结晶,每人自己准备一本错题集;

做好做净一本习题集它是使知识拓宽;

这些看似平凡简单,但是确实老师亲身的体验,用心观察我们的中考、高考状元,其实他们每天重复的不就是老师刚刚说的吗?

没有宝典神功,只有普普通通。最最难能可贵的是坚持。

资源可以的话,找几套往届的期末考试题,是自己县区的,其他县区也可以(考点差不多一样的),在规定时间内,摸摸底,熟悉每个章节考的的题型,练练自己的做题效率。很多同学第一次做练习出错,如果不及时纠正、反思,而仅仅是把答案改正,那么他没有真正地弄明白自己到底错在什么地方,也就没弄明白如何应用这部分知识,最终会导致在今后遇到类似的问题一错再错。

初二数学高效的学习方法

1.深刻理解概念

概念是数学的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的。

对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。

2.养成良好的学习习惯

每次考完试后,我们常会听到一些初二的同学说:这次考试我又粗心了。而粗心最多的一种现象就是由于跳步骤产生的错误,并且屡错不改。这实际上是不良的学习习惯、求快心理造成的数学运算技能的不过关。要知道数学题的每一步都是符合一定的法则来完成的,如果在解题过程中忽视了某一步,那么就会发生这一步的法则没有正确的运用,进而产生错解。

因此,运算能力的提高从根本上说是要弄懂“算理”,不仅知道怎样算,而且知道为什么这样算,从而把握运算的方向、途径和程序,一步一步仔细完成,形成运算能力。同学们要注意,如果你有上述类似跳步的现象应及时改正,不然长期下去,你会有一种恐惧心理,还没有开始解题就已经担心自己会做错,这样就会错得越多。

3.趁没忘记反复练习

人的大脑记忆只是短时记忆,过一天便忘掉了,趁没忘记时反复练习,就能做到长时间的记忆。复习方法有下列几点:

a.每天抽半小时复习一次当天学习的内容。文科最好把学习的主要内容背出来(主要内容并不多,老师一般会强调的)。做几道与当天学习内容有关的数学、物理习题(自备一本“题库”)。

b.周末抽出2小时,对一周内学习的内容进行第二次复习,将文科要点背下来,并对数学、物理的重要问题反复练习,直到不看书也能顺利解答。

c.考试之前,进行最后一次复习。

初二数学提分技巧

建立初二数学纠错本。做作业或复习时做错了题,一旦搞明白,决不放过,建立一本错误登记本,以降低重复性错误,不怕第一次不会,不怕第一次出错,就怕下一次还犯同样的错误把平时容易出现错误的知识或推理记载下来,以防再犯。

经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。结合自身特点,寻找最佳学习方法。

对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。

高考快速复习方法建议

高考物理复习方法建议

初二地理复习方法

小学数学复习方法

初二月考复习方法总结

五年级数学复习方法总结

高三数学高考复习方法

简历三大误区的修改建议

考研英语冲刺 复习方法备考建议

高考三大有效复习方法 模拟考试后怎么复习

初二数学复习方法的三大建议(精选6篇)

欢迎下载DOC格式的初二数学复习方法的三大建议,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档