下面就是小编给大家带来的小学数学学习建议(共含6篇),希望大家喜欢,可以帮助到有需要的朋友!同时,但愿您也能像本文投稿人“tzyczr”一样,积极向本站投稿分享好文章。
小学数学学习建议
1、重视计算
数学的计算学习就像语文的识字学习,是最基本的。
不识字,语文读不好,计算差,数学同样学不好。而且计算好,会给孩子数学学习提供很大的帮助。现在的新教材对计算的重视度不高,练习量比较少,导致现在孩子的计算能力跟以前的孩子相比,有一定差距。
家长可以每天让孩子做2分钟口算。一开始,2分钟内能只能做完20道口算,但之后,你会发现孩子会越来越快,正确率越来越高。
2、重视生活中的数学
其实数学的学习对生活的影响很大,提供很多的帮助。
例如买东西、计算利率、盈利等等,这些都用到数学。你可以在生活中,有意识的跟孩子提数学问题,让他解答。很简单,你带孩子去买菜,一斤苹果5元,买3斤多少钱,给阿姨20元,找回多少钱。
别小看这些,在小学数学学习中,解决问题占的分数是最多的,而解决问题无非就是判断用加减乘除中的哪种来列式解答,这些问题其实就是生活中的问题,孩子在生活中接触多,自然就会解答。
3、适当学奥数
大家不妨这么来看待数学和奥数:
1)课程内的数学:是每天的饭菜,保证生存所需。
2)基础奥数:是每周的运动,保证身体健康。
3)竞赛奥数:是专业的运动,目标是夺金。
其实很多的所谓奥数题,它并不难,只是教你从另外一角度看问题,跳出书本的方法解决问题,丰富孩子的知识面,当然,你不要要求你的孩子必须要拿奖,给他过多的压力,会使他讨厌学。
4、别吝啬你的表扬
表扬的作用大得超乎你想象,很多小孩刚开始都讨厌数学,觉得它好难,但当他有一点成绩,得到你的表扬,你会看到他在数学学习上的突飞猛进。
每个人都喜欢听到别人的赞扬,孩子更是,哪怕一点点的进步,比如今天晚上的作业做快了1分钟,都能表扬。
为孩子打好中学阶段的数学基础可以在小学学习中注重这两方面能力的培养:
1、画图解题的能力
不要小看画图,它能化抽象为直观,帮助学生理解题意,这是一种很好的学习方法,但很可惜,我们课本中没有注重画图的教学。特别是奥数中,图能化繁为简,直观找到解题的突破口。
2、解方程的能力
小学中的大部分解决问题都能用解方程来解答,而且初中的数学,很不赞成用算术解,几乎都用方程解,而小学课本中的解方程是很简单,根本是不够用的,家长可以教孩子难点的解方程,对孩子的难题解答很有帮助。
另外在平时生活学习中可以还孩子玩玩和数学有关的游戏,数独很适合给小学生培养对数字的感觉,而且数独有很强的逻辑性很适合小学生。很多数字谜的题目都运用到数独的能力。
小学奥数学习方法
1、接触奥数,兴趣第一。
我们接触过不少四五年级希望开始学习华数的学生,令人惊讶的是,这些学生中有相当一部分学生其实在低年级时曾经学过奥数的,但因为当时学习听课效果不好便放弃了,到了高年级,迫于小学形势又不得不学。对于这样的学生,学习奥数是有一定阴影的,甚至有些学生抱定了自己不适合学奥数的念头,有一定抵触心理。
所以既然家长决定低年级开始学习奥数,一定要首先注意兴趣上的培养,帮助他们找到数学中引起他们兴趣的事情,比如数字游戏等等。让奥数训练回到兴趣培养的本来意义上
2、找一位孩子最喜欢的老师。
既然刚刚接触奥数,兴趣是第一位的,那找一位孩子喜欢的老师就是学习的重中之重。一位好的老师能够让孩子迅速喜欢上课堂,以自己的人格魅力感染学生。 ?在课堂上,老师不仅是孩子的师长,也是孩子的朋友,和孩子们一起探讨问题,一起思考,使孩子们养成良好的学习习惯,在喜欢老师的同时喜欢数学。开展小学奥数培训的原则和方法
3、关于做题,建议三点:一:针对性。 二:方法性:一看二分三做四清。三:时效性。学奥数要如何做题、做什么题
奥数受到了众多学校的重视,那么对于这个受众多学校重视的学科,有没有好的学习方法和窍门呢?以上是为大家分享的小学奥数学习方法,希望同学们一定要每天坚持练习奥数题。
一、思考:思考是数学学习方法的核心。在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于思考,经常开动脑筋的习惯,于是脑子就越用越灵,勤于思考变成了善于思考。我正因为掌握应用了这一方法,所以在全国数学竞赛中获得了武汉市一等奖。
二、动手试一试:动手有助于消化学习过的知识,做到融会贯通。课下,我常常把老师讲过的公式进行推导,推导时不要看书,要默记。这样就能使自己对公式掌握滚瓜烂熟,可为公式变形计算打下扎实的基础。
三、培养创造精神:所谓创造,就是想出新办法,做出新成绩,建立新理论。创造,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,我在听懂了老师讲的方法后,还要自己去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的境界。
科学的学习方法在课内课外应注意些什么呢?
第一,认真听老师讲课。这是我取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差,更切忌一边讲话一边听讲。其次要专心凝听老师讲的每一个字,因为数学是以严谨著称的,一字之差就非同小可,一字之间就隐藏玄机无限。听讲时还要注意记笔记。一次老师讲了一个高难度的几何题,我一时没有听懂,多亏我记下了这道题以及解法,回家后仔细琢磨,终于理解透了,以至在一次竞赛中我轻而易举地解出了类似的一道题,获得了宝贵的10分。上课还要积极举手发言,举手发言的好处可真不少!①可以巩固当堂学到的知识。②锻炼了自己的口才。③那些模糊不清的观念和错误能得到老师的指教。真是一举三得。总之,听讲要做到手到、口到、眼到、耳到、心到。
第二,课外练习。孔子曰:“学而时习之”。课后作业也是学习和巩固数学的重要环节。我很注意解题的精度和速度。精度就是准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。我经常是这样做的,在开始做作业时定好闹钟,放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张,也不会顾此失彼了。
第三,复习、预习。对数学的复习,预习我定在每天晚上,在完成当天作业后,我将第二天要学的新知识简要地看一看,再回忆一下老师已讲过的内容。睡觉时躺在床上,脑海里再像看电影一样将老师上课的过程“看”一遍,如果有什么疑难,我立即爬起来看书,直到搞懂为止。每个星期天我还作一星期功课的小结复习、预习。这样对学数学有好处,并掌握得牢固,就不会忘记了。
第四,提高。在完成作业和预习、复习之后,我就做一些爬坡题。做这类题,尽可能自己独立思考,努力找出隐藏的条件,这是解题的关键。如果实在想不出来就需要看一看参考书,以及请教师长和同学。总之,要做到多看、多做、多问、虚心、勤奋,保持积极向上的精神这才是关键的关键。
小学二年级数学乘法口诀4种记忆方法
一 、理解记忆法
理解性记忆需要有一定的参照物,即自己比较熟悉的口诀,比如:七七四十九,八八六十四,九九八十一等,根据这些可以很轻松的找到推算的办法。
例如:8×9的结果想不出,则可思考“9个9减去一个9”,也就是“81-9=72”,当然得出结论后不能写上72就算了,还应把“8×9”的口诀在心里默念一遍,多经历几次这样的思考后,“七十二”这句也将成为铭记于心的口诀了。
二 、对比记忆法
对比即是多对数字进行观察和比较。
三 、故事记忆法
故事对于故事族的精灵来说是喜闻乐见的,有些口诀比较特殊,他们可以利用故事的形式来帮助学记忆.
如:唐僧师徒在取经的过程中历尽了九九八十一难,孙悟空有七十二变,而猪八戒只有一半法力,四九三十六变,遇到妖怪,孙悟空不管三七二十一,抡起金箍棒就打。
四 、手指记忆法
“伸出十个手指头,手心朝向自己,从左数,顺序依次为1---10。如果想要知道几个9的乘积,只要弯住第几个手指,看它的左边有几个指头就是几个十,右边有几个指头就是几个一,合起来就是所要求得的积。”
如:二九十八,意义为2个9得18,所以弯曲第二个手指头,弯曲的手指的左边有1个指头,右边有8个指头,合起来就是18 ,即二九十八。
(1)主动和数学老师交朋友
我之所以把这条放在首位,因为它确实对数学学习具有举足轻重的作用。人的感情具有传递性的,与老师的距离近了,也就离数学更近了。如何与老师成为朋友,很简单,经常在课堂上提问或者经常跑去请教老师,你们自然就是朋友了。
(2)必须提高听课的效率
听课的效率如何,决定着学习的基本状况。提高听课效率应注意以下几个方面:
1、科学预习
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培养自己的自学能力,与老师的方法进行比较,可以发现更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。
2、科学听课
听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思考:面对这个问题我会怎么想?当老师讲解时,又要思考:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。
3、科学笔记
常常有学生问我,听数学课要不要记笔记,我毫不犹豫地回答:当然要。不仅要记,而且要记好。当然,什么都记就不是记笔记了,应该针对自身听课的情况选择性记录。
记问题--将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。
记疑点--对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后与老师商榷。
记方法--勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
记总结--注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用。
4、必须用好你的数学笔记
记下的笔记只停留在纸上,要成为你自己的东西,必须用心去独立体会笔记里的每一个典型例题,每一个经典方法,每一个想法思路,完全理解并且会熟练运用才是根本。
当然,课堂的问题解决了,其他的问题也就迎刃而解了,所以,高一的学生们,请不要轻易讨厌数学,因为多半是由于你不了解数学,其实它很善良,也很有魅力,试着用心去学,你一定会成功。
高中数学的特点
(1)教材内容方面:高中数学教材,较多研究的是变量和集合,不但注重定量计算,且需作定性研究。一句话:内容多,抽象性、理论性强。
(2)教学方法方面:高中教师在处理高中教材时却没有充裕的时间去反复强调教材内容,他们在教学中,不仅要对教材中的概念、公式、定理和法则加以认真讲解,还要重视学生各种能力的培养,对习惯于依样画葫芦缺乏举一反三能力的高一学生,显然无法接受。
(3)学习方法方面:进入高中后,则要求学生勤于思考、勇于钻研、善于触类旁通、举一反三、归纳探索规律。
(4)课程要求方面:由于高中数学内容难度增大,数学知识的应用增加,要求学生会使用文字、符号和图形等数学语言表达问题进行交流,对能力提出更高的要求。
很多同学进入高中后都会在学法上遇到很大的困扰。因为高中知识多,授课时间短,难度大,所以初中时候的一些学习方法在高中就不太适用了。对于高中的知识,不能认为“做题多了自然就会了”,因为到了高中没有那么多时间来做题,因此一定要找到一种更有效地学习方法,那就是要在每次学习过后进行总结和反思。总结知识点之间的联系和区别,反思一下知识更深层的本质。三、预习高一的知识。新课程标准的高一第一学期一般是讲必修1和必修4两本。目前高中采取模块教学,每个学期2个模块。
1、养成良好的学习数学习惯
建立良好的学习数学习惯,会使自己学习感到有序而轻松。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。要做到多质疑、勤思考、好动手、重归纳、会应用。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以下几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元法、待定系数法、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
大学数学学习经验、建议
一提起 “ 数学 ” 课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近12年的数学学习生涯,我想仍会有很多同学和我一样在初学大学数学时遇到了很多困惑与疑问,尤其是作为数学系的学生,在面对着 “ 数学分析 ” 之类的课程时,更可能会有一种摸不着头脑的感觉。因此我在读大一的时候,也经常向别人请教一些关于 “ 如何学好数学 ” 之类的问题,我就把自己问到的结果并结合自己的经验教训,讲一点有关大学数学学习的方法,希望对各位师弟师妹能有帮助。
知难而进,迂回式学习
学习数学首先就要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,这一点在刚开始进入大学学习数学时尤为重要。在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,使得我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现(比如考试不及格),这时就一定得坚持住,能够知难而进,继续跟随老师学习。我在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了, “ 吉米多维奇 ” 上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,当时我也几乎快被打击得失去信心了。不过恰巧那时碰上了来我们学校作讲座的香港浸会大学的汤涛教授,于是我就在讲座完后上前讲了我当时数学学习的困难状态并请教他应该如何解决这种问题。汤教授看到我是才入学一个多月的数学系新生,就立刻回答道: “ 感觉晕是很正常的,而且还得再晕几个月可能就会好了 ” 。初听起这句话,我还有些不太敢相信,但毕竟是牛人说的,也就先照着做了。
后来,我就一直硬着头皮跟着老师学了下来。虽然感觉还是不太懂,虽然做作业仍然感觉很费劲,但始终没有放弃,到现在才真正感觉到那句话确实是对的。可能这种状态是学习数学的一个必经之路,因此必须克服这个困难才能学好大学数学理论知识。
除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。
比如说,在 “ 数学分析 ” 一开始学习实数系的确界存在基本定理时,我就花了很多时间在想引入这个定理的目的是什么。由于当时根本没什么基础,所以对于这个问题怎么想也想不通,甚至觉得这个定理没有什么实质的意义。直到后来学到了多元部分的数学分析,以及专业课 “ 实变函数 ” 时,才开始慢慢理解它的真正目的。这里之所以要说明是实数系有确界存在的性质,即相当于有一种连续的性质,目的就是为了后面的极限和连续做铺垫的,因为只有在自变量能够连续变化的时候,考虑因变量的相应变化才有意义,进而才能研究函数的性质。但是如果没有学到后面,只了解区间而不知其它一些怪异的点集时是很难想通这个问题的。所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。但是,也并不是说在初学时就不去思考任何问题。相反,勤于思考是学好数学必备的好习惯,“ 数学是思维的体操 ” ,只有坚持思考才能掌握它的理论体系和逻辑关系。因此,应该在学习时掌握尺度,既要保证有充分的思考,但同时又不能过于钻牛角尖。
了解背景,理论式学习
大学数学与中学数学明显的一个差异就在于大学数学强调数学的基础理论体系,而中学数学则是注重计算与解题。直接反应就是大学数学系的考试几乎全守于数学定理或定义的证明题,而中学则有很多技巧性强的计算或证明题。
所以,针对这个特点,学习大学数学就应该注重建立自己的数学理论知识框架。要学习理论体系,首先就应该知道为什么要建立这种理论,它的作用是什么,这就要了解数学的历史背景知识。因此,我想向各位推荐两本数学史方面的书:《古今数学思想》(克莱因)和《20世纪数学经纬》(张奠宙)。前一本书是从古希腊一直写到了19世纪的数学发展,而后一本书则全是在讲上个世纪数学理论的发展情况,因此这两本书基本上恰好记录了整个数学理论的发展历史。我是在大一第二学期 “ 非典 ” 停课时借阅的《20》。在读完之后,感觉对自己的数学学习起到了很大的帮助作用。在那之后,对于许多理论知识都觉得十分自然也容易接受了。 比如 “ 数学分析 ” 在一开始就强调对语言的掌握,而它的产生则是由于数学史上的 “ 第二次数学危机 ” 引起的。众所周知,Newton创立的微积分,虽然在其应用方面取得了巨大的成就,但微积分在那时的理论基础是相当乱的。Newton在求导数时先将无穷小量看成非零数作为分母,后来又将其视做零而舍去,因此这就导致了逻辑上的错误。为了给微积分奠定正确而坚实的基础,大数学家Cauchy提出了用语言的方法来推出极限和导数的概念。借助语言,可以十分清晰地展示出函数取极限的过程,而且在逻辑上也非常清楚严谨。这样,当了解了这些历史背景知识之后,就觉得学习语言是很必要的,学起来也就自然得多了。《20》一书中,还写了许多有关数学家的有趣故事,尤其其中有一篇是其书作者采访数学大师陈省身的记录稿。在那篇文章中,陈省身大师就谈了他自己许多学习数学的方法和态度,尤其守于心态的问题,这对于我们学数学的学生有很大的启发意义。因此,建议大家如果有时间就一定要读一读这本数学史书。
除了了解背景帮助我们学习理论知识外,还要下苦功夫去学习。在接触了这些陌生的数学理论一段时间后,可能觉得看起来已经懂了,但其实自己不一定能真正掌握,尤其是那些证明中内含的逻辑关系最容易出错。所以在学习时,应该适当地记忆理论知识,有时还应该默写定理,只有通过默写才能发现自己在理论上的漏洞,才能培养出自己严密的理论、逻辑能力,这对以后的学习都是很有帮助的。
自然人文,全面式学习
以上全是有关学习数学知识的,但是要学好数学,并不能只单单学习数学知识,还要多了解其他学科的知识,拥有广泛的知识基础。著名应用数学家林家翘教授就曾说过,在MIT每位大学生在第一年都要全面学习数、理、化、生的课程,而这也是它们学校一直保持的优良传统。自然科学当中的许多问题都是数学理论的创造源泉或应用基地。比如著名数学家Riemann创造的 “ 黎曼几何 ” 一开始并没有发挥威力,但直到大物理学家Einstein提出相对论后才使得该理论有了用武之地。因此多了解一些其它自然科学知识,有助于我们更好地理解数学理论,发现它的价值。人文知识的学习同样必不可少,有许多数学家都有着深厚的人文知识素养。比如华裔菲尔兹奖获得者丘成桐教授就对我们的古代文学很精通,他写东西经常会引用《左传》等古文或者写古诗句来反应他的一些研究。其实,在学到很基础的数学理论知识如数理逻辑时,就必须借助人文知识来从哲学角度理解数学。著名的数理逻辑学家歌德尔在证明出了 “ 不完备定理 ” 之后,另一位数学家外尔就说: “ 上帝是存在的,因为数学无疑是相容的;魔鬼也是存在的,因为我们不能证明这种相容性。 ” 这句颇有哲理的话,就是从哲学的角度反应了该数学定理的意义。
大学数学课程学习有效思路与方法
首先,得记,当然不是背诵,而是理解性地掌握!如果实在无法理解,就只能背下来,尤其是概念,定理,公式,特别注意应用公式、结论,定理解题的条件!理解性记忆的方法就是清楚其来龙去脉,但并不是其追究其历史,而是教材和课堂教学中的引例、反例、推导、推广,引申形成定义、定理、结论的过程!
其次,看书有重点有计划,避免杂乱内容干扰学习、复习进度!对于书上的例题要会做,定理要会证,公式会推导,练习独立完成!看过后,拿到原题能重现出来,最好能够尝试、探索不同的思路与方法!
第三,上课讲的解题思想与套路,即问题分析、探索思路的过程与步骤,要理解、记住,自己要学会总结内容、题型、一般性的解题步骤与思路;自主寻找、发现课程中各概念、定理、公式之间的联系,注意前后学习内容的前后呼应,借助后续内容加强对之前内容的理解,并能探索出新的、不同解决问题的思路与方法!
好的课堂比自己看书更有效率,会让课程学习、课后复习,归纳总结效果更好!比如,《公共基础课》在线课堂的“全国竞赛初赛非数学类历届真题”解析课堂,通过典型题的解析,以点带面,让我们更加清楚如何审题,如何探索解题思路,如何找到解题思路的切入点,从而形成适合自己的解题“套路”和清晰的解题脉络; 通过题型总结、解题思想、思路、步骤的归纳,让基本概念、基本定理、基本解题思想与方法理解更加深入、透彻; 满满的套路,确保数学竞赛、研究生入学考试和课程考试胸有成竹、轻松应对!
第四,布置的作业练习、教材例题要能独立做出来,至少看了答案后下次看到改了数据、符号的同类题要会做!注意练习与例题、概念、定理结论的联系!能够借助练习解决的思路、相关结论解决新的问题!它们就是经常提到的各类考试题的“原型”,也是所谓预测、猜题的依据.
那么,除了教材之外,是不是不需要其他资料准备了呢?当然需要,比如选择合适的练习册来自我检测对教材内容的掌握、理解程度!
★ 小学数学学习总结
★ 小学数学学习计划
★ 高一物理学习建议